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WHEN VAN LAMBALGEN’S THEOREM FAILS

LIANG YU

(Communicated by Julia Knight)

Abstract. We prove that van Lambalgen’s Theorem fails for both Schnorr
randomness and computable randomness.

To characterize randomness, various definitions of randomness for individual
elements of Cantor space have been introduced. The most popular (and maybe the
most important) definitions of randomness are Martin-Löf randomness, Schnorr
randomness and computable randomness.

We use µ to denote Lebesgue measure on Cantor space 2ω.

Definition 0.1 (Martin-Löf [7]). (i) Given a set X ⊆ ω, an X-Martin-Löf
test is a computable collection {Vn : n ∈ N} of computably enumerable
open sets such that µ(Vn) ≤ 2−n.

(ii) Given a set X ⊆ ω, a set Y is said to pass the X-Martin-Löf test if Y /∈⋂
n∈N

Vn.
(iii) Given a set X, a set Y is said to be X-ML-random if it passes all X-Martin-

Löf tests.
(iv) A set Y is said to be ML-random if it is ∅-ML-random.

Definition 0.2 (Schnorr [9]). (i) Given a set X ⊆ ω, an X-Schnorr test {Vn :
n ∈ N} is an X-ML-test such that there is an increasing X-computable
function g : ω �→ ω with limn g(n) = ∞ so that µ(Vn) = 2−g(n).

(ii) Given a set X ⊆ ω, a set Y is said to pass the X-Schnorr test if Y /∈⋂
n∈N

Vn.
(iii) Given a set X, a set Y is said to be X-ML-random if it passes all X-Schnorr

tests.

Note one can replace “Y /∈
⋂

n∈N
Vn” with “Y ∈ Vn for at most finitely many

Vn’s” in item (ii) above. A proof can be found in [4].

Definition 0.3 (Schnorr [9]). (i) Given a set X ⊆ ω, a function f : 2<ω �→ 2ω

is X-computable if there is an X-computable function g : ω × 2<ω �→ 2<ω

so that for each σ ∈ 2<ω, limn g(n, σ) = f(σ) and for each n and m,
|g(n, σ) − g(n + m, σ)| < 2−n.1
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1One should think of 2<ω as the set of rationals and 2ω as the set of reals in the interval [0,1].
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(ii) A martingale is a function f : 2<ω �→ 2ω such that for all σ ∈ 2<ω, f(σ) =
f(σ�0)+f(σ�1)

2 .
(iii) Given a set X ⊆ ω, a martingale f is called X-computable iff f is an

X-computable function.
(iv) Given a set X ⊆ ω, the X-computable martingale f is said to succeed on

Y if lim supn f(Y � n) = ∞.
(v) Given a set X ⊆ ω, a set Y is called X-computably random if no X-

computable martingale succeeds on Y .

The motivation for the introduction of these definitions is complex. For further
discussion of these reasons and of the controversy on the advantages and disadvan-
tages of the various notions of randomness, see [7], [9], [10], [2]. Each definition has
its own reason for being. The problem is which one is the best. Van Lambalgen
proved the following result which is well known now as van Lambalgen’s Theorem.

Theorem 0.4 (van Lambalgen [10]). If X, Y ⊆ ω, then X ⊕ Y is ML-random iff
X is ML-random and Y is X-ML-random.

In both the mathematical and philosophical sense, van Lambalgen’s Theorem is
extremely important. Mathematically, there exist a large number of applications of
van Lambalgen’s Theorem in the theory of randomness. Readers can find these in
the forthcoming book [3]. Philosophically, a random set should have the property
that no information about any part of it can be obtained from another part. In
particular, no information about “the left part” of a random set should be obtained
from “the right part” and vice versa. In other words, “the left part” of a random
set should be “the right part”—random and vice versa.

Hence one way to finish the controversy on which notion of randomness is best
is to check which definitions satisfy van Lambalgen’s Theorem. We show that
Martin-Löf randomness is the only one among the definitions mentioned here that
does.

We use “randomness” without any prefix to denote “Martin-Löf randomness”
and use “(Schnorr, computable)-randomness” to denote “∅-(Schnorr, computable)-
randomness”. Readers can find all of the necessary material in [3] and [5].

We need some technical results.

Theorem 0.5 (Martin [6]). Let A0 ≤T A1. Then A′′
0 ≤T A′

1 iff there is an A1-
computable function which dominates every A0-computable function.

Theorem 0.6 (Nies, Stephan, Terwijn [8]). For every set A, the following are
equivalent.

• A′ ≥T ∅′′.
• There is a computably random but not random set B ≡T A.
• There is a Schnorr random but not computably random set B ≡T A.

Theorem 0.7 (Schnorr [9]). For any set X ⊆ ω, X-randomness implies X-
computable randomness implies X-Schnorr randomness.

The following lemma is a relativized version of a result in [8].

Lemma 0.8. If A0 is A1-Schnorr-random and A′′
1 �≤T (A0 ⊕ A1)′, then A0 is

A1-random.
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Proof. If not, then A0 ∈
⋂

n UA1
n where {UA1

n }n∈ω is an A1-Martin-Löf test. Let
f be a total A0 ⊕ A1-computable function so that A0 ∈ UA1

n [f(n)] (UA1
n [f(n)] is a

subset of UA1
n into which each membership is enumerated no later than the stage

f(n)). By Theorem 0.5, there is an A1-computable function g so that g(n) > f(n)
for infinitely many n’s. Define a Schnorr test {V A1

n }n∈ω so that V A1
n = UA1

n [g(n)]
for each n. Then A0 ∈ V A1

n for infinitely many n’s. So A is not A1-Schnorr-random.
A contradiction. �

A function f : ω �→ ω is said to be DNC (diagonally noncomputable) if f(n) �=
Φn(n) for each n where {Φn : n ∈ ω} is an effective enumeration of the partial
computable functions.

Theorem 0.9. Let B <T ∅′ be a c.e. set.
(i) If A = A0 ⊕ A1 ≤T B is Schnorr-random but not random, then Ai is not

A1−i-Schnorr-random for each i ≤ 1.
(ii) If A = A0 ⊕ A1 ≤T B is computably-random but not random, then Ai is

not A1−i-computably-random for each i ≤ 1.

Proof. (i) Suppose not. Say A0 is A1-Schnorr-random. It is easy to see that both
Ai’s are Schnorr-random. Note that by Theorem 0.6, A′ ≥T ∅′′. Since A ≤T ∅′, in
fact, A′ ≡T ∅′′. Since every random set computes a DNC-function and no DNC-
function can be computed by an incomplete c.e. set (Arslanov [1]), neither Ai’s can
be random. By Theorem 0.6, A′

i ≡T ∅′′ for each i ≤ 1. Hence A′′
1 ≡T ∅′′′ >T ∅′′ ≡T

A′ ≡T (A0 ⊕A1)′. By Lemma 0.8, A0 is random. Hence B ≡T ∅′. A contradiction.
(ii) By the relativized form of Theorem 0.7, for any set X, every X-computably-

random set Y is X-Schnorr-random. So if A is computably random, then A is
Schnorr-random. By (i), Ai is not A1−i-Schnorr-random for each i ≤ 1. So Ai is
not A1−i-computably-random for each i ≤ 1. �

By Theorem 0.6, for every c.e. set B with B′ ≥T ∅′′, there is a set A ≡T B
which satisfies the assumption in Theorem 0.9. So van Lambalgen’s Theorem fails
for both Schnorr randomness and computable randomness.

Finally we remark that the other direction of van Lambalgen’s Theorem is true
for both Schnorr randomness and computable randomness. In other words, if X
is Schnorr (computably)-random and Y is X-Schnorr (computably)-random, then
X ⊕ Y is Schnorr (computably)-random. The proof is just a straightforward mod-
ification of the proof of van Lambalgen’s Theorem.
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[7] Per Martin-Löf. The definition of random sequences. Information and Control, 9:602–619,
1966. MR0223179 (36:6228)
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