OSCILLATION IN THE INITIAL SEGMENT
COMPLEXITY OF RANDOM REALS

JOSEPH S. MILLER AND LIANG YU

ABSTRACT. We study oscillation in the prefix-free complexity of initial seg-
ments of 1-random reals. For upward oscillations, we prove that 3 2-9(n)
diverges iff (3°n) K(X [n) > n+g(n) for every 1-random X € 2¢. For down-
ward oscillations. we characterize the functions g such that (3°°n) K(X [n) <
n+g(n) for almost every X € 2%. The proof of this result uses an improvement
of Chaitin’s counting theorem—we give a tight upper bound on the number of
strings o € 2™ such that K(o) < n+ K(n) —m.

The work on upward oscillations has applications to the K-degrees. Write
X <k Y to mean that K(X [n) < K(Y In) + O(1). The induced structure
is called the K-degrees. We prove that there are comparable (Ag) 1-random
K-degrees. We also prove that every lower cone and some upper cones in the
1-random K-degrees have size continuum.

Finally, we show that it is independent of ZFC, even assuming that the
Continuum Hypothesis fails, whether all chains of 1-random K-degrees of size
less than 280 have a lower bound in the 1-random K-degrees.

“Although this oscillatory behaviour is usually considered to be
a nasty feature, we believe that it illustrates one of the great
advantages of complexity: the possibility to study degrees of ran-
domness.”

Michiel van Lambalgen, Ph.D. Dissertation [25, p. 145].

1. INTRODUCTION

We study both the hight and depth of oscillations in the prefix-free complexity
of initial segments of random reals. By definition, X is 1-random if and only if
K(X n) >n—0(1).) On the other hand, K(o) < |o| + K(|o|) + O(1) for any
string o € 2<% [4]. Hence K (X [n) <n+K(n)+O(1). How does K(X [n) behave
between these bounds? This is the subject of the present paper and, from a different
perspective, of our companion paper [21]. Our results have many forerunners in
the literature; we mention the most relevant ones below.

First note that there is a subtle difference in the nature of the upper and lower
bounds on K (X [n). The constant in the lower bound depends in an essential way
on X, unlike the constant in the upper bound. More substantially, though neither
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the lower nor the upper bound can be improved (if they are to hold for all 1-random
X), they are not tight in quite the same sense. Solovay [24] showed that almost all
reals infinitely often achieve the upper bound, i.e., liminf,, .o n+ K(n) — K(X [n)
is finite for almost all X € 2 (see [27]). This is not true of all 1-random reals, and
in fact, it turns out to be a characterization of 2-randomness [20]. To see that the
upper bound cannot be improved at all, note that a straightforward modification
of Solovay’s proof shows that if S C w is infinite, then almost all reals infinitely
often achieve the upper bound on S. On the other hand, Chaitin proved that no
1-random can infinitely often achieve the lower bound: if X € 2¢ is 1-random, then
liminf,, o K(X [n) —n = co. This does not mean that the lower bound can be
improved. In Corollary 3.2, we show that if h: w — w is unbounded, then there is
a l-random X € 2 such that (3%°n) K(X [n) < n + h(n).

If X € 2¥ is l-random, it cannot be the case that K(X [n) stays close to
either bound; instead it oscillates, sometimes being “close” to the upper bound
and sometimes being “close” to the lower bound. This behavior was first explored
by Solovay [24]. In Section 3 we examine upward oscillations, starting from a
characterization of 1-randomness proved by the authors [21].

Ample Excess Lemma. X € 2“ is 1l-random iff >, =KX 1n) < o,

Note that this strengthens Chaitin’s result: if X € 2% is 1-random, then not
only does K(X [n) — n tend to infinity, but it does so fast enough to make the
series converge. An immediate consequence is that if ) _ 279" diverges, then
(3*°n) K(X [n) > n+g(n) for every 1-random X € 2¢. This generalizes a result of
Solovay, who assumed additionally that g was computable. Furthermore, this result
is tight. We prove that if > _ 279(") < o0, then there is a 1-rtandom X € 2 such
that K(X [n) < n+ g(n) for almost all n € w. So the ample excess lemma gives
the strongest possible lower bound on the growth of K(X [n) — n.

We turn to the investigation of downward oscillations in Section 5. Li and
Vitanyi proved that if f: w — w is computable and ) 2-/(") diverges, then
(3*°n) K(X [n) <n+ K(n)— f(n) for all X € 2¢ (this is sketched in [17, Exercise
3.6.3(a)] and proved below as Theorem 5.3). We cannot drop the computability as-
sumption on f; in Corollary 5.5 we show that there is an f such that ) 2-f(n) =
oo but (V*°n) K(X [n) > n+K(n)— f(n) for almost every X € 2¢. In Theorem 5.1,
we show that the right series to consider is actually ) 2= f(M)=K(f(n)[n") "Tf this
series converges, then (V*°n) K(X [n) > n+ K(n) — f(n) for almost every X; if it
diverges, then (3°n) K (X [n) < n+K(n)— f(n) for almost every X. The proof of
these results uses an improvement of Chaitin’s counting theorem. His upper bound
on the number of strings o € 2" such that K(o) < n + K(n) —m turns out not to
be tight. We give an optimal bound in Section 4.

Corollary 5.6 restates Theorem 5.1 to give the precise condition on a function g
needed to guarantee that (3°n) K (X [n) < n+g(n) for almost every X € 2¥. Note
that our results on downward oscillations are not stated, and do not hold, for all 1-
random X. A result that does was given by Solovay [24]: if h and g are computable
functions such that 2-9(") diverges and h is unbounded and monotone, then
for every 1-random X € 2¥ we have (3°°n) [K(X [n) < n+h(n) and K(n) > g(n)].
It should be clear that we cannot drop the computability assumption on h.

Our review of results on oscillation in initial segment complexity would be badly
incomplete if we did not mention the work of Martin-Lof [19]. Although he studied
the plain (as opposed to prefix-free) Kolmogorov complexity of initial segments of
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X, the results are similar. Martin-Lof proved that if f is a computable function
such that ) 277" = o0, then (3%°n) C(X [n) < n— f(n) for all X € 2. The
analogous result for prefix-free complexity is Theorem 5.3 (which Li and Vitdnyi
actually derive from Martin-Lof’s result, modulo a constant term [17]). Martin-
Lof also showed that if f is any function such that > 2=/ < oo, then
(V°n) C(X In|n) > n — f(n) for almost every X € 2¢. This is comparable
to part (i) of Theorem 5.1, and in fact, both results are proved using the first
Borel-Cantelli lemma.

Comparing K(X [n)K(X—mn) to n+cK(n)n+epsilon K(n). Let X € 2¥ be
1-random. When trying to understand how K (X [n) oscillates between n — O(1)
and n + K(n) + O(1), it is natural (if naive) to ask how K (X [n) compares to
n+eK(n), for e € (0,1). We will see that K (X [n) neither dominates n + eK(n),
nor is dominated by it. In a weak sense, this says that K (X [n) uses up all the
space between its bounds.

In the following proof, we use that K(n) < dlogn 4+ O(1) for any 6 > 1, and
equivalently, that eK(n) <logn + O(1) for any € < 1.

Theorem 1.1. For any e € (0,1) and X € 2¥:
(i) (3*°n) K(X [n) <n+eK(n).
(ii) If X is 1-random, then (3%°n) K(X [n) > n+eK(n).

Proof. (i) Let f =logn. Pick 1 <4 <1/(1 —¢). Then
(1-&)K(n) < (1—e)dlogn +O(1) < f(n),

for sufficiently large n € w. For such n, we have n + K(n) — f(n) < n+ eK(n).
Since f is computable and 2-7(") diverges, we can apply Theorem 5.3. Thus
(3*°n) K(X[n) <n+ K(n)— f(n) <n+eK(n) for all X € 2¢, completing the
proof.

Alternate proof: A direct proof of (i) is not difficult. The result is immediate
if X is not 1-random, so assume that it is. Fix an effective bijection between w
and 2¢ such that if o is associated with n, then |o| = logn + O(1) (see the next
section). Consider n € w associated with X [m. Then the initial bits of X code n
(assuming that we know m), so

KX n)<n+K@m)+0(1) <n+2logm+O(1) <n—+2loglogn + O(1),

where the constant does not depend on n. On the other hand, the randomness of
X ensures that eK(n) > eK(X [m) — O(1) > em — O(1) = elogn — O(1). Hence,
for a sufficiently large n € w that is associated to X [ m for some m € w, we have
K(X [n) <n+eK(n).

(i) We know that eK(n) < logn 4+ O(1), so 3o, 27K > 20" "1/n
diverges. Apply Theorem 3.4, of which we only need the direction that follows
easily from the ample excess lemma. ([l

Applications to the KK-degrees. The Van Lambalgen quote at the beginning
of this paper suggests that oscillation in the initial segment complexity of a real
can be used to capture its degree of randomness. In Sections 6 and 7 we consider
a specific realization of this idea. Downey, Hirschfeldt and LaForte [7, 8] defined
X <k Y to mean that K(X [n) < K(Y [n)+ O(1). In other words, Y has higher
initial segment prefix-free complexity than X, up to a constant. The induced partial
order is called the K-degrees.
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If higher complexity implies more randomness, then one can interpret X <y Y
as saying that Y is more random than X. In [21], the authors back this intuition up
by proving that if Z € 2 is 1-random, X <k Y, and X is Z-random, then Y is also
Z-random. In other words, randomness relative to random reals is closed upward
in the K-degrees. However, because there were no known examples of comparable
l-random K-degrees, it was not clear how much this result actually said. While it
is easy to produce incomparable 1-random K-degrees (indeed, almost every pair of
reals is K-incomparable [21]), the construction of comparable 1-random K-degrees
is harder. The work of Section 3 allows us to produce many such degrees.

Using Theorems 3.1 and 3.3, we show that every countable collection of 1-random
reals has a lower bound in the 1-random K-degrees and that every lower cone in the
l-random K-degrees has size continuum. In fact, we actually prove these results
for a relation that appears stronger than <p. For XY € 2%, we write X <g Y
and say that X is strongly K-below Y if lim,¢, K(Y [n) — K(X [ n) = co. Clearly
X <k Y implies X < Y, but the strictness of this implication is open. It is also
open if, given a 1-random X € 2%, there is always a Y >, X. We show that it is
possible for a 1-random K-degree to have continuum many reals strongly above it.
On the other hand, the first author has proved that there are only countably many
reals K-above any given 2-random [20].

In Section 7 we consider the following statement:

(%) Every chain of 1-random K-degrees of size less than 2%° has a
lower bound in the 1-random K-degrees.

We show that it follows from Martin’s Axiom, so it is consistent with the negation
of Continuum Hypothesis. On the other hand, the statement cannot be proved in
ZFC. We use the countable support iterated Sacks forcing of length ws to produce
a model with a chain of size 8; < 280 in the 1-random K-degrees that does not
have a lower bound in the 1-random K-degrees. Therefore, (x) is independent of
ZFC, even assuming that the Continuum Hypothesis fails.

2. PRELIMINARIES

We begin with a review of the definitions, notation and results that will be used
below. A more thorough introduction to effective randomness can be found in the
texts of Li and Vitanyi [17] or Nies [22], or the upcoming monograph of Downey
and Hirschfeldt [6]. By a real, we mean an infinite binary sequence, i.e., a member
of 2¥. Finite binary sequences will be called strings. A set of strings S C 2% is
prefiz-free if no element of S is a proper prefix of another element of S. A machine
is a partial computable function from 2<% to itself, though we will generalize this
notion below. A machine is called prefiz-free if it has prefix-free domain.

A prefix-free machine U: 2<% — 2<% is universal if, for every other prefix-free
machine M, there is a prefix p € 2<% by which U simulates M. In other words,
for all o € 2<%, either U(po) = M(o) or both diverge. It is easy to see that
a universal prefix-free machine U exists. Furthermore, the universality of U is
effective, meaning that from an index for M we can compute the prefix p by which
U simulates M. This can be exploited, along with the recursion theorem, to let us
build a prefix-free machine M as if we knew p in advance.

Kolmogorov complexity measures the information content of strings. We restrict
our attention to prefiz-free (Kolmogorov) complerity, an important variant due
to Levin [16] and Chaitin [4]. Given any prefix-free machine M, let Ky(o) =
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min{|7|: M(7) = o}, i.e., the minimum length of any M-description of o. The
prefix-free complexity of o € 2<% is defined to be K (o) = Ky(o). Note that the
universality of U ensures the optimality of K; in other words, for any prefix-free
machine M we have K (o) < Kjps(o) + O(1), where the constant depends on M.

We fix an effective bijection between 2<% and w and treat these sets as in-
terchangeable. In particular, we identify o € 2<% with n € w if the binary ex-
pansion of n 4+ 1 is 1o. This allows us to view K as a function on the natural
numbers. It is easy to see that K(o) < |o| + K(|o]) + O(1) < 2|o| + O(1), hence
K(n) <logn+K(logn)+0(1) < logn+2loglogn+0(1).2 Therefore, for any § > 1
we have K (n) < dlogn+ O(1), where the constant depends on 0. To see that K (n)
is not bounded by logn + O(1), note that the fact that U has prefix-free domain
implies that ) 2-K(n) = Y pcoce 2-K(9) < 1; this is Kraft’s inequality. On the
other hand, _, . 278" =3 _ 1/n = oo, so limsup,,_,,, K(n) —logn = oo.

Kraft’s inequality has an effective converse, the Kraft-Chaitin theorem. A Kraft—
Chaitin set is a computable sequence of pairs {(d,,o,)}ncw such that d, € w,
on € 2<% and ), . 27% < 1. The theorem says that, given a Kraft-Chatin
set {{dn,on) tnew, there is a prefix-free machine M and strings {7, }ne. such that
|7n| = d,, and M (7,) = oy, for all n € w. Then the universality of U implies that
K(oy) < dp+0(1). Our use of the Kraft—Chaitin theorem, particulary in Sections 3
and 4, will be fairly delicate and we should examine the theorem more closely. The
proof of the Kraft—Chatin theorem gives a uniform effective procedure to produce
M from {{(d,,,0n) }ncw. Furthermore, this procedure is what computer scientists
call an online algorithm: it produces 7, after having only seen {(d;, 0;)}i<n. This
is relevant in Section 3, where we apply the relativization of the Kraft—Chaitin
theorem to an oracle X € 2¥. In that case, we have an X-computable sequence
{{dp,07) }new from which we produce a prefix-free oracle machine M~X and the
corresponding strings {7, }nc.. Because the construction of M is “online”, the use
of MX(7,) = o, is exactly the part of X required to compute {(d;, 0i) i<n-

To define conditional prefix-free complexity we consider prefix-free machines with
a parameter, i.e., partial computable functions M : 2<% x 2<% — 2<% guch that if
T € 2<% is fixed, then the domain of M(-,7) is prefix-free. We can extend U
to be universal among such machines (now interpreting U(c) as U(o, A), where
A is the empty string). Define conditional prefix-free complexity by K(o|1) =
min{|v|: U(v,7) = o}. There is an important relationship between conditional and
unconditional complexity. Fix a pairing function, an effective bijection (-, -): w x
w — w, and define K(o,7) = K({o,7)). Let 0* denote the U-description of & of
length K (o) on which U converges first. This definition ensures that o* can be
determined from o and K(o). The symmetry of algorithmic information, due to
Levin (see Gécs [9]) and Chaitin [4], states that K(o,7) = K(o)+ K(7|0*)+O(1).

We say that A € 2¢ is 1-random if K(A[n) > n — O(1). This notion was
introduced by Martin-Lof [18], though with a different definition; Schnorr proved
the equivalence. It is straightforward to relativize the definition of 1-randomness
to an oracle X € 2¢. The resulting randomness notion is called X -randomness. Of
particular importance is 1-randomness relative to (', the halting problem, which is
called 2-randomness.

Kucera [15] and Gécs [10] proved that every set is computable from a l-random
real. In other words, if C € 2¥, then there is a l-random X € 2“ such that

2We exclusively use the logarithm base 2.
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C <7 X. In Section 3, we will need a somewhat stronger form due to Gacs. The
use of C' <p X is the least function u: w — w such that, for all n, the computation
of C(n) only examines bits from X [wu(n). Gécs not only constructed a 1-random
X computing C, but ensured that limu(n)/n = 1. This implies that we can build
a reduction of C' to X with use exactly 2n.

We finish with an elementary analytical lemma.

Lemma 2.1. Assume that 3, . 279" < co.
(i) Thereis a function f <p g such that f is majorized by g, limsup,, ., g(n)—
f(n)=oc0and ) ., 2-7 ") < 0.
(ii) There is a function f <p ¢ such that lim,_ . g(n) — f(n) = oo and
Y necw 2-f(") < .

Proof. (i) For each m € w, let n,, = min{n: g(n) > 2m}. Define f(n,) =
lg(nm)/2] > m. Let f(n) = g(n) for all other values of n. Then

D 27 <y "amel) 4 N "9 <o,
new new mew
Clearly, f is majorized by g. Also f <r g and limsup,,_,., g(n) — f(n) = cc.
(i) Let ¢ > 3, .., 279 Note that g’ computes an increasing sequence {n; };c.,
such that Zn>n_ 2-9(n) < c/2i, for all i € w. We can assume that ng = 0. Define

i

f(n) = g(n) — [log|{i: ¢c; < n}|| (or 0 if this is negative). Then

Z 9—f(n) < Z [{i: ng <n}| 2790 = Z Z 2-9(n) < Zc/gi = 2¢ < oo.

new ncw 1Cw n>n; 1EW

Also f <r ¢’ and lim,_, g(n) — f(n) = co. O
3. UPWARD OSCILLATIONS

In this section we explore the upward oscillations made by the initial segment
complexity of 1-random reals. In particular, we characterize the functions g such
that for all 1-random reals X, the initial segment complexity K (X [n) infinitely
often exceeds n + g(n). These are exactly the functions such that >, . 279 di-
verges. One direction of this characterization follows from the ample excess lemma.
For the harder direction, we prove:

Theorem 3.1. If > 2-1(") < o, then there is a 1-random X € 2% such that
K(X [n) <n+ f(n) + O(1).
Furthermore, we can ensure that X <p f & .

The proof is broken up into two parts. The first part is essentially technical. We
would like to be able to code f into a l-random real in a compact way, but this
may not be possible. Instead, we construct a function g such that (Vn) g(n) < f(n)
and g can be coded compactly, meaning that we can use Gacs coding to produce
a 1-random real X such that g(n) is computable from the first n bits of X, for all
n. Furthermore, we ensure that > _ 279(") < 50, The second part of the proof is
verifying that X is the desired 1-random real. This is the content of the following
result.

Bounding Lemma. If ) 279 < o0 and g <7 X with usen, then K(X [n) <
n+g(n) + O(1).
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Proof. The idea behind this lemma is that if we knew g—in other words, if we had
g as an oracle—then by the Kraft-Chaitin theorem we could give every string of
length n a description of length n + g(n) + O(1). Furthermore, as was discussed in
Section 2, the proof of the Kraft—Chaitin theorem gives an online algorithm, so we
could decode the description that was given to a string of length n knowing only
g [(n+1). Now consider the description o of length n+ g(n)+ O(1) given to X [n:
can we decode o without knowing g in advance? One might be hopeful, because o
codes X [n, from which we can compute g [(n + 1) and thus decode o. But it is as
if we have encrypted the decryption key along with our message. We would know
how to read the message if only we knew what the message said. The heart of the
proof is resolving this circularity.

By the Kraft-Chaitin theorem, there is a prefix-free machine MX relative to X
and a sequence {7, }new such that |7,] < g(n) + O(1) and (Vn) M¥(1,) = X | n.
We may assume that M is given by an oracle Turing machine (which we also call
M) such that:

(i) M*(7,) has use exactly n, and

(i) M*X(7,) reads exactly 7, before halting.
Furthermore, we may assume of M that both its input tape and oracle tape are
one-way, read-only, and reading moves the tape one position. These assumptions
ensure that we cannot look at the same position of either tape twice. We place no
restrictions on the work tapes and, of course, they can be used to store the bits of
the input and oracle that we have read, which is why our assumptions do not limit
the power of M.

The key step of the proof is to transform M into a Turing machine M*° with no
oracle. We do this by routing any requests that M makes to either its input or
oracles tapes to M°’s single input tape. Then M?° induces a prefix-free machine
(which we also call M°).?

Now let us assume that MX(7) |= p with use exactly n. Also assume that M
reads all of the bits of 7 and only those bits from the input tape. At certain stages
of the computation, M asks for the next bit of the input or the next bit of the
oracle, and by our assumptions, it cannot see the same bit of either more than
once. Now merge the bits of 7 and X [ n together in exactly the order that they are
requested by M; call the resulting string . The point is that M°(c) |= p because
the computation M° makes on ¢ is indistinguishable from the computation that
M*X makes on 7. Therefore, Kyso(p) < |o| = n + |7|. Applying this observation to
the sequence {7, }nc. shows that

K(XIn)<Kpye(X[n)+0(1) <n+|r|+001) <n+g(n)+0(1),
which is the desired conclusion. O

Proof of Theorem 3.1. Assume that we are given a function f: w — w such that
Y new 2=/ is finite. We want to construct a function g such that (Vn) g(n) < f(n)
and g can be coded in a compact way. In particular, we require that:

* 9(0)=0,

e if n# 3 (mod 4), then g(n) = g(n + 1), and

3In particular, we define a partial computable function M°: 2<% — 2<% so that it converges on
7 with output p iff the Turing machine M° halts after reading exactly 7 on its input tape (no less
and no more) and writing p on its output tape. In other words, we treat M° as a self-delimiting
Turing machine, which ensures that M° has prefix-free domain.
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0 4 8 12 16 20 24 28 32 n

FIGURE 1. The function h(10,3,n) is the upper bound on the val-
ues of g that wold be imposed if f(10) = 3.

e |g(n+1)—g(n)| <1, for all n.

Define g to be (point-wise) maximal among the functions satisfying these restric-
tions. It is not hard to see that such a function exists, but a careful examination
will help us understand g. Because g is forced to change at a slow rate, the value
of f(n) not only bounds the value of g(n), but it also places bounds on all values
of g. For example, if f(10) = 3, then g is at most 3 on [8,11], at most 4 on [4,7]
and [12,15], and so on. Define h(i,j,n) to be the upper bound placed on g(n) by
the fact that f(i) = j (see Fig. 1). Now, putting together all of the restrictions on
g(n), including the fact that g(0) = 0, we have

(1) 9(n) = min{h(0,0, n), min{h(i, f(i),n)}}.
To verify that Y, . 279(") < oo, note that

Z 27h(i,j,n) < 4. 2*j +8 Z 27j7n =12 27j.

new n>0
Therefore,
IERLEDY <2h<o,o,n> 'y Qhu,f(i),n))
new new 1EW
— Z 9—h(0,0,n) | Z Z 2~ h(if()m) < 19 4 Z 12.2- /) < .
new I€Ew NEW S

Next we prove that g <p f. It is clear that h <p f. Although Eq. 1 expresses
g(n) as the minimum of an infinite f-computable sequence, it is not hard to see
that we can ignore all but finitely many terms. In particular, if ¢ > 2n, then
h(i, f(i),n) > h(i,0,n) > [n/4] = h(0,0,n). Therefore,

g(n) = min{A(0,0,n), min{h(i, f(i),n)}},

sog<r f.

The restrictions placed on g allow us to code it compactly into a set C' € 2¥. It
is only necessary, of course, to record the value of g(n + 1) — g(n), for all n = 3
(mod 4). Two bits are sufficient to code g(n + 1) — g(n) because there are only
three possible values. Thus we use the first two bits of C' to record g(4) — ¢(3), the
next two for g(8) —¢g(7), and so on. Note that g(n) can be computed from C [|n/2]
(or more precisely, C [(2|n/4])). Of course, C <p g <r f.
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By the Kucera—Gécs theorem, there is a 1-random X such that C' <p X and
X <r CoW <pr f®0. As was mentioned in the preliminaries, the Gécs ver-
sion of the Kucera—Géacs theorem produces an X that computes C' with use 2n,
meaning that only the first 2n bits of X are used to compute C' [n. Therefore,
g(n) is computable from X [n, for all n. Hence the bounding lemma implies that
K(X[n)<n+gn)+0(1) <n+ f(n)+ O(1), completing the proof. O

Corollary 3.2. If h: w — w is unbounded, then there is a 1-random X € 2“ such
that (3°n) K(X [n) <n+ h(n).

Proof. Chose a sequence of distinct natural numbers {n;};c., such that h(n;) > 2i.
Define f: w — w by

fn) = {i, if n=mn;

n, otherwise.

We can apply Theorem 3.1 because >, ., 277" <3 2714+ 3 27" =4, so
there is a 1-random X € 2% such that K(X [n) < n+ f(n) + O(1). Therefore,
KX [n) <ni+f(n)+0(1) =n; +i+0(1) < n;+h(n;) —i+0(1). When i € w
is sufficiently large, K(X [n;) < n; + h(n;). O

We will want a stronger form of Theorem 3.1 when we study the K-degrees
in Chapter 6. It is clear that we can modify the proof above to require that
g(n) = g(n + 1) whenever n # 7 (mod 8). Then g can be coded into C' so that
g <t C with use |n/4]. By Gécs coding, there is a l-random X <p f & @/ such
that ¢ is computable from X with use |n/2|. This means that if Z is any set, then
g <7 X & Z with use n. Applying the bounding lemma gives the following result:

Proposition 3.3. If > 2= < o0, then there is a 1-random X <7 f & @
such that K(X ® Z) In) <n+ f(n) + O(1), for every Z € 2*.

We will not use this observation, but it is not hard to see that the constant in
the previous result is independent of Y. This is because the constant in the proof
of the bounding lemma depends only on the choice of M and, in this particular
application, the same M can be used for all Y.

We finish with the result promised at the start of this section.

Theorem 3.4. The following are equivalent for a function g:

(1) Yo 2790 diverges.
(ii) For every 1-random real X € 2%, (3°n) K(X In) > n+ g(n).

Proof. (i) = (ii): We prove the contrapositive. Assume that X is 1-random and
that there is an m € w such that (Vn > m) K(X [n) < n + g(n). This implies
that 3,5, 2" KX > 5~ 279(n) The first sum is finite by the ample excess
lemma, so ZnEw 2-9(") converges.

(ii) => (i): Again we prove the contrapositive. Assume that Y, . 279 con-
verges. By Lemma 2.1(ii), there is a function f such that lim, . g(n) — f(n) = oo
and > 277" < 00. Hence by Theorem 3.1, there is a I-random X such that
K(X [n) <n+f(n)+0(1). This together with the fact that lim,_,., g(n) — f(n) =
oo implies that (V°n) K(X [n) < n+ g(n). O
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4. THE IMPROVED COUNTING THEOREM

Before we turn out attention to downward oscillations, we present a result that
will be important for that investigation. Chaitin proved that there are at most
2n=m+O0() strings o € 2" for which K (o) < n+ K(n) —m (see [5, Lemma I3]%).
This result has been called Chaitin’s Counting Theorem. In this section, we improve
the upper bound in Chaitin’s theorem and show that our new upper bound is tight.
Improved Counting Theorem.

{o €2": K(0) <n+ K(n) —m}| < 2n-m-Kmn)+01)

Our proof will use the same basic technique as in Chaitin [5]: exploiting the
minimality of K among information content measures. Levin and Zvonkin [28]
introduced information content measures, although the name comes from Chaitin
[5]. Call a function K: w — RU {cc} an information content measure if

(i) Spew2 KM <1 (where 27 = 0).

(i) {(k,n): K(n) < k} is computable enumerable.
(This definition differs superficially from the one given in the companion paper
[21].) Note that K is an information content measure (when viewed as a function
of w); (i) is Kraft’s inequality and (ii) is clear. In fact, Levin [16] proved that
K is the minimal information content measure. To see this, let K be another
information content measure. Consider the c.e. set W = {(k+1,n): K(n) < k} =
{(h+2,n): |[K(n)| < h}. Note that

Z 9—d _ Z Z 9—(h+2) _ 22—Lf((n)J—1 < Z 9—K(n) < 1.
(d,oyew nEW B> | K(n)] ne€w new
Therefore, W is a Kraft—Chaitin set. By the Kraft—Chaitin theorem, there is a
prefix-free machine M such that (d,o) € W implies Ks(o) < d. It follows from
the definition of W that Ky (n) < [ K(n)|+2 < K(n)+2. Assume that K simulates
M with a prefix p. Then K(n) < Kpr(n) + |p| < I?(n) + 2+ |p|. In other words, if
K is any information content measure, then K (n) < K(n) + O(1).

The reason for proving the minimality of K in such detail is that we want
to generalize it to the case of conditional complexity using the uniformity of the
Kraft—Chaitin theorem. Consider a function K: w x 2<% — R U {o0} such that
{{k,n): I?(TL‘T) < k} is c.e., uniformly in 7. Build a family of c.e. sets W, by
putting (k4 1,n) into W, whenever we find that I?(n|T) < k, but only if W,
would remain a Kraft—Chaitin set. This produces, by fiat, a uniform family of
Kraft—Chaitin sets, one for each 7 € 2<“. By the uniformity of the Kraft—Chaitin
theorem, there is a partial computable function M : 2<% x 2<* — w such that

e M(-,7) is prefix-free for each 7 € 2<%, and

e (d,o) € W, implies Kp(o|7) < d.
Now assume that K simulates M with a prefix p. If > _ 9-K(n|7) < 1 for some T,
then by the same calculation as before, {(k + 1,n): K(n|7) < k} is a Kraft-Chaitin
set. Thus our construction guarantees that W, = {(k+1,n): K(n|7) < k}. So
again we have Ky (n|7) < [K(n|7)] +2 < K(n|7) + 2. But then

K(n|7) < Ky(n|7r)+lpl < K(n|7)+2+|p| = K(n|7) + O(1).

4The result is stated much earlier in [4, Theorem 4.2(b)], but the proof given there is flawed.
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A crucial observation is that the constant term does not depend on 7; with this in
mind, we are ready to prove our theorem.

Proof of the improved counting theorem. Let I?(n) = —log (Z
that

2*K(")). Note

oe2m
IERCED 9D DERTEED DR
new neEw oce2n oe2<w
where the inequality is Kraft’s. Furthermore, {(k,n): K(n) < k} is a c.e. set, so K
is an information content measure. By the minimality of K, there is a ¢ € w such
that (¥n) K(n) < K(n) + c¢. Hence, for all n,
(2) 2—K(n)+c Z Z 2—K(U).
oe2n

Up to this point we have followed Chaitin [5], whose proof of the counting theorem
finishes with the inequality above.
Now let

Rim|r) = {n—i—c—m—log({UeQ": K(o) <n+|r|—m})), iU(r)|l=n

0, otherwise.

Note that {(k,m): K(m|7) < k} is c.e., uniformly in 7. Furthermore,

Z g—K(m|n*) _ 9g—n—c Z 2" {oc e2": K(o) <n+ K(n) —m}|

mew mew
— 9—n—c Z Z om < gTn—C Z 2n,+K(n)—K(¢7)
0€2" m<n+K(n)—K(o) oe2n
— 2K(n)—c Z 2—K(O’) S 17
oe2m

where the last inequality follows from (2). Therefore, the discussion above implies
that there is a d € w such that (Vn)(Vm) K(m|n*) < K(m|n*) +d. So for all n
and m,

9= K(m|n") > g=K(m|n)=d _ g=nim—c—d |15 c 9" [(5) < n+ K(n) —m}|.
Multiplying both sides by 27~™+¢*4 completes the proof. O

The improved counting theorem is tight, up to a multiplicative constant. This
follows from the next lemma, which will also be useful in the next section.

Lemma 4.1. There is a ¢ € w such that if § € 2™ ends in at least m+ K(m|n*)+c
zeros, then K(0) <n+ K(n) —m.

Proof. We define a prefix-free machine M. By the recursion theorem, we may
assume that we know in advance the prefix p by which U simulates M. Set ¢ =
|p| + 1. The domain of M consists of strings o7v for which there are n,m € w such
that U(o) |=n, U(r| o) |=m, and |v| = n —m — |7| — c. Note that the set of all
such strings is prefix-free. For o7v, n and m as above, define M (o7v) = v~ VI,
Now fix n,m € w and let § = v HE(mI77)+¢ bhe g string of length n. Let o = n*
and let 7 be a minimal program for m given n*. Note that |v| =n —m — |7| — ¢,
so we have M (o1v) = v0"~ "l = §. Therefore, K () < |o7v|+c—1= K(n)+|7|+
(n—m-—|r|—¢)+c—1=n+ K(n) —m — 1, as required. O
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Proposition 4.2. |{0 € 2": K(0) < n+ K(n) —m}| > [2n~m~K(nIn)=0Q) |

Proof. Let ¢ be the constant from the previous lemma. The lemma guarantees that
there are 27~ ™m~K(m[n")—c digtinct strings of length n with complexity less than
n+ K(n) — m (assuming that n — m — K(m|n*) — ¢ > 0). O

5. DOWNWARD OSCILLATIONS

The main theorem in this section gives a necessary and sufficient condition on
a function f to ensure that for almost all X € 2“ the initial segment complexity
K (X I'n) infinitely often drops below n + K(n) — f(n).
Theorem 5.1.
(i) If 3,c, 27 F=KEMI) < o0, then (V°n) K(X [n) > n+K(n)— f(n)
for almost every X € 2¢.
(i) If > cw 2= f()=K(f(n)[n") = o5, then (3%°n) K(X [n) < n+K(n)— f(n)
for almost every X € 2%.

The proof of (i) uses the first Borel-Cantelli Lemma. We state both lemmas.

Borell-Cantelli Lemmas. Let (E,) be a sequence of events in a probability space.

(1) If >, c. Pr(Ey,) < oo, then the probability that infinitely many E, occur
15 0.

(2) If >,c., Pr(Ey,) = 00 and E,, are independent events, then the probability
that infinitely many E, occur is 1.

Proof of Theorem 5.1(i). The events we consider are

E,:K(XIn)<n+K(n)— f(n).

Note that
pr(,) = 17 €2 K(o) <t K = Sl
n—f(n)—K(f(n)|n*)+0(1
o 2IOTRUIIOYOM. - K () [n)+0()
- 271 )

where the inequality follows from the improved counting theorem. Therefore,
if > o 2 f()=K(f(n)[n") < oo then by the first Borel-Cantelli Lemma, the
probability that (3°n) K(X [n) < n+ K(n) — f(n) is zero. In other words,
(V*°n) K(X [n) >n+ K(n) — f(n) for almost every X € 2. O

For the proof of Theorem 5.1(ii), we require the following purely analytical
lemma. It states that if > 2-9(") diverges, then with probability one a real
has a run of g(n) zeros ending at position n, for infinitely many n € w. The lemma
would follow from the second Borel-Cantelli lemma if “X [n ends in at least g(n)
zeros” were independent events for different n.> Because they are not, we give a
direct proof.

Lemma 5.2. If > 2-9(") diverges, then for almost all X € 2
(3*°n) X [ n ends in at least g(n) zeros.
5Indeed, Chaitin [5] used the second Borel-Cantelli lemma to derive a similar theorem—in a

more restricted context—about runs of zeros in (the binary expansion of) 2, the halting probability
of U.
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Proof. Fix v € w. We will prove that for almost every X € 2% there is an n > v such
that X [n ends in at least g(n) zeros. Because v is arbitrary, the lemma follows.

First, it will be convenient to restrict g to a subset of its domain. Define
P = {n > v:g(n) < n}. Note that >, _, 279 + 3 27900 435 ‘2-n >
Y ncw 279(") = 0. Because the first and third series are finite, Y onep 2-9(n) —
0o. Now define @ = {n € P: (Ym < n) m —g(m) < n—g(n)}. It is not
hard to see that if n € P ~ @, then there is an m € @ such that m < n
and m — g(m) > n — g(n). In that case, g(n) > n —m + g(m). This means
that 3, cp279 < 3 o35, 27 Fmmem) = 2357 2790m) Therefore,
ZmEQ 2-9(m) also diverges.

Let S(m) ={oc€2™: (Yn<m)neQ = onN[n—gn),n) # 0}, for each
m € w. Define s(m) = |S(m)|. Note that every element of S(m + 1) extends an
element of S(m), hence s(m + 1) < 2s(m) and m +— s(m)/2™ is nonincreasing.
Therefore, d = lim,, o $(m)/2™ exists. If d = 0, then for almost every X there is
an n € @ (hence n > v) such that X [n ends in at least g(n) zeros. Assume for a
contradiction that d > 0.

Consider n € Q. If 7 € S(n — g(n) — 1), then 7109~ € S(n — 1). Otherwise,
there would be an m < n in @ such that m — g(m) > n — g(n), contradicting the
definition of Q. But clearly 7109(™) ¢ S(n), so s(n) < 2s(n — 1) — s(n — g(n) — 1).
Thus if n € @, then

s(n) < s(n—=1) s(n—g(n)—1)

an —  9n-—1 n
st st gn) 1)yt s d

— _99
gn—1 on—g(n)—1 - 9n-1 22 '

As was already mentioned, s(n)/2" < s(n—1)/2"~! for any n € w. So by induction,
d = limy, o0 5(n)/2" < 5(0) = d/23,,c 279" = —oo. This is a contradiction,
which completes the proof. ([

Combining the previous result with Lemma 4.1 yields Theorem 5.1(ii).

Proof of Theorem 5.1(ii). Let ¢ be the constant from Lemma 4.1. Assume that
Y oney 27 KU I"") diverges. Then Y oncw 2~ F(mM)=K(f(n)[n")=c als0 diverges.
So by Lemma 5.2, for almost every X € 2“ there are infinitely many n such that
X I'n ends in at least f(n)+ K(f(n)|n*) + c zeros. But for such an n, Lemma 4.1
guarantees that K(X [n) <n+ K(n) — f(n). O

If f is computable, then K(f(n)|n*) is O(1). So by Theorem 5.1(ii), the di-
vergence of ) 2=/ implies that (3°n) K(X |n) < n+ K(n) — f(n) for
almost all X € 2¢. Using a different proof, we will show that this actually holds
for all X. This result is sketched by Li and Vitdnyi [17] using an analogous re-
sult of Martin-Lof for plain Kolmogorov complexity [19]. It can also be seen as
a generalization of a result of Van Lambalgen [25, Corollary 5.4.2.6]; he proved
that if X is l-random and f(n) = alogn, where a € (0,1) is computable, then
(3*°n) K(X [n) <n+ K(n)— f(n).

Theorem 5.3 (Li and Vitdnyi [17, Exercise 3.6.3(a)]). If f is computable and
Sonew 27 =00, then (3%n) K(X [n) <n+ K(n)— f(n) for all X € 2*.

Proof. We build a prefix-free machine M using the Kraft—Chaitin theorem. In other
words, we build a Kraft—Chaitin set W and let M be the corresponding machine.
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By the recursion theorem, we may assume that we know in advance the prefix p
by which U simulates M. Let ¢ = |p| + 1. Similar to the proof of Lemma 5.2,
define P = {n € w: f(n) <n—c—1}. Note that >, ., 27F(") + 3 2-ntetl >
Y new 2-/(") = 50, Because the second series converges, Y omep 2-1(n) = 0.

We build W in stages. At stage s + 1 we will work with lengths in [ng, nsy1).

Stage 0. Let ng = 0.

Stage s+1. Let ngs41 be the least number such that ZnGPﬂ[ns,ns+1)
1. For each n € P N [ng,nst1), take S, C 2™ such that the measure of the set
of reals with a prefix in S, is 2=/ =°=1 (in other words, |S,| = 2"—/("—c=1
justifying our restriction to P). Furthermore, choose the sets S,, such that every
real has a prefix in UvLer[nS,ns+1) Sn. This is possible by the choice of ngsy;.
Finally, for each n € P N [ns,ns11), each o € Sy, and each m € w, enumerate
(n+ K(n)+m — f(n) — ¢,o) into W. (The purpose of m is to make this a c.e. set
of pairs.)

First, we must check that W is a Kraft—Chaitin set. The total contribution to
the weight of W for any n € P is

2—f(n)—c—1 >

|Snl Z g—n—K(n)—m+f(n)+c _ gn—f(n)—c—lg—n—K(n)+f(n)+ctl _ 9g—K(n)
mew

If n ¢ P, then it contributes nothing to W. So 3~ oyew 27 =% p27 KM <,
by Kraft’s inequality. Therefore W is a Kraft—Chaitin set.

Now if o € Sy, then (n + K(n) — f(n) —¢,0) € W. Hence K(0) < Ky (o) +c¢ <
n+ K(n) — f(n). But the construction guarantees that for any X € 2%, there are
infinitely many n such that X [n € S,,. Indeed, there is such an n € PN [ng, nsy1)
for every s. Therefore, (3*°n) K(X [n) <n+ K(n) — f(n). O

Considering the complexity of the divergence condition on f in Theorem 5.1(ii),
one might hope for a simplification. In particular, is it enough to assume that
Y new 2-/(") diverges, as in Theorem 5.37 The following proposition allows us to
rule out this possibility.

Proposition 5.4. There is a function f such that . 2 f()=K(f(n)[n") < oo
but Y, ., 2-1) diverges.

Proof. We define f in stages. At stage s+1 we will define f on an interval [ng, ng41).

Stage 0. Let ng = 0.

Stage s+ 1. For each n, there is an mg(n) € [0,2°) such that K(ms(n)|n*) > s.
Choose ng11 to be the least number such that 3 2-ms(n) > 1, Let
f(n) = mg(n) for all n € [ng,nst1).

It is clear that Y . 277" = S~ Zne[ns)nHl)Q_f(") > D ewl = oo

n€ng,nsy1)

On the other hand, the minimality of nsy; implies that Zne[ns,nsﬂ) 2-ms(n) <
2. Therefore, ZnEuJ 27f(7l)*K(f(’ﬂ) [n™) — ZSGUJ Zne[ns,nsﬁ_l) Q*f(n)*K(f(’ﬂ) [n™) é
ZSEW Z”G["m"sﬂ) 27 I = ZSEw 27" Zne[ns,ns+1) 277 < Zs&w 2772 =4
So f has the desired properties. O
Corollary 5.5. There is an f such that Y, . 27" = 0o but (V°n) K(X [n) >

n+ K(n) — f(n) for almost every X € 2¢.

O

Proof. Immediate from the previous proposition and Theorem 5.1(i).
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The theorems in this section have thus far been stated in terms of the distance
between K (X [ n) and the upper bound n+ K (n). We will now restate Theorem 5.1
in terms of the distance between K (X [n) and n, as in Theorem 3.4. The translation
is simple; we essentially take g(n) = K(n) — f(n) and state Theorem 5.1 in terms
of g(n). The details are unfortunately somewhat tedious.

Corollary 5.6. The following are equivalent:
(i) 3,c, 29— Em9() diverges.
(ii) (3°n) K(X [n) <n+ g(n) with nonzero measure.
(i) (3°n) K(X [n) <n+ g(n) for almost every X € 2.

Proof. Let f(n) = max{K(n) — g(n),0}. First assume that g(n) > K(n) only
finitely often. So for almost all n, we have K(f(n)|n*) = K(K(n) — g(n)|n*) =
K(g(n)|n*)+ O(1), where the last holds because K (n) = |n*| can be determined
from n*. Using the symmetry of information, — f(n)— K (f(n)|n*) = K(n)—f(n)—
K(n)—K(g(n) |n*)+0(1) = g(n)—K(n, g(n))+0O(1) with finitely many exceptions.
So 3, 29K diverges iff Y, . 27/ (W-KU M) diverges. The fact
that g(n) = K(n) — f(n) for almost all n implies that (3°n) K(X [n) < n+ g(n)
iff (3%°n) K(X In) <n+K(n)— f(n). It now follows from Theorem 5.1(ii) that (i)
implies (iii). Similarly, the contrapositive of Theorem 5.1(ii) gives (ii) implies (i).
Finally, (iii) obviously implies (ii). Therefore, the three conditions are equivalent
under the assumption that g(n) > K(n) only finitely often.

We must now deal with the case when g(n) > K(n) for infinitely many n € w.
If this holds, then f(n) = 0 infinitely often. But then f(n)+ K(f(n)|n*) infinitely
often takes the same value, so >, 2~ (M) =K(f(n)[n") diverges. Therefore, The-
orem 5.1(ii) implies that (3*°n) K(X [n) < n+ K(n) — f(n) for almost every X.
But g(n) > K(n) — f(n), so (3°°n) K(X [n) < n+g(n) for almost every X. Hence
(iii) and, a fortiori, (ii) hold. We must also show that (i) holds in this case. If
g9(n) > K(n), then g(n) — K(n,g(n)) = g(n) — K(n) = K(g(n) [n*) +O(1) = g(n) —
K (n)— K (9(n)— K (n) |n*)+O(1) = g(n)— K (n)— 2 log(g(n) — K (n)) +O(1) = O(1).
This is true infinitely often, hence ) _ 29(n)=K(n.9(n)) diverges. (]

The series in Corollary 5.6(i) is no easier to understand than its counterpart in
Theorem 5.1. It may not be at all clear for a given g whether ) 29(n)—K(n,g(n))
diverges. By the following result, it is sufficient to prove that > 2-9(") con-
verges, which should often be easier to determine.

Proposition 5.7. 3 _ 29(W-Kma(m) gng 3~ 2790 cannot both converge.
Proof. Assume that both series converge. Because K(n,g(n)) < K(n)+ K(g(n))+
O(1) and K(g(n)) < 2log(g(n)) + O(1) < g(n)/2 + O(1), there is a ¢ such that
g(n) — K(n,g(n)) + ¢ > g(n)/2 — K(n). Therefore,

Z 29(n)/2-K(n) < Z 99(n)—K(n,g(n))+e ~ o

new new

It follows from the monotonicity of exponentiation that 2% + 20 > 2(2/3)a+(1/3)b  foy
all a,b € R.5 Thus,

$ - @/AK) < $7 gam/2=K(m) 4 gm0 < o,

new new new

6In fact, the convexity of the exponential function implies that (2/3)2¢ + (1/3)20 >
2(2/3)a+(1/3)b Hyt this tighter inequality is unnecessary here.
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But this gives us a contradiction: there is a ¢ such that K(n) < (3/2)logn + ¢,

which implies that } 2-(2/3)K(n) > > w2708 = oo, O
Corollary 5.8. If > .., 279 converges, then (3°n) K(X [n) < n + g(n) for
almost every X € 2%.

Proof. Immediate from Proposition 5.7 and Corollary 5.6. O

It is not difficult to refute the converse of this corollary. Consider g(n) = logn.
On the one hand, }_ 2-9(") diverges. But g(n) — K(n,g(n)) > logn — 2logn —
O(1) = —logn — O(1), so Y, ., 29"~ K(m9(m) also diverges. Hence by Corol-
lary 5.6(iii), (3°°n) K(X [n) < n + g(n) for almost every X. To some extent
this example is misleadingly specific; if g is any unbounded computable function,
then limsup,,_,, g(n) — K(n) = co and hence (3*°n) K(X [n) < n + g(n) for all
X. Thus any unbounded computable function g for which - . 279 (") diverges is
sufficient to refute the converse of Corollary 5.8.

Several of the results in this section are stated for almost every X € 2¥. It is
natural to ask if they hold for every 1-random, which would better match Theo-
rem 3.4 on upward oscillations. The answer in every case is no. For example, it is
not hard to prove that for any 1-random X € 2%, there exists a function f such
that > 2= F(M)=K(f(n)[7") converges—in fact, even Y ncw 2=/(") converges—but
(3*°n) K(X [n) < n+ K(n) — f(n). This proves that the conclusion of Theo-
rem 5.1(i) does not necessarily hold for all 1-random reals. Instead of showing this
in detail, we will derive the analogous fact for Corollary 5.6.

Fix a l-random X € 2¥. Consider the function g(n) = max{K(X [n) — n,0}.
By the ample excess lemma, 2-9(") converges. So Proposition 5.7 implies
that ¢ satisfies Corollary 5.6(i). For all but finitely many values of n, we have
n+g(n) = K(X | n). Therefore, it is not true that (3%°n) K(X [n) < n+g(n). So
Corollary 5.6(iii) fails for the 1-random real X. For a more satisfying counterexam-
ple, apply Lemma 2.1(ii) to get another function h such that lim, . g(n) —h(n) =
ocand ) . 2-(") still converges. Again, Proposition 5.7 implies that h satisfies
Corollary 5.6(i). And yet, (V*°n) K(X [n) > n+ h(n) + c for every ¢ € w.

So we see that it is not, in general, enough for X to be 1l-random for it to
satisfy the conclusions of the theorems in this section. However, some degree of
randomness (depending on the function involved) will be sufficient. The following
result illustrates this phenomenon for Corollaries 5.6 and 5.8. We leave the proof
to the reader.

Proposition 5.9. If (3%°n) K(X [n) < n+ g(n) for almost every X € 2%, then
this holds for every X that is 1-random relative to g.

6. APPLICATIONS TO THE K-DEGREES

The results of Section 3 have several interesting consequences in the K-degrees.
In particular, they let us easily produce comparable 1-random K-degrees, which is
non-trivial. In fact, no other method is known.

Theorem 6.1. For every 1-random A € 2%, there is a 1-random B <t A®Y such
that B <k A.

Proof. Let g(n) = K(A [n)—n and note that g <r A®{’. By Lemma 2.1(i), there
is a function f majorized by g such that > 2-/(") < o0 and limsup,, . g(n) —
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f(n) = co. Furthermore, f <7 g <7 A& (. Applying Theorem 3.1 to f produces
a l-random real B <r f @0 <p A @ @ such that K(B[n) < n+ f(n)+ O(1).
But then K(B[n) <n+ f(n)+O0(1) <n+g(n)+0(1) = K(An)+ O(1) for all
n. In other words, B <y A. Finally, note that limsup,,_, .  K(A[n) — K(B|n)>
limsup,, ,.o K(An) —n— f(n) —O(1) > limsup,, .., g9(n) — f(n) — O(1) = cc.
Therefore, A £ B. O

Corollary 6.2. For every AY 1-random A € 2% there is a AS 1-random real B
such that B <y A.

By weakening the complexity restriction on B in Theorem 6.1, we can replace
<k with what appears to be a much stronger relation.

Definition 6.3. For A, B € 2¥, we write B <x A to mean that lim,¢,, K(A|n)—
K(B[n)=o00. We say that B is strongly K-below A.

Clearly B <k A implies B <k A; the converse is open.

Theorem 6.4. For every 1-random A € 2%, there is a 1-random B <p A’ such
that B <k A.

Proof. First, we wish to find a function g such that 3 _ 2-9(") converges and
(Vn) g(n) < K(A[n)—n. In order to control the complexity of B, we also require
g to be low over A (otherwise, we could simply let g(n) = K(A[n) —n). By the
ample excess lemma, there is a ¢ € w such that ) _ on—K(AIn) < ¢ Define a
I9[A] class S C w® by

S= {g €w”: 22_9(") < cand (Vn) g(n) < K(A[n) —n}.

new

Note that S is computably bounded (meaning that there is a computable function
majorizing every member of §) because K (A [n)—n < K(n)+0(1) < 2logn+0O(1),
for all n. Therefore, by the low basis theorem [13] relativized to A, there is a function
g € S such that ¢’ <p A’

By Lemma 2.1(ii), there is a function f such that > __ 2=/ converges and
lim,, 00 g(n)— f(n) = co. Furthermore, f <r ¢’ <7 A’. Finally, apply Theorem 3.1
to f; this produces a l-random real B <p f @ @ <7 A’ @ (' <7 A’ such that
K(BIn)<n+ f(n)+ O(1). To complete the proof, note that lim,, ., K(A[n)—
K(Bn)>lim, oo K(AIn) —n— f(n) —O0(1) > lim, 0 g(n) — f(n) —O(1) =
0. (]

Now take A € 2¥ to be a low l-random. Then B <7 A’ =¢ (, which gives us
the following result.

Corollary 6.5. There are AS 1-random reals A, B € 2¥ such that B <y A.

In the appendix that follows this section we will see that, even in the absence
of the Continuum Hypothesis (CH), it is consistent that there are collections of
1-random reals of size X; with no l-random lower bound in the K-degrees. The
following result shows that any countable collection does have a lower bound.

Proposition 6.6. There is a 1-random K-degree strongly below every countable
collection of 1-random K -degrees.
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Proof. Let {A;}ic., be a sequence of 1-random real numbers. Applying the ample
excess lemma and Lemma 2.1(ii), there is a sequence of functions {f;}ic. such
that > .. 2-fi(") converges and lim,,_ K(A4; [n) —n — fi(n) = oco. For each
i, define m; € w such that > - 2-fi(n) < 2% Define a function f by f(n) =
min{f;(n): n > m;}. Then -

Z 9—f(n) < Z Z 9~ filn) < ZQ‘i =2 < 0.
new €W n>m; 1EW
By Theorem 3.1, there is a 1-random real B such that K (B [n) < n+ f(n)+O(1).
But then,
K(A;[n)—K(B[n)> K(A4; [n)—n—f(n)—0(1) > K(4; | n)—n—f;(n)—0(1),

for all i € w and n > m;. Therefore, lim,,_,, K(A4; [n) — K(B|n) = oco. O

The remaining results in this section explore upper and lower cones in the 1-
random K-degrees. First we show that every l-random is strongly K-above con-
tinuum many l-random reals, and in fact, strongly K-bounds an antichain of size
continuum in the 1-random K-degrees.

Lemma 6.7. For every l-random A € 2, there is another 1-random B <p A’
such that B® Z < A, for every Z € 2%.

Proof. As in the proof of Theorem 6.4, there is a function f <7 A’ such that
> new 27F™ converges and lim, .o K(A[n) —n — f(n) = co. By Theorem 3.3,
there is a 1-random real B <r f @& () <y A’ such that K((B® Z)|n) < n +
f(n) + O(1), for every Z € 2¥. Then lim, .o K(A[n) — K(B® Z)[n) >
lim, oo K(A[n) —n— f(n) —O0(1) = 00,50 B& Z < A. O

Van Lambalgen [26] proved that if B is 1-random, then B @ Z is l-random iff
Z is B-random. Since almost every real is B-random, the lemma implies that
there are continuum many 1-random reals strongly K-below A, as promised. We
claim that 1-random K-degrees are countable, from which it follows that there are
continuum many l-random K-degrees strongly below A. First, in [21] it is shown
that if X, Y € 2¢ are 1-random, then X <y Y implies that Y <pg X, which means
that every X-random real is Y-random.” Kjos-Hanssen, Miller and Solomon [14]
prove that < g is equivalent to another relation, < g, which was shown to induce
countable equivalence classes by Nies [23]; in particular, he proved that X = YV
implies X’ =4 Y’. Putting it all together, 1-random K-degrees are countable and
every l-random A € 2¥ strongly bounds continuum many l-random K-degrees.
The next result improves this by giving us an antichain below A.

Proposition 6.8. For every 1-random A € 2, there is an antichain of size con-
tinuum in the 1-random K -degrees strongly below A.

Proof. Let B be the 1-random from Lemma 6.7. Recursively construct an uncount-
able sequence {Z,: @ < w1} of l-random reals such that Z, is B & Zg-random
whenever § < a. Applying Van Lambalgen’s theorem (relativized to B) twice, it
follows that Zg is B ® Z,-random whenever 3 < a.

"In the notation of [21], what is actually proved is that X < Y implies X <, Y. But if X
and Y are l-random, then X <, Y is equivalent to Y <y r X.
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Now assume a # [ are countable ordinals. Then Z, is B @ Zg-random, but
not B @ Z,-random, so B® Z, %rr B ® Zg. Similarly, B® Zg %rr B ® Z,.
Therefore, B ® Z,, |Lr B ® Zg, from which it follows that B ® Z, |k B @ Z3, as
we mentioned above [21]. Hence, there is an uncountable antichain of 1-random K-
degrees strongly below A. Since the relation < is a Borel partial order, it follows
from a result of Harrington and Shelah (see [11, Corollary 5.2]) that there must be
an antichain of size continuum in the 1-random K-degrees strongly below A. O

The situation with upper cones in the K-degrees is somewhat different than that
of lower cones. It is even possible, given what we currently know, that there is a
maximal 1-random K-degree. We know that upper cones are almost always small;
the first author has shown that the cone above a 2-random real is countable [20].
On the other hand, it is possible for the cone above a 1-random in the K-degrees
to have size continuum.

Proposition 6.9. If S C 2% is a perfect class of 1-random reals, then there is a
nonempty perfect subclass 8" C S and a 1-random A € 2% such that A <x Z for
all Z € §'.

Proof. Note that given a perfect class S of 1-random reals, the statement “there is
a nonempty perfect subclass S’ C S and a 1-random A € 2% such that A < Z for
all Z € 8" is 1. So by Shoenfiled’s absoluteness theorem, we may assume that
Martin’s Axiom holds and 280 > N;.

For any A C S of size Xy, Theorem 7.4 gives us a l-random set A such that
A <k X for every X € A. Thus the set {Z € 2¥: A <k Z and Z € S} is an
uncountable Borel set, hence it contains a perfect subset S’. (|

As was mentioned above, if XY € 2¥ are 1-random, then X <y Y implies that
Y <pr X [21]. So the previous result implies that there are lower cones of size
continuum in the LR-degrees. Barmpalias, Lewis and Soskova [1] show this directly
and for a fairly large class of degrees.

Section 5 also has consequences in the K-degrees, but they are modest and are
superseded by the authors’ earlier results [21].

7. APPENDIX: CHAINS OF 1-RANDOM K-DEGREES

This section is somewhat independent of the others, except for the proof of
Proposition 6.9. Readers having no interest in set theory may skip it. We consider
the statement:

(%) Every chain of 1-random K-degrees of size less than 280 has a

lower bound in the 1-random K-degrees.
If we assume the Continuum Hypothesis (CH), then () follows from Proposi-
tion 6.6. We can do better than this; we prove that the statement follows from
Martin’s Axiom.® We also show that it is consistent with ZFC that (x) fails, so it
is independent of ZFC.

Since the section is about set theory, we follow set theorists’ notation. We use
x,1, 2z to denote reals and A, E, F' to denote sets of reals. Define

C= {féw“’: 3 20 gl}.

1EW

8For more information about Martin’s Axiom, see [12].
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We write f < g if f(n) < g(n) for all but finitely many n € w. We will use this
notation both for functions in w* and (Q N[0, 1])“.

7.1. The positive answer. In this subsection, we show that Martin’s Axiom (MA)
implies (). Define a forcing notation P = (P, <) as follows. Let

P= {<n7f> cwxw: Y 270 423 9770 < 1}.
i<n i>n
We define (n, f) < (m,g) if n > m, fim = g|[m, and g majorizes f, i.e.,
(Vn) f(n) < g(n). It is clear that < is a partial order on P.

Lemma 7.1. P is a c.c.c. forcing notation.

Proof. We prove that if (n, f),(n,g) € P and f[n = g[n, then (n, f) and (n,g)
are compatible. This implies that any antichain in P must be countable. Let
h(i) = min{f (i), g(¢)} for all i € w. Without loss of generality, we may assume that

Zi>n 2_9(1) S Zi>n 2_f(i)' So

szh(i) < ngf(i) + Z 9—f() 4 Z 2-9() < Z 2—f(1) 4 9 szf(i) <1

€W <n i>n i>n <n >n

So we can take m > n large enough that >, 270 + 25> 2=h) < 1. Thus

(m, h) is a valid forcing condition. It clearly refines both (n, f) and (n, g). O
For g € w¥, let Dy = {(n, f) € P: f < g}.
Lemma 7.2. If g € C, then Dy is dense.

Proof. Fix g € C and (n, f) € P. Since Y, 279 converges and ), 277 <1,
we can chose m > n large enough that

D> 270 42y om0 42y " omel) <,

i<m i>m i>m
Let h(i) = f(i) if i < m; otherwise let h(i) = min{f(i), g(4)}. Then (m, h) is a valid
condition refining (n, f). The definition of h ensures that h < g, so (m,h) € D,. O

Lemma 7.3. Assume MA. For any A C C with |A| < 2%, there is a function
g € C such that (Vf € A) g < f.

Proof. By Lemma 7.1, IP is a c.c.c. forcing notation. Lemma 7.2 ensures that Dy is
dense for every f € A. By Martin’s Axiom, there is a generic set G meeting all of
these dense sets. Define g = | (n,hyec b I'n. This is clearly well-defined and total.
For any m € w, there is a (n,h) € G with n > m. Since g [m = h|m, we have
Siem 2790 =5, 27M0 < 1. Therefore Y, 279" < 1, s0 g € C. Finally,
take f € A. Since G meets Dy, there is a (n,h) € G such that h < f. But the
definition of g ensures that h majorizes g, so g < f. (]

Now we can prove that (%) follows from Martin’s Axiom.

Theorem 7.4. Assume MA. There is a 1-random strongly below every set of size
less than 2%° in the 1-random K -degrees.
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Proof. Suppose that X C 2“ is a set of 1-random reals with |X| < 2%0. For each
x € X, let fo(n) = K(x[n) —n+ ¢, where ¢, € w is large enough to ensure that
fz € C. (This is possible by the ample excess lemma.) Define A = {f,: z € X}.
By Lemma 7.3, there is a function g € C such that (Vz € X) g < f,. In fact, by
Lemma 2.1(ii), we may assume that lim,,_. fz(n) — g(n) = oo for all z € X. By
Theorem 3.1, there is a 1-random real z so that K(z [n) < n+ g(n) + O(1). So for
any € X we have lim, ., K(z|n) — K(z[n) > lim,_con+ fz(n) —n—g(n) +
O(1) = co. In other words, the K-degree of z is strongly below each = € X. (]

7.2. The negative answer. In this subsection, we show that (x) cannot be proved
in ZFC. To do this, we start from a model M that satisfies ZFC + CH. In M,
every maximal chain of 1-random K-degrees has size N;. The idea is to extend M
by adding lots of reals to destroy CH, while simultaneously ensuring that there is
no lower bound in the new model for any maximal chain from M. To do the latter,
we extend M to a new model N so that every function in C NV has a lower bound
in CN M. Recall that Sacks forcing is:

S = {{T: T is a perfect tree in 2<“}, <),

where T < S iff T C S. For more information about Sacks forcing, please see
[12]. We use the countable support iterated Sacks forcing of length ws, S,, =
(Sa,S: a < ws), as in [3].
Lemma 7.5 (Baumgartner and Laver [3]). Assume CH.

(i) S., preserves cardinals.

(ii) IFs,, 2% = Ry.

Let A= {f € (QnJ0,1))*: >, ., f(n) < 1}. Bartoszynski and Judah [2, page
302] showed that S, has the so-called A-bounding property. What this means is
that Is,, (Vf € A)(3h € M N A) h majorizes f. It is not hard to translate this

into the property we need. For every g € w®, define h,(n) = 2791 for all n € w.
We have the following lemma.

Lemma 7.6. (Vf € A)(3ge€C) hy > f.
Proof. For f € A, define g € w* by

(n) = m, where 2772 < f(n) <271
g = n, if f(n) =0or f(n)>1/2.

Since f(n) > 1/2 for only finitely many n € w, we have hy > f. Note that
if the value of g(n) is determined by the first case, then 279("=2 < f(n), so
279" < 4f(n). Thus,

D279 <N afm) + Y 27T <442 < o,

new new new

It is easy to change finitely many values of g so that g € C. g

Together with the fact that S,,, has the A-bounding property, we have:
Lemma 7.7. IFs,, (Vf€C)(3ge MNC)g< f.
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Proof. Suppose that pI-3> . 277" <1. Then p I hy € A, so there is a function
h € M N A such that p IF h majorizes hy. Since h € M N A, by Lemma, 7.6, there
is a function g € M NC such that hy > h. So hy € A and p I- hy > hy. Thus
plFg<f. ([l

Although we do not need the next result, it illustrates the method we will use
in the proof of Theorem 7.9 without reference to the K-degrees.

Lemma 7.8. ZFC+ Con(ZFC) F Con(ZFC+—-CH+ (3A C C)[A is a chain, |A| =
Ny and (VfeC)(3ge A) f £ g]).

Proof. Suppose that M = CH + ZFC. By Lemma 7.5(ii), IFs,, 2% = N,. Select a
maximal chain A in M NC. Then |A| = ®;. Note that A is a chain in M[G], for any
generic set G, and |A|M[C] = X, since S, preserves cardinals by Lemma 7.5(i).
Assume, for a contradiction, that there is an f € M[G] N C such that f < g for
every g € A. By Lemma 7.7, there is an h € M NC such that h < f. Together with
Lemma 2.1, this contradicts the maximality of A. Therefore, there is a g € A such
that f £ g. O

Finally, we see that ZFC does not prove (x).

Theorem 7.9. ZFC does not prove that “Every chain of 1-random K-degrees of
size less than 2%° has a lower bound in the 1-random K-degrees.”

Proof. As in the proof of Lemma 7.8, suppose that M |= ZFC + CH. Select a
maximal chain A € M of l-random K-degrees. As before, if G is a generic set,
then A is a chain in M[G] of size N;. Assume that z is a l-random real in MI[G]
such that z <x z for all z € A. By the ample excess lemma, there is a function
fz(n) = K(z[n) —n+ O(1) such that f, € M[G] NC. Then Lemma 7.7 gives
us an h € M NC such that h < f,. By Theorem 3.1, there is a l-random real
y € M such that K(y[n) < n+ h(n) + O(1). This means that y <x x for all
x € A, but no maximal chain in the 1-random K-degrees can have a lower bound
by Theorem 6.1. O
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