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Abstract. We show that the structure R of recursively enumerable degrees is
not a Σ1-elementary substructure of Dn, where Dn (n > 1) is the structure of
n-r.e. degrees in Ershov hierarchy.

1. Introduction

This paper studies the differences between various substructures in Ershov hierar-
chy and separates the class of r.e. degrees from n-r.e. ones (n ≥ 2) by a Σ1-sentence
with r.e. parameters. First of all, let us recall some background and introduce the
necessary definitions and notations.

The notion of n-r.e. sets was introduced by Putnam [9] and Gold [8] in the middle
of 1960’s. The classes of n-r.e.sets form part of a more general structure called Ershov
hierarchy (see Ershov [5], [6] and [7]).

Definition 1.1. Let n be a positive natural number.

(i) A set A is said to be n-r.e. if there is a recursive function f : ω×ω → ω such
that for each m,

– f(0,m) = 0;
– A(m) = lims f(s,m);
– |{s|f(s+ 1,m) 6= f(s,m)}| ≤ n.

(ii) A Turing degree is said to be n-r.e. if it contains an n-r.e. set.

Our main focus is the partially ordered structures Dn = (Dn,≤) where Dn denotes
the collection of n-r.e. degrees and ≤ is the Turing reducibility. For historical reasons,
we use R to denote D1, since 1-r.e. sets are exactly the usual recursively enumerable
sets. The class of n-r.e. degrees forms a substructure of D(≤ 0′), the ∆0

2-degrees.
One natural question to ask is whether the degree structure becomes more com-

plicated when one increases the number of changes in the approximation. As we will
discuss later, the structure D2 is significantly more complex than R. The follow-
ing so-called Downey Conjecture challenges us to explore the structural differences
among Dn and Dm for n,m > 1:
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Conjecture 1.2 (Downey [4]). For each n,m > 1, the structures Dn and Dm are
elementarily equivalent.

Recall that two structures A and B over the same language L are called elemen-
tarily equivalent, written A ≡ B, if for every sentence σ over L, A |= σ if and only if
B |= σ. If we restrict the sentences σ to Σk-ones, we get the more refined notion of
A being Σk-elementarily equivalent to B, written A ≡k B.

Given two structures A and B over the same language L, we say that A is a
substructure of B, written A ⊆ B if A ⊆ B (here we use the corresponding roman
letter to denote the universe of the structure) and the identity map id : A→ B is a
homomorphism, that is, the interpretation of any symbol (in the language L) in A is
the restriction of its interpretation in B.

If A is a substructure of B, there is a finer notion to gauge the structural differences
by allowing parameters from the universe of A. More precisely, let LA be the extended
language L ∪ {a : a ∈ A} obtained by adding a constant symbol a for each element
a in A.

Definition 1.3. Let n be a natural number. We say that A is a Σn-substructure of
B, written A �n B, if for all Σn-formulas ϕ(x1, x2, ..., xn) and all a1, a2, ..., an ∈ A,

A |= ϕ(a1, a2, ..., an) if and only if B |= ϕ(a1, a2, ..., an).

We now return to the historical development which leads to Downey’s Conjecture.
First observe that any elementary differences among Dn would not occur at the

Σ1-level: For any Σ1-sentence σ, Dn or D(≤ 0′) satisfies σ if and only if σ is consistent
with the theory of partial orderings (see, for example, some exercises in Soare [14]).
Therefore,

Theorem 1.4 (Folklore). For any m,n ∈ ω, Dm ≡1 Dn and Dm ≡1 D(≤ 0′).

The elementary difference between Dn and D(≤ 0′) shows up at Σ2-level: On the
one hand, Lachlan observed that Dn is downward dense; on the other hand, Sacks
[10] showed that there are ∆0

2-minimal degrees.

Theorem 1.5. For all n ≥ 1, Dn 6≡2 D(≤ 0′).

The elementary difference between R and Dn (n > 1) was first revealed at Σ3-level
by Arslanov [1] who showed that every element in Dn is cuppable, whereas in R
there exist noncuppable elements by Cooper and Yates. Later many differences at
Σ2-level were discovered, for example, the following pair of theorems offers perhaps
the clearest order-theoretic difference:

Theorem 1.6 (Sacks [11]). R is dense.

Theorem 1.7 (Cooper, Harrington, Lachlan, Lempp and Soare [3]). For each natural
number n > 1, maximal elements exist in Dn.

Therefore,

Corollary 1.8. For each natural number n > 1, R 6≡2 Dn.
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Historically, it was Downey [4] who demonstrated a Σ2-difference by showing that
diamond exists in Dn, which motivated him to propose his Conjecture 1.2. Recently
Arslanov, Kalimullin and Lempp announced a negative solution to Conjecture 1.2.
They proved the following result.

Theorem 1.9 (Arslanov, Kalimullin and Lempp [2]). D2 6≡2 D3.

They further conjectured that their technique could be generalized to show that
Dn 6≡2 Dm, thus answer Downey Conjecture negatively. Assuming their conjecture is
correct, by Theorem 1.4, Theorem 1.5 and Corollary 1.8, the only remaining question
is whether one structure can be a Σ1-elementary substructure of the other.

The first remarkable result related to the Σ1-elementary substructure was obtained
by Slaman [13] in 1983.

Theorem 1.10 (Slaman).

(i) There are r.e. sets A,B and C and a ∆0
2-set X such that

– ∅ <T X ≤T A;
– C 6≤T B ⊕X;
– for all r.e. set W (∅ <T W ≤T A⇒ C ≤T B ⊕W ).

(ii) For each natural number n ≥ 1, Dn 6�1 D(≤ 0′).

Theorem 1.10 naturally leads to the question whether or not Dm �1 Dn for m < n,
in particular, the following open problem by Slaman (see [3]):

Question 1.11 (Slaman). Do the r.e. degrees form a Σ1-substructure of the d.r.e. de-
grees?

We gave a negative answer in this paper.

First notice that by Lachlan’s observation that every nonrecursive n-r.e. degree
bounds a nonrecursive r.e. degree, one cannot hope that any n-r.e. degree D plays
the role of X as in Theorem 1.10. However we can introduce another parameter to
control the r.e. degrees below the degree of D. More precisely, we have the following
result:

Theorem 1.12. There are r.e. sets A,B,C and E and a d.r.e. set D such that

(1) D ≤T A and D 6≤T E;
(2) C 6≤T B ⊕D;
(3) for all r.e. set W (W ≤T A⇒ either C ≤T B ⊕W or W ≤T E).

Assuming Theorem 1.12, we can obtain the following result:

Theorem 1.13. For all n > 1, R 6�1 Dn.

Proof. Assume n > 1. Let a,b, c,d, e be the degrees of their corresponding sets as
in Theorem 1.12. Note all of them except d belong to R and d belongs to Dn.

Let ϕ(x1, x2, x3, x4) be the following Σ1-formula:

∃d∃g(d ≤ x1 ∧ d 6≤ x4 ∧ x2 ≤ g ∧ d ≤ g ∧ x3 6≤ g).
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By Theorem 1.12 and taking g = b ∪ d ∈ Dn, we have

Dn |= ϕ(a,b, c, e).

However, by Theorem 1.12 again,

R |= ∀w∀g((w ≤ a ∧ g ≥ w ∧ g ≥ b ∧w 6≤ e) =⇒ c ≤ g).

In other words,

R |= ¬ϕ(a,b, c, e).

�

The rest of the paper is devoted to the proof of Theorem 1.12. Notations and
terminologies are standard and generally follow Soare [14]. The basic knowledge of
tree constructions in recursion theory is assumed. It will be helpful if the reader is
familiar with the construction of a Slaman triple, see Shore and Slaman [12].

We use capital Greek letters such as Φ to denote Turing functionals, and the
corresponding lower case letter ϕ(A;x) to denote the use function for Φ(A;x). If the
Turing functional Φ applies to the join of two sets X and Y , we will write Φ(XY )
instead of Φ(X ⊕ Y ). During the course of a construction, whenever we define a
parameter as fresh, we mean that it is defined as the least natural number which is
greater than any number mentioned so far. We assume that the priority tree grows
upwards.

Acknowledgement. We would like thank Steffen Lempp and Ted Slaman for
introducing us to this problem during the Singapore IMS workshop, 2005. We also
thank Wang Wei for discussions. Both of us were extremely grateful for Ted Slaman
for many informative communications.

2. Description of Strategies

2.1. List of Requirements. Fix recursive enumerations of Turing functionals {Φe}e∈ω,
{Ψe}e∈ω and {Θe}e∈ω and of r.e. sets {Wi}i∈ω. We have the following requirements:

• Me: D 6= Ψe(E);
• Ne: C 6= Θe(BD);
• Re,i: Φe(A) = Wi implies ∃Γ(Γ(BWi) = C) or ∃∆(∆(E) = Wi).

Plus the global requirement:

• P : ∃Ω(Ω(A) = D).

2.2. Description of individual strategies. The strategy to satisfy P -requirement
is to build a Turing functional Ω such that Ω(A) = D. SinceD is a d.r.e. set, whenever
a number x enters or leaves D, we must guarantee that some number less than or
equal to the use ω(x) enters A. It has a positive effect on A. As we shall see that
a number is enumerated into D only by M -strategies, we will let the M -strategies
define Ω(A).

The strategy µ to satisfy M -requirement, say Me, is the usual Friedberg-Muchnik
diagonalization.
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(1) Pick a diagonalization witness x, wait for Ψe(E;x)↓= 0. Since M must help
P to define Ω(A), µ picks a fresh number x0, and saves x0 and x1 = x0 + 1
for coding D(x) into A. Define Ω(A;x) = 0 with the use block {x0, x1}.

(2) When Ψe(E;x)↓= 0, put x into D, preserve E up to the use ψ(x)+1, correct
Ω(A;x) by putting x1 into A and define Ω(A;x) = 1.

It has two outcomes: 0 indicating we have reached step (2); 1 indicating we are
waiting forever.

It has finitary positive effect on D and finitary negative effect on E.
As D is a d.r.e. set, the witness x might be extracted out of D at later stages.

We need to make sure that this happens only when a higher priority N -strategy
acts. Thus M would be initialized. The initialization is done by putting x0 into A
to correct Ω(A;x) again, discarding the witness x forever and the starting over the
M -strategy.

The strategy α for R-requirement, say Re,i, originated from the idea of building a
Slaman triple as in Shore and Slaman [12]. Thus an R-requirement will be satisfied
by an R-strategy α together with infinitely many N -strategies. The R-strategy only
deals with the definition of the functional Γ. The correction of Γ and the construction
of ∆ will be spread out to the subsequent N -strategies.

The strategy α for Re,i measures the length of agreement between Φe(A) and Wi.
During the expansionary stages, we extend the definition of Γ(BWi). Let y be the
least number not yet in the domain of Γ(BWi). Define Γ(BWi; y) = C(y) with a
fresh use γ(y).

An R-strategy α has two outcomes: ∞ indicating there are infinitely many α-
expansionary stages; 0 finitely many. When α has outcome ∞, it enumerates more
axioms into Γ; when it has outcome 0, it adds an finitary restraint on A, which will
be done automatically by the design of tree.

The strategy β for an N -requirement, say Ne, has two components: one is a gap/co-
gap strategy for the sake of higher priority R-strategies; the other is the Friedberg-
Muchnik diagonalization strategy for Θe(BD) 6= C.

We begin with describing the action of a single N -strategy with the presence of a
single higher priority R-strategy. The complication with more R-strategies is then
discussed. After that, we consider the interaction between two N -strategies, where
the advantage of having ∆ and the roles which the set E plays become apparent.

The N -strategy β operates as follows. We drop the indices e in Θe and i in Wi.

(1) Choose a threshold parameter z and a diagonal witness y.
(2) Wait until a stage s at which Θ(BD; y) ↓= 0[s]. Preserve B and C on all

numbers ≤ s and go to Step (3).
(3) Open an A-gap by dropping the restraint on A. This allows A and D to

change and indirectly W can change also. Wait for the next stage t when β is
accessible again (note that it is necessary that t is an R-expansionary stage).
Go to Step (4)

(4) There are four possibilities:
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(a) D � (θ(y) + 1)[s] = D � (θ(y) + 1)[t] and W � (γ(z) + 1)[s] 6= W �
(γ(z) + 1)[t].
Go to Step (5).

(b) D � (θ(y) + 1)[s] = D � (θ(y) + 1)[t] and W � (γ(z) + 1)[s] = W �
(γ(z) + 1)[t].
Then we enumerate γ(z) into B. This will make Γ(BW ) partial. Close
the A-gap by adding a restraint on A to preserve the length of agreement
between Φ(A) and W for the R-strategy. For each number v ≤ γ(z) for
which ∆(E; v) is undefined, define ∆(E; v) = W (v). Here the role which
E plays is not significant, we have to wait until we have more than one
N -strategies. We use g to indicate this outcome.

(c) D � (θ(y) + 1)[s] 6= D � (θ(y) + 1)[t] and W � (γ(z) + 1)[s] = W �
(γ(z) + 1)[t].
Do the same as in (b).

(d) D � (θ(y) + 1)[s] 6= D � (θ(y) + 1)[t] and W � (γ(z) + 1)[s] 6= W �
(γ(z) + 1)[t].
(Under the assumption that no otherN -strategies are present) The change
of D must have been done by some lower priority M -strategies, which
enumerate their diagonalization witnesses into D between the stages s
and t. Thus we can extract all these numbers out of D to recover Ds.
Go to Step (5).

(5) Enumerate y into C, preserve the sets D and B up to θ(y). We have won the
diagonalization part of N without interfering R. We use d to indicate this
outcome.

The phenomenon in Step (4)(d) will be more and more important in later sec-
tions. Thus we introduce the terminology recoverable. We say that a computation
Θ(BD; y)↓ [s] is recoverable at stage t > s if B � (θ(y) + 1)[s] = B � (θ(y) + 1)[t] and
D � (θ(y) + 1)[s] ⊆ D � (θ(y) + 1)[t].

3. Modified Strategies

3.1. One N- and Many R-strategies. We now describe a single N -strategy β in
the environment of many higher priority R-strategies. Let α0 ⊂ · · · ⊂ αn be all active
(to be defined precisely later) R-strategies in decreasing order of priority that β has
to deal with. Each αi enumerates Γi and maintains equality between Γ(BWi) and
C. We further assume that β is accessible only during αi-expansionary stages for all
i ≤ n.

The N -strategy β acts as follows.

(1) From i = 0 to n, choose a fresh threshold parameter zi for αi and a fresh
diagonal witness y, if they have not been chosen; and go to Step (2).

(2) Wait until a stage s at which Θe(BD; y) ↓= 0[s]. Preserve B and C on all
numbers ≤ s and go to Step (3.0).

(3.i) Open an i-gap by dropping the restraint on A when β last reached (4.i)(b).
Wait until the next stage ti when β is accessible. Go to Step (4.i).
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(4.i) There are four possibilities depending on the combination of whether Wi- or
D-changes between stage s and ti.
(a) D � (θ(y) + 1)[s] = D � (θ(y) + 1)[ti] and Wi � (γi(zi) + 1)[s] 6= Wi �

(γi(zi) + 1)[ti].
Then we cancel the values of zi. If i < n then go to Step (3.i+1). If i = n
then go to Step (5).

(b) D � (θ(y) + 1)[s] = D � (θ(y) + 1)[ti] and Wi � (γi(zi) + 1)[s] = Wi �
(γi(zi) + 1)[ti].
Then for any j < i, cancel the values of zi. Close the i-gap by restraining
A to preserve the length of agreement between Wi and Φei

(A). For any
j ≥ i, enumerate γj(zj) into B; drop all restraint on B and C. For each
number v ≤ γi(zi) for which ∆i(E; v) is undefined, define ∆i(E; v) =
Wi(v). We use gi to indicate this outcome.

(c) D � (θ(y) + 1)[s] 6= D � (θ(y) + 1)[ti] and Wi � (γi(zi) + 1)[s] = Wi �
(γi(zi) + 1)[ti].
Do the same as in (b).

(d) D � (θ(y) + 1)[s] 6= D � (θ(y) + 1)[ti] and Wi � (γi(zi) + 1)[s] 6= Wi �
(γi(zi) + 1)[ti].
(Under the assumption that no other N -strategies are present) extract
all numbers out of D which were enumerated into D between the stages
s and ti, to recover Ds. Cancel the values of zi. If i < n then go to Step
(3.i+1). If i = n then go to Step (5).

(5) Let tn = t. Enumerate y into C. For all i ≤ n, if γi,t(zi) is defined, then
enumerate it into B and preserve the sets D and B up to θ(y)[t]. We use d
to indicate the outcome.

3.2. More than one N-strategies. When more than one N -strategies, say N0

and N1 with N0 having higher priority than N1, are present, the extraction done
by N1 could have irreversible impact on N0 such that the computation Θ0(BD; y0)
at N0 is not recoverable. Thus we have to make use of the set E so that we can
correct the functional ∆0(E). Roughly speaking, when N1’s extraction makes a
computation Θ0(BD; y0) at N0 non-recoverable, we will enumerate numbers into E
so that ∆(E) = Wi can be maintained. Roughly speaking, though not entirely true,
the set E codes those r.e. set Wi whose changes coincide with elements leaving D.

First we describe the scenario which illustrates the points in the paragraph above.
The setting consists of two R-strategies α0 and α1; two N -strategies β0 and β1;

and one M -strategy µ. We assume that

α0ˆ∞ ⊂ α1ˆ∞ ⊂ β0ˆg1 ⊂ β1ˆg0 ⊂ µ.

• At stage s0, β0’s g1-gap is open; β1’s g0-gap is open, and µ is accessible.
Assume that µ puts its witness x into D.

• At stage s1 > s0, β0’s g1-gap is closed as in (4)(a). β1 is not accessible, hence
its g0-gap remains open.

• At stage s2 > s1, β0’s g1-gap is opened again, however, its computation
Θ(BD; y0) = 0[s2] has used the information that x is in D; β1’s g0-gap is
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closed as in (4)(d), β1 extracts x out of D, making Θ(BD; y0)[s2] not recov-
erable, and has outcome 0 forever.

• At stage s3 > s2, β0 wants to close its g1-gap as in Step (4)(d), however it
cannot put x back intoD to recover the computation Θ(BD; y0) = 0[s2]. Thus
β0 has to act as in Step (4)(b) by putting δ(v) into E and redefine ∆(E; v)
with fresh use δ(v). This would cancel the impact of the extraction of N1.

Now a new type of conflict occurs. By putting δ(v) into E, β0 may injure some
M -strategy µ′. The worry is that an extraction of a big x always coincide with a
small v entering W , thus an M -strategy µ′ extending β0ˆg1 always gets injured by
δ(v). This new conflict can be solved by restraining A bit by bit.

4. The Construction

4.1. Description of the priority tree T . Fix a recursive priority list of the re-
quirements

R0, N0,M0, R0, N1,M1, . . .

where it is understood that the index d in Rd is the canonical code of the pair 〈e, i〉.
We label T inductively as follows. We label each node on T with a requirement. We
identify a node on T with the strategy of satisfying its labelling requirement. The
root node on T is labelled R0. Suppose that τ is a node on T . If τ is labelled Re

then τ has two outgoing edges labelled ∞ and 0, from left to right. We say that
a node α labelled R is active at τ if for every node α′ with α′ ⊂ α ⊂ τ there is
no β with α ⊂ βˆgα′ ⊂ τ . If τ is labelled Ne then τ has n + 2 outgoing edges
d, gαn−1 , . . . , gα1 , gα0 , w from left to right where αi is labelled Ri and αi is active at τ .
If τ is labelled Me then τ has two outgoing edges labelled 0 and 1, from left to right.

We say that a requirement U is represented by σ at a node τ if σ ⊂ τ and one of
the following conditions holds: U is Me and σ is labelled Me; or U is Re and σ is
labelled Re and is active at τ ; or U is Ne and either σˆw or σˆd ⊆ τ .

Continuing the inductive definition of T , if all α ⊂ τ have been labelled, then τ is
labelled with the highest priority O such that O is not represented by any σ ⊂ τ .

A left-right order ≤ can be naturally put on tree T , namely, for any two nodes σ, τ
on T , σ ≤ τ if and only if σ is to the left of τ or σ is an initial segment of τ .

4.2. Parameters and Initialization. Let τ be a node on T . We now list a collection
of parameters associated with τ , which will be used in the construction. During the
construction, the value of a parameter p may be updated. Thus, strictly speaking, a
parameter is a function of stage s, though we will not mention s explicitly below for
simplicity.

(1) If τ is labelled Me, it has a parameter x targeting D as the witness to diago-
nalize against Ψe(E). For each x, Me also has a use block {x0, x1 = x0 + 1}
for x which is used for correcting the functional Ω(A;x).

(2) If τ is labelled Rd and d = 〈e, i〉, then it has parameters l which is the length of
agreement function between Φe(A) and Wi, and a finite restraint r to preserve
l. It also builds a functional Γτ .

(3) If τ is labelled Ne, then it has the following parameters:
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• a stage s− at which τ was accessible for the last time; if τ has never been
accessible before, s− = 0;

• A finite permanent restraint on A, B, C, D and E;
• sequences of alternating restraints on the triple A, D and E, and on the

pair B and C;
• a finite set of R-strategies α0 ⊂ α1 ⊂ · · · ⊂ αn, which are active at τ ;
• for each α in the list of active R-strategies, τ has a threshold zα trying

to drive Γα(BW ) partial at zα, and builds a functional ∆α(E);
• a uniformly recursive set of numbers that will enter B, in fact, the set

consists of all uses γα′(zα′) for some N -strategy β′ such that β′ˆgα′ ⊂ β;
• a number y, targeting C as the witness to diagonalize against Θe(BD);

To prevent a computation ∆α(E) from being injured by that corrections of other
∆′

α′(E), we add the following convention on the definition of ∆α: If a computation
∆α(E; v) becomes undefined because of other strategies putting some delta use into
E, then we redefine ∆α(E; v) to be the same value with the same use. This convention
is certainly reasonable, since the more E changes, the easier the defining of ∆α(E)
becomes.

When a node τ is initialized at stage s, all witnesses, thresholds and functionals
get cancelled and discarded forever; the stage parameter s− is set to s, and the
computation of expansionary stages will be re-started from stage s.

4.3. Construction. We now describe the stage by stage construction. At stage s,
we first specify a string TPs of length less than or equal to s, called the accessible
string, then act along the accessible string.

The accessible string is defined inductively from the root. The root of the priority
tree T is always accessible.

At the inductive step, suppose that the node τ is accessible. If the length of τ is
equal to s then we let τ =TPs and go to next stage.

Suppose that the length of τ is less than s. We decide the outcome o, let τˆo be
accessible and take the actions based on the label of τ as follows.

(1) The node is an R〈e,i〉-strategy α.
Check if s is an α-expansionary stage. If not, then let o = 0 and do nothing.

If yes, then let o = ∞; choose the least number z such that Γα(BWi; z)[s] is
undefined, define Γα(BWi; z) = C(z)[s] with a fresh use γ(z).

(2) The node is an Ne-strategy β.
Let us assume that the diagonalization parameter y = yβ and the threshold

parameters zα for each α in its active list are defined, otherwise simply define
it to be the least fresh number.

Case (2.1) The outcome at stage s− was w.
If Θe(BD; y)↑ [s] or Θe(BD; y)↓6= 0[s], then let o be w. Otherwise, that is

Θe(BD; y)↓= 0[s], preserve B and C on all numbers less than or equal to s,
open an α0-gap (the action of open gap will be described below) and let gα0

be the outcome.
Case (2.2.j) The outcome at stage s− was gαj

.
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Suppose that the αj-gap was closed at stage s−. Then let the outcome be
w and do noting.

Suppose that the αj-gap was opened at stage s−. Let i be the index of the
Wi which the node αj is working for. There are two cases depending on what
happened to Wi and D between stage s− and s.
(a) The computation Θe(BD; y)↓= 0[s−] is recoverable and

Wi � (γαj
(zαj

) + 1)[s−] 6= Wi � (γαj
(zαj

) + 1)[s].

Then we recover the computation Θe(BD; y)↓= 0[s−], that is, we extract
all numbers x inDs\Ds− and enumerate the x0 in the use block of Ω(A;x)
into A; cancel the values of zαj

. If j < n then open an α(j+1)-gap and let
gαj+1

be the outcome. If j = n then enumerate y into C; for all k ≤ n, if
γαk

(zαk
)[s−] is defined, then enumerate it into B and preserve the sets D

and B up to θe(y)[s]; let d be the outcome; go to next stage and initialize
all nodes ≥ βˆd.
The action of open an αj-gap is simply drop the restraint on A when β
last reached (2.2.j)(b).

(b) Otherwise, that is either the computation Θe(BD; y) ↓= 0[s−] is not
recoverable and Wi � (γαj

(zαj
) + 1)[s−] 6= Wi � (γαj

(zαj
) + 1)[s]; or

Wi � (γαj
(zαj

) + 1)[s] = Wi � (γαj
(zαj

) + 1)[s−].
Then for any k < j, cancel the values of zαk

. Close the αj-gap by
restraining A to preserve the length of agreement betweenWi and Φαj

(A).
For any k ≥ j, enumerate γαk

(zαk
) into B; drop all restraint on B and

C. Find the least v (if any) in the domain of ∆αj
such that ∆αj

(E; v) 6=
Wi(v), enumerate δαj

(v) into E. Then find the least v such that ∆αj
(E; v)

is undefined, define ∆αj
(E; v) = Wi(v) with a fresh use δαj

(v). Let gαj

be the outcome.
(3) The node is an Me-strategy µ.

Let us assume that the witness parameter x has been defined together with
the use block {x0, x1} for Ω(A;x) = D(x) = 0, otherwise define x fresh,
then define Ω(A;x) = D(x) = 0 with fresh use block. If Ψe(E;x) ↑ [s] or
Ψe(E;x)↓6= 0[s], then let outcome be 1. Otherwise, that is Ψe(E;x)↓= 0[s],
put x into D, preserve E up to the use ψ(x) + 1, correct Ω(A;x) by putting
x1 into A and redefine Ω(A;x) = 1, end the stage.

At the end of the stage, initialize all nodes to the right of the accessible string.
This finishes the construction.

5. Verification

We now verify that the construction works. We begin with the lemma stating that
the true path exists.

Lemma 5.1. For any e ∈ ω, there is a unique node α on T such that α is the leftmost
one of length e which is accessible infinitely often.

Let TP be the true path in T , that is, TP is the leftmost path which is accessible
infinitely often. By Lemma 5.1, TP exists and it is indeed an infinite path.
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Lemma 5.2. For every requirement O there is a node τ on TP such that for all n
greater than the length of τ , O is represented by τ at TP� n.

We skip the proof of Lemmas 5.1 and 5.2, as it is essentially the same as Lemma
3.3. in Shore and Slaman [12].

We argue by induction along TP that every requirement is satisfied. We split the
proof into a few lemmas.

Lemma 5.3. Let τ be a node on TP and O be the label of τ . Then

(a) Suppose that O is R〈e,i〉 and τ is the R-strategy α. Then αˆ∞ ⊂ TP if and
only if there are infinitely many α-expansionary stages.

(b) Suppose that O is Ne and τ is the N-strategy β. Then β’s witness parameter y
is eventually fixed; the uniformly recursive set in its parameter list is a subset
of B. Furthermore
(b1) if βˆd ⊂ TP then Θe(BD; y)↓= 0 and y ∈ C.
(b2) if βˆgαi

⊂ TP, then its threshold parameter zαi
is eventually fixed. More-

over, the functional ∆αi
(E) is total and = W which is the r.e. set ap-

peared in the requirement Rαi
;

(b3) if βˆw ⊂ TP then (Θe(BD; y)↑ or Θe(BD; y)↓6= 0) and y 6∈ C;
(c) Suppose that O is Me and τ is the M-strategy µ. Then µ’s witness parameter

x is eventually fixed.
Furthermore

(c1) if µˆ0 ⊂ TP, then Ψe(E;x)↓= 0 and x ∈ D;
(c2) if µˆ1 ⊂ TP then (Ψe(E;x)↑ or Ψe(E;x)↓6= 0) and x 6∈ D.

Proof. We prove (a), (b) and (c) by simultaneous induction.
Statement (a) follows from the construction.
We now prove (b). Let s0 be the stage after which β will not be initialized. After

stage s0, the parameter y will be fixed. Moreover, for each N -node β′ with β′ˆgα′ ⊂ β,
by induction hypothesis the parameters zα′ at β′ is fixed, thus, the recursive set
consists of γα′(zα′) is a subset of B.

Suppose that βˆd ⊂ TP. Let s1 > s0 be the stage at which βˆd is accessible for
the first time. By Case (2.2.n)(a) in the construction, we enumerated y into C and
recovered the computation Θ(BD; y)↓= 0[s−]; thus y ∈ C and Θ(BD; y)↓= 0[s1]. It
remains to show that for all t > s1, the computation Θ(BD; y)↓= 0[s1] is preserved
at stage t. Since we initialize all nodes > βˆd at stage s1, the computation can only
be injured by the action of nodes ≤ β. By the choice of s0, we only need to consider
the nodes which are ⊂ β. The B-side of the computation is safe: By the choice of
the recursive set in the parameter list of β, the elements entering B will not injure
the computation. The D-side of the computation is also safe: No M -node η ⊂ β can
put element into D, and no N -node β′ ⊂ β would extract elements out of D, as it
would have an outcome to the left of β hence initialize β. This establishes (b1).

Suppose that βˆgαi
⊂ TP. Let s1 > s0 be the stage after which βˆgαi

never gets
initialized. Since we only cancel zαi

when we reach (2.2.j)(b) for some j > i, the
choice of s1 guarantees that zαi

is fixed after stage s1.
By the correction done in case (2.2.i)(b), for any v in domain of ∆αi

(E), we have
∆αi

(E; v) = W (v), where W is the r.e. set appeared in the requirement Rαi
. We now
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prove that ∆αi
(E) is total by contradiction. Suppose that v0 is the least number such

that ∆αi
(E; v0) 6= W (v0). Let s2 be the stage at which ∆αi

(E; v0) is defined and after
which no correction happens for ∆αi

(E; v) for v < v0. By our convention, no other
N -requirements will move the use ∆αi

(E; v0). Thus, ∆αi
(E; v0) can only change at

most once, depending if v0 enters W after s2. This establishes (b2).
Suppose that βˆw ⊂ TP. Let s1 > s0 be the stage after which no nodes to the

left of βˆw are accessible. By the argument in (b1), if we ever have the outcome d
after stage s0, then we will have outcome d forever. Thus, y 6∈ C. Moreover after
stage s1 we will not see Θ(BD; y) ↓= 0, otherwise, we would open an α0-gap and
have outcome gα0 . This establishes (b3) and finishes the proof of statement (b).

We now prove (c). Let s0 be the stage after which µ will not be initialized. After
stage s0, the parameter x will be fixed.

If at some stage s1 > s0 at which µ is accessible and Ψe(E;x) ↓= 0[s1], then by
case (3) in the construction x ∈ D. It remains to show that x is never get extracted
out of D and the computation Ψe(E;x)↓= 0[s1] is preserved.

By construction, each N -node β only extracts the numbers which were put into
D by some M -nodes extending β. Thus only those β ⊂ µ may extract x out of D.
However such extraction would initialize µ, contradicting to the choice of s0. Thus x
is never extracted out of D.

Since we end the stage s1 after the action at µ, and all nodes ≥ µ gets initialized
at the end of stage s1. The only possible injury of Ψe(E;x) comes from the N -
nodes β such that βˆgαi

⊂ µ and β puts δ(v) into E in order to correct the error
∆αi

(E; v) 6= W (v) for some v, where W is the r.e. set appeared in the requirement
Rαi

. Therefore v must enter W after stage s1. We argue that this will cause an
disagreement forever between Φαi

(A; v) and W (v) at αi. To avoid disagreement, A
must change below the use ϕ(v). That can only happen when some x0, x1 in the use
Ω-block {x0, x1} for some x enters A after s1. However x0, x1 enters A only when x is
out and in D respectively. By the initialization done at s1, such x must be a witness
parameter at some M -nodes µ′ ⊂ µ. µ′ cannot put x into D after stage s1, otherwise
it would initialize µ. On the other hand, no node β′ ⊂ µ′ can extract x out of D after
s1 by the same reason. This establishes (c1).

As argued in (b3), after stage s0 we will never reach outcome 0. Thus x 6∈ D.
Furthermore, if Ψe(E;x)↓= 0 at some stage t > s0 at which µ is accessible, then we
would reach outcome 0. This establishes (c2). �

Finally we show that all requirements are satisfied.

Lemma 5.4. All requirements are satisfied. More specifically,

(1) The P -requirement is satisfied, namely, the functional Ω(A) is total and for
all natural number x, Ω(A;x) = D(x).

(2) For each natural number e, the requirement Ne is satisfied.
(3) For each natural number e, the requirement Re is satisfied.

Proof. Statement (1) follows from the construction.
Statement (2) is essential the argument (b1) and (b3) in Lemma 5.3.
We now verify statement (3). Let α be the node on TP which represents R〈e,i〉.

Let us assume that Φe(A) = Wi.
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Fix a stage s0, after which α never gets initialized. Clearly, since Φe(A) = Wi,
we know αˆ∞ is on TP. We consider two cases based on whether Re has a global
Σ3-outcome.
Case 1. There is a node β on TP labelled N which has α in its parameter list, such
that βˆgα ⊂ TP.

Then by statement (b2) in Lemma 5.3, ∆α(E) is total and ∆α(E) = Wi. Thus
R〈e,i〉 is satisfied by successfully build ∆α at β.
Case 2. For all nodes β on TP labelled N such that α is in its parameter list, βpˆgα 6⊂
TP.

In this case we argue that the Turing functional Γα(BWi) is total and equal to C.
Since we always make corrections on Γα(BWi), it suffices to show that it is total.

We show by induction that for all p, Γα(BWi; p) is defined. Suppose that the state-
ment is true for all p′ < p, let s0 be the stage after which B ⊕Wi will not change
on any number less than γ(p′) for all p′ < p. Now as there are only finitely many
threshold z < p′ and they are all located off the true path, thus eventually they are
either getting cancelled or never acting. Hence Γ(BWi; p) is defined eventually.

This ends all verification. �
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