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Abstract. We answer a question of Jockusch by constructing a hyperimmune-
free minimal degree below a 1-generic one. To do this we introduce a new

forcing notion called arithmetical Sacks forcing. Some other applications are

presented.

1. introduction

Two fundamental construction techniques in set theory and computability theory
are forcing with finite strings as conditions resulting in various forms of Cohen
genericity, and forcing with perfect trees, resulting in various forms of minimality.
Whilst these constructions are clearly incompatible, this paper was motivated by
the general question of “How can minimality and (Cohen) genericity interact?”.
Jockusch [5] showed that for n ≥ 2, no n-generic degree can bound a minimal
degree, and Haught [4] extended earlier work of Chong and Jockusch to show that
that every nonzero Turing degree below a 1-generic degree below 0′ was itself 1-
generic. Thus, it seemed that these forcing notions were so incompatible that
perhaps no minimal degree could even be comparable with a 1-generic one.

However, this conjecture was shown to fail independently by Chong and Downey
[1] and by Kumabe [7]. In each of those papers, a minimal degree below m < 0′

and a 1-generic a < 0′′ are constructed with m < a.
The specific question motivating the present paper is one of Jockusch who asked

whether a hyperimmune-free (minimal) degree could be below a 1-generic one. The
point here is that the construction of a hyperimmune-free degree by and large
directly uses forcing with perfect trees, and is a much more “pure” form of Spector-
Sacks forcing [10] and [9]. This means that it is not usually possible to use tricks
such as full approximation or forcing with partial computable trees, which are
available to us when we only wish to construct (for instance) minimal degrees. For
instance, minimal degrees can be below computably enumerable ones, whereas no
degree below 0′ can be hyperimmune-free. Moreover, the results of Jockusch [5], in
fact prove that for n ≥ 2, if 0 < a ≤ b and b is n-generic, then a bounds a n-generic
degree and, in particular, certainly is not hyperimmune free. This contrasts quite
strongly with the main result below.

In this paper we will answer Jockusch’s question, proving the following result.

Theorem 1.1. There are nonzero hyperimmune-free degrees below 0′′ which are
below 1-generic degrees below 0′′.
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Analysis of the original proof of our result allowed us to extract a new forcing
notion which we call arithmetical Sacks forcing. We show that each arithmetical
Sacks generic set is hyperimmune free and of degree below a 1-generic.

The proofs here are relatively straightforward, but will filter through the char-
acterization of degrees computable in 1-generic ones of Chong and Downey.

2. Notation

Recall that a tree T is a subset of 2<ω so that for every σ ∈ T , τ � σ implies
τ ∈ T . A perfect tree T is a nonempty tree so that for every σ ∈ T , there exists a
τ � σ so that τ_0 ∈ T and τ_1 ∈ T . Given a tree T , define [T ] = {G ⊆ ω|∀n(G �
n ∈ T )}.

We recall that a set C ⊂ ω is n-generic iff it is Cohen generic for n-quantifier
arithmetic. An equivalent formulation due to Jockusch and Posner (see Jockusch
[5]) is given by the following.

Definition 2.1. Given a string σ ∈ 2<ω, a set A ⊆ ω and a set S ⊆ 2<ω.
(1) σ  A ∈ S if σ ≺ A and σ ∈ S.
(2) σ  A /∈ S if σ ≺ A and ∀τ � σ(τ /∈ S).

Definition 2.2. Given sets A,B ⊆ ω and a number n ≥ 1, A is n-B-generic if for
every Σ0

n(B) set S ⊆ 2<ω, there is a string σ ≺ A so that either σ  A ∈ S or
σ  A /∈ S.

For other notations, please see [8].

3. Arithmetical Sacks Forcing

Define S = {T | T is a computable perfect tree in 2<ω}. A set D ⊆ S is dense
if for every T ∈ S, there is a set T ′ ∈ D for which T ′ ⊆ T . Fix an effective
enumeration {We}e∈ω of c.e. sets W ⊆ 2<ω. Then there is an arithmetical (actually,
Σ0

3) definable predicate P so that P (e) iff We is a computable perfect tree. Hence
there is an arithmetical enumeration {Te}e∈ω of S so that if P (e) then Te = We;
otherwise, Te = 2<ω. We say a set D ⊆ S is arithmetical if the index set {e|Te ∈ D}
is arithmetical. If D ⊆ S, define [D] = {[T ]|T ∈ D}.

Define arithmetical Sacks forcing notion:

S = 〈⊆,S〉.
A filter F ⊂ S is a set so that if T ∈ F and T ′ ⊇ T in S, then T ′ ∈ F and

if T0, T1 ∈ F , then there is T2 ∈ F so that T2 ⊆ T0 ∩ T1. A generic set G is a
filter for which G ∩ D 6= ∅ for every arithmetical dense set D. We say a set G is an
arithmetical Sacks set if for some generic set G and every n, G � n ∈

⋂
T∈G T .

The following lemma collects some well known facts.

Lemma 3.1. For any e ∈ ω,
(1) PW = {T ∈ S | ∃i∀σ ∈ T (|σ| > i =⇒ σ(i) 6= W (i))} is dense where W is

a subset of ω so that PW is arithmetical.
(2) Qe = {T ∈ S | One of the following cases is true:

(a) ∃i∀σ ∈ T (Φσ
e (i) ↑) ,

(b) ∀i∃n∀σ0 ∈ 2n ∩ T∀σ1 ∈ 2n ∩ T (Φσ0
e (i) ↓= Φσ1

e (i) ↓),
(c) ∀i∃n∀σ ∈ 2n ∩ T (Φσ

e (i) ↓) and ∀σ∃j∀τ0 � σ_0∀τ1 � σ_1(τ0 ∈
T & τ1 ∈ T =⇒ Φτ0

e (j) 6= Φτ1
e (j)).
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} is dense.
(3) Re = {T ∈ S | One of the following cases is true:

(a) ∃i∀σ ∈ T (Φσ
e (i) ↑) ,

(b) ∀i∃n∀σ ∈ 2n∩T (Φσ
e (i) ↓) and there is a computable function f so that

∀i∀σ ∈ T (Φσ
e (i) ↓ =⇒ Φσ

e (i) < f(i)).
} is dense.

(4) Me = {T ∈ S | ∃σ ∈ 2e∀τ ∈ T (|τ | > |σ| =⇒ τ � σ)} is dense.

Proof. All of the statements above are well known. (1) says no arithmetical Sacks
set is arithmetical, (2) is a minimality requirement and (3) is a hyperimmune-
freeness requirement. (4) says arithmetical Sacks sets are well-defined. �

Since there are only countably many arithmetical sets, the arithmetical Sacks
sets exist. For example, fix an enumeration of all of arithmetical dense sets {De}e∈ω.
Take T0 ∈ D0 and select Te+1 ∈ De+1 for which Te+1 ⊆ Te. Define G = {T |∃e(Te ⊆
T )}. It is easy to check that G is a generic set. By (4) in Lemma 3.1, |

⋂
T∈G [T ]| = 1.

The following corollary is immediate.

Corollary 3.2. If G is an arithmetical Sacks set, then G is a hyperimmune-free
minimal degree.

In [2], Chong and Downey introduced the following notation.

Definition 3.3. Given a set G ⊆ ω,

(1) A set T ⊆ 2<ω is dense in G if for any n ∈ ω, there is a finite string σ ∈ T
so that G � n � σ.

(2) A set W ⊆ 2<ω is Σ1-dense in G if
(a) For every σ ∈ W , σ 6≺ G and
(b) For any c.e. set T ⊆ 2<ω which is dense in G, there are finite strings

τ0 ∈ T and τ1 ∈ W so that τ1 � τ0.

Lemma 3.4. Given a set W ⊆ 2ω. The set NW = {T ∈ S | One of the following
cases is true:

(1) ∃σ ∈ W∀τ ∈ T (|τ | > |σ| =⇒ τ � σ),
(2) ∀σ ∈ T∀τ ∈ W (σ 6� τ).

} is dense.

Proof. Given a tree T ∈ S, if there is a σ in T ∩ W , then define T ′ = {µ | ∃τ ∈
T (τ � σ and τ � µ)}. Otherwise, define T ′ = T . Since T ′ is a computable perfect
tree, T ′ ∈ S and satisfies (1) or (2). �

Corollary 3.5. If G is an arithmetical Sacks set, then there is no arithmetical set
W Σ1-dense in G.

Proof. Suppose G is an arithmetical Sacks set. Given an arithmetical set W ⊆ 2<ω,
by Lemma 3.4, there are two cases:

(1) There is a T ∈ NW so that ∃σ ∈ W∀τ ∈ T (|τ | > |σ| =⇒ τ � σ) and
G ∈ [T ]. Then by (a) in Definition 3.3, W is not Σ1-dense in G

(2) There is a T ∈ NW so that ∀σ ∈ T∀τ ∈ W (σ 6� τ) and G ∈ [T ]. Then T is a
c.e. dense set in G. By (b) in Definition 3.3, T is a witness that W is not Σ1-dense
in G. �
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It is not hard to see that a set G ⊆ ω is computable if and only if there is no
set W Σ1-dense in G. For c.e. sets Σ1-dense in G, Chong and Downey proved the
following interesting theorem.

Theorem 3.6 (Chong and Downey [2]). Suppose G has Turing degree G. G is
below a 1-generic degree if and only if there is no c.e. Σ1-dense set in G.

Corollary 3.7. Every arithmetical Sacks set is bounded by a 1-generic real. Hence
there is a 1-generic degree C and a hyperimmune-free minimal degree G so that
C > G.

Proof. By Corollary 3.5, for any arithmetical Sacks set G, there is no c.e. Σ1-dense
set in G. By Theorem 3.6, there is a 1-generic set C so that C ≥T G. But obviously,
C 6≡T G. By Corollary 3.2, G is a hyperimmune-free and minimal degree. �

We remark that, in the same way as the kind of forcing used in algorithmic
randomness, these proofs don’t use the full strength of arithmetical Sacks forc-
ing. Only that it works for ∆0

3 collections of trees. Thus the hyperimmune free
minimal degree we construct can be low2 and below 0′′. The full statement of the
Chong-Downey result is that if M has no c.e. Σ1-dense set of strings, then M
is computable in a 1-generic set G ≤T M ′′. In particular, we can choose here a
minimal hyperimmune-free degree G computable in a 1-generic degree C below 0′′.

A reasonable possible generalization of Theorem 3.6 is whether G is below a
2-generic degree if and only if there is no Σ0

2 set Σ1-dense in G. We give a negative
answer.

Proposition 3.8. There is a set G so that there is no arithmetical set Σ1-dense
in G but G is not below any 2-generic degree.

Proof. By Corollary 3.5, for every arithmetical Sacks set G, there is no arithmetical
set Σ1-dense in G. By Corollary 3.2, every arithmetical Sacks set G has a minimal
degree. But no 2-generic degree bounds a minimal degree as showed in [5]. So every
arithmetical Sacks set G is not below any 2-generic set. �

Hyperimmune-freeness looks a stronger forcing notion than minimality forcing
since there is no a nonzero ∆0

2 hyperimmune-free degree. So it is natural to ask
whether every hyperimmune-free degree is computable in a 1-generic degree. This
possible result is not true since we have the following proposition.

Proposition 3.9. There is a hyperimmune-free degree computable in no 1-generic
degree.

We need a lemma. This lemma is known in the folklore, and probably implicit
in the work of Kučera and of Jockusch.

Lemma 3.10. No 1-generic set computes a DNR-set.

Proof. Recall that a DNR set A is a subset of ω so that A(e) 6= Φe(e) for every
e ∈ ω. Suppose g is a 1-generic set and Ψg is a DNR-set. Define a Σ0

1 set
M = {σ|∃e(Φe(e) ↓ & Ψσ(e) ↓ & Ψσ(e) = Φe(e))}. Since Ψg is DNR, there is a
σ ≺ g so that for every τ � σ, for every e, Φe(e) ↓ and Ψτ (e) ↓ imply Φe(e) 6= Ψτ (e).
Define a computable function Φ so that Φ(e) = Ψµ(e) where µ is the first τ � σ
for which Ψτ (e) ↓ at stage |τ |. Since Ψg is total, Φ must be total. Φ has an index
e. Then Φe(e) = Φ(e) = Ψτ (e) for some τ � σ. A contradiction. �
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Proof. (of proposition 3.9) By Jockusch-Soare [6], there is a hyperimmune-free
DNR-degree. But, by Lemma 3.10, no 1-generic degree can compute a DNR
degree. �

Perhaps it might be the case that every minimal hyperimmune-free degree is
computable in a 1-generic one. Again this attractive suggestions fails. However,
this time the proof is not quite so straightforward. Since the result is only of
marginal interest, we will only sketch its proof.

Theorem 3.11. There is a minimal hyperimmune-free degree below 0′′ with a c.e.
Σ1-dense set of strings, and hence one not computable in any 1-generic degree.

Proof. (sketch) In Chong and Downey [1], using a full approximation argument, a
minimal degree m is constructed with a c.e. Σ1-dense set of strings, and hence one
not computable in a 1-generic degree. In Downey [3], it is shown how to construct a
(minimal) hyperimmune free degree below 0′′ using a full approximation argument.
The point is that these two constructions are compatible, with great detail and no
real new insight. �
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