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Abstract. The main topic of the present work is the relation that a set X is
strongly hyperimmune-free relative to Y . Here X is strongly hyperimmune-free
relative to Y if and only if for every partial X-recursive function p there is a partial
Y -recursive function q such that every a in the domain of p is also in the domain of q
and satisfies p(a) < p(a), that is, p is majorised by q. For X being hyperimmune-free
relative to Y , one also says that X is pmaj-reducible to Y (X ≤pmaj Y ). It is shown
that between degrees not above the Halting problem the pmaj-reducibility coincides
with the Turing reducibility and that therefore only recursive sets have a strongly
hyperimmune-free Turing degree while those sets Turing above the Halting problem
bound uncountably many sets with respect to the pmaj-relation. So pmaj-reduction
is identical with Turing reduction on a class of sets of measure 1. Moreover, every
pmaj-degree coincides with the corresponding Turing degree. The pmaj-degree of
the Halting problem is definable with the pmaj-relation.

1. Introduction

Post [7] introduced the notions of immune and hyperimmune sets in order to search for
conditions on the complements of r.e. sets which guarantee incompleteness for certain
reducibilities. In the subsequent study [5, 6, 8, 10, 15] the notion of hyperimmunity
played a central role and also the discovery that there are Turing degrees which do not
contain a hyperimmune set, these are called the hyperimmune-free Turing degrees.
This was generalised by saying that X is hyperimmune-free relative to Y if every
total X-recursive function is majorised by a total Y -recursive function. One could
generalise this notion as follows, where one says that a partial function q dominates
a partial function p iff for almost all x in the domain of p it holds that x is also in
the domain of q and p(x) < q(x); furthermore, q majorises p if the domain of p is a
subset of the domain of q and p(x) < q(x) for all x in the domain of p. Now, the
following six notions can arise in principle:

1d: One total Y -recursive function dominates every total X-recursive function;
1m: Every total X-recursive function is majorised by a total Y -recursive func-

tion;
2d: One total Y -recursive function dominates every partial X-recursive func-

tion;
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2m: Every partial X-recursive function is majorised by a total Y -recursive func-
tion;

3d: One partial Y -recursive function dominates every partial X-recursive func-
tion;

3m: Every partial X-recursive function is majorised by a partial Y -recursive
function.

Notion 1m is closely related to the above discussed notion of hyperimmune-freeness.
Notion 1d has a strong resemblance to the low-high hierarchy: If X ≤T Y then Y
dominates X in sense 1d iff X ′′ ≤T Y ′ by a result of Martin; in particular fixing X
as recursive would give that the Y range over the high degrees while fixing Y = K
and taking X to be ∆0

2 would imply that X is dominated in sense 1d by Y iff X
is low2. The notions 2d, 2m and 3d all coincide and are the strongest form of
domination which one can get and imply that X ′ ≤T X ⊕ Y . Notion 3m is the
notion of pmaj-reducibility which will be discussed in the following.

So, X is strongly hyperimmune-free relative to Y iff every partial X-recursive
function is majorised by a partial Y -recursive function. In contrast to hyperimmune-
free degrees, it turns out that no nonrecursive Turing degree is strongly hyperimmune-
free. So the more interesting part is the overall relation between sets X and Y than
the special case X ≤pmaj ∅.

Concerning the downward closure the following result is obtained: If X 6≥T K then
{Y : Y ≤pmaj X} = {Y : Y ≤T X} else {Y : Y ≤pmaj X} is uncountable and has
measure 1. In particular, {Y : Y ≤pmaj K} contains all sets which are Martin-Löf
random relative to K, all sets which are low for Ω, which are jump traceable and
which are Turing reducible to K.

Furthermore, if a single function q majorises all partial-recursive functions then
the Turing degree of q is at least K; hence K is the first dominant degree for the
pmaj-degrees. This stands in contrast to Chong’s notion of pdomination: He defined
that a set X is pdominant iff there is a single partial X-recursive function q such
that for all partial-recursive functions p and almost all x in the domain of p there is
a y ≤ x in the domain of q with p(x) < q(y). This type of domination is easier to
obtain and Chong, Hoi, Stephan and Turetsky [1] study in detail which degrees are
pdominant in this sense: for example some low r.e. degrees are pdominant while other
high r.e. degrees fail to be pdominant. The notion of pdominance is quite orthogonal
to many known recursion-theoretic classes of oracles.

Although Shore and Slaman [13] prove that the Turing degree of Halting problem
is definable and subsequently Shore [12] found a more direct definition, however both
the definitions are quite sophisticated. The pmaj-reducibility can be viewed as a
natural and slight modification of the Turing reducibility (in the sense of measure
theory, they are identical almost everywhere). With this reduction, one may prove
that the Turing degree of Halting problem can be defined in a significantly simpler
way.
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2. Basic facts

Now the formal definition of when a set X is strongly hyperimmune-free relative to
another set Y is given.

Definition 2.1. X is strongly hyperimmune-free relative to Y , written X ≤pmaj Y ,
if for every partial X-recursive function p there is a partial Y -recursive function q
which majorises p, that is, which satisfies for all n ∈ dom(p) that n ∈ dom(q) and
p(n) < q(n).

Note that here only dom(p) ⊆ dom(q) is required and not dom(p) = dom(q); the
latter would imply that every X-r.e. set is Y -r.e. and thus X ≤T Y what would make
the notion trivial and equal to Turing reducibility.

The next results give some basic facts about the notion of a set X being strongly
hyperimmune-free relative to another set Z.

Theorem 2.2. If X ≤pmaj Z then either X ≤T Z or K ≤T Z.

Proof. Suppose that X ≤pmaj Z. Let Y = {X � n | n ∈ N}. Note that Y ≡T X.
Define a partial X-recursive function p as follows:

p(σ) =

{
µs(ϕ|σ|(|σ|)[s] ↓), σ ∈ Y ;
0, σ 6∈ Y.

So there is a partial Z-recursive function q such that for any σ, if p(σ) is defined,
then q(σ) is defined and q(σ) > p(σ). Now one defines a Z-recursive function f so
that f(n) is the least stage s so that there are at least 2n − 1 many σ ∈ {0, 1}n so
that q(σ) is defined at stage s and the value of q(σ) is below s.

If there are only finite many n’s so that f(n) is below the stage s where ϕn(n)
becomes defined, then Z ≥T f ≥T K.

If there are infinitely many n’s ssuch that ϕn(n) is defined at some stage s > f(n)
then one can find relative to Z an increasing infinite sequence σ0, σ1, σ2, . . . of binary
strings such that for each i and n = |σi| it holds ϕn(n) is defined but not within f(n)
steps and σi is the unique string of length n such that q(σi) is either undefined or
not below f(n). This Z-recursive sequence of strings consists only of members of Y
and so this Z-recursive sequence contains arbitrary long prefixes of X and no other
strings. Hence X ≤T Z. �

Theorem 2.3. If X ≤pmaj Z then either X ′ ≤T Z ′ or every partial X-recursive
function is majorised by a total Z-recursive function.

Proof. The proof is almost the same as Theorem 2.2. Let Y = {X � n | n ∈ N} and
p be a partial X-recursive function as follows:

p(σ) =

{
µs(ϕX|σ|(|σ|)[s] ↓), σ ∈ Y ;

0, σ 6∈ Y.
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If there is a total Z-recursive function h majorising p, then it is clear that every
partial X-recursive function is majorised by a total Z-recursive function. Otherwise,
there is a partial Z-recursive function q with a coinfinite domain majorising p. Then
there is a Z ′-recursive strictly increasing infinite sequence of numbers n0, n1, n2, . . .
so that for every i, there is some unique σi ∈ 2ni for which q(σi) is undefined. Then
σi ∈ Y . So there is a Z ′-recursive infinite sequence of strings σ0, σ1, σ2, . . . with
σ0 ≺ σ1 ≺ σ2 ≺ . . . ≺ X. Hence X ≤T Z ′. Since X ≤pmaj Z, we have that
X ′ ≤T Z ′. �

Remark 2.4. One can simplify the relation as follows: There is a partial function
ψ computed using an oracle such that one can say the following: If ψX is majorised
by a partial Y -recursive function with co-infinite domain then X ′ ≤T Y ′ and if ψX is
majorised by a total Y -recursive function fY then every partial X-recursive function
is majorised by a total Y -recursive function. Indeed, one can in that latter case
find one fixed total Y -recursive function which dominates every partial X-recursive
function.

A way to define such a ψX would be to do the following: ψX(〈e, a0, a1, . . . , ax〉) is
ϕXe (x) in the case that ay = X(y) for y = 0, 1, . . . , x and is 0 in all other cases.

Furthermore, X ≤pmaj Y implies X ′ ≤T X ⊕ Y ′. In the case that ψX is majorised
by a partial function with coinfinite domain, it holds that X ′ 6≤T Y ′ and hence
X ′ ≤T X⊕Y ′. In the case that some Y -recursive function majorises ψX , the Halting
problem X ′ of X can be solved by simulating computations relative to X up to that
Y -recursive bound, hence X ′ ≤T X ⊕ Y . Thus the formula X ′ ≤T X ⊕ Y ′ is in both
cases true.

One can use the previous results in order to prove that two sets are pmaj-equivalent
iff they are Turing equivalent.

Theorem 2.5. X ≡pmaj Y iff X ≡T Y .

Proof. As X ≤T Y ⇒ X ≤pmaj Y , only the other direction of the equivalence has to
be proven. For that, assume X ≤pmaj Y and Y ≤pmaj X.

By Theorem 2.3, as X ≤pmaj Y , either X ′ ≤T Y ′ or every partial X-recursive
function is majorised by a total Y -recursive function. So, if X ′ 6≤T Y ′, then the
partial X-recursive function p(n) = ϕXn (n) is majorised by a Y -recursive function
h. Since Y ≤pmaj X, there is a total X-recursive function ϕXn so that for every k,
ϕXn (k) > h(k) + 1. Now one has that h(n) > p(n) > h(n) + 1, a contradiction. So
X ′ ≡T Y ′.

Hence Y has an X-recursive approximation Y0, Y1, . . . and one can define the fol-
lowing partial X-recursive function:

c(σ) = min{s ≥ |σ| : σ � Ys}.
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This partial X-recursive function is majorised by a partial Y -recursive function c̃.
Now one can define another function ĉ with

ĉ(n) = c̃(Y (0)Y (1) . . . Y (n)).

The function ĉ is majorised by a total X-recursive function f and it holds that for
every n there is an s with

• n ≤ s ≤ f(n);
• Ys(0)Ys(1) . . . Ys(n) = Y (0)Y (1) . . . Y (n).

As the approximation Y0, Y1, . . . converges pointwise to Y , Y (m) is the unique value
a such that there is an n > m with Ys(m) = a for s = n, n+ 1, . . . , f(n). The search
for this n converges always and hence Y ≤T X. The converse direction X ≤T Y
follows from the symmetry between X and Y in the above arguments. �

Note that this implies that the pmaj-relation cannot go into the opposite direction
as the Turing reducibility.

Corollary 2.6. There are no sets X, Y with X <T Y and Y <pmaj X.

Proof. The Turing reducibility implies the pmaj-relation and therefore X ≤pmaj Y ∧
Y ≤pmaj X what on its turn implies, as just seen, X ≡T Y . This would stand in
contrast to the assumption X <T Y . �

Remark 2.7. A set X is called jump traceable iff there is a recursive function f and
a uniformly r.e. family A0, A1, . . . such that for every e ∈ X ′ it holds that ϕXe (e) ∈ Ae
and |Ae| ≤ f(e). Nies [5] showed that there is a Π0

1 class P in which every set is non-
recursive and jump traceable. Hence every X ∈ P satisfies X ≤pmaj K. Thus, there
is a set X ≤pmaj K which has hyperimmune-free and nonrecursive Turing degree.
Furthermore, there are 2ℵ0 sets which are strongly hyperimmune-free relative to K.

Actually, one can say even more about them. Dobrinen and Simpson [2] showed
that there is a function f ≤T K so that the class {X | ∀e(ϕXe (e) ↓ =⇒ ϕXe (e) <
f(e))} has measure 1. Indeed, one can take f to be the convergence module of
Chaitin’s Ω. Then any set X which is low for Ω is strongly hyperimmune-free relative
to K. These sets include all sets which are Martin-Löf random relative to K.

3. The degree of the Halting problem is definable

The degree of K plays a special role in the pmaj-degrees as it is the least degree
bounding an uncountable number of other pmaj-degrees. Therefore one might ask
whether one can define K within the pmaj-degrees. The main result of this section
is the following one.

Theorem 3.1. The pmaj-degree of K is definable in the partial order of the pmaj-
degrees.

The proof is based on the following definitions and subsequent results of this section.
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• CallX0, X1 a bounding pair iff there are Y0, Y1 such that Y0 ≤pmaj X0, Y0 ≤pmaj

X1, Y1 ≤pmaj X0, Y1 ≤pmaj X1 and there is no Z with Y0 ≤pmaj Z, Y1 ≤pmaj Z,
Z ≤pmaj X0 and Z ≤pmaj X1.
• Every bounding pair X0, X1 satisfies K ≤pmaj X0 ∨K ≤pmaj X1.
• If L satisfies for every bounding pair X0, X1 that L ≤pmaj X0 ∨ L ≤pmaj X1

then L ≤pmaj K.

So a bounding pair X0, X1 is a pair of common upper bounds of two sets Y0, Y1 in the
pmaj-degrees for which there is no set Z being on one hand an upper bound of Y0, Y1

and on the other hand a lower bound of X0, X1. Note that the definition implies that
Y0 is pmaj-incomparable to Y1 and X0 is pmaj-incomparable to X1. The reason is
that if Y0 ≤pmaj Y1 then one could choose Z = Y1 and similarly in the other cases.
Now the pmaj-degrees of the class

{S | S ≤pmaj X0 or S ≤pmaj X1 for every bounding pair X0, X1}

has a greatest degree and that degree is exactly the one of K. The verification of this
definition follows from the next two propositions.

Proposition 3.2. For every bounding pair X0, X1 it holds that either K ≤pmaj X0

or K ≤pmaj X1.

Proof. Let Y0, Y1 witness that X0, X1 is a bounding pair. Then Z = Y0 ⊕ Y1 cannot
be a common lower bound of X0, X1, hence one of them, say X0, is not Turing above
Y0 ⊕ Y1. It follows that at least one set Ya (a ∈ {0, 1}) is not Turing reducible to X0

although Ya is strongly hyperimmune-free relative to X0. This can only happen when
X0 ≥T K by Theorem 2.2. Hence K ≤pmaj X0 and every bounding pair satisfies that
one of its halves is pmaj-above the Halting problem. �

Proposition 3.3. If L 6≤pmaj K then there is a bounding pair X0, X1 with L 6≤pmaj

X0 ∧ L 6≤pmaj X1.

Proof. Let L be given such that L 6≤pmaj K. Let H be a set such that H ≥T K,
H has hyperimmune-free and minimal Turing degree relative to K and H 6≥T L′′.
This set H can be obtained by relativizing the construction of uncountably many
minimal hyperimmune-free degrees to the Halting problem. Note that H 6≤T K ′, as
K ′ ≤T L′′. By Friedberg’s jump inversion theorem there is a set G ≤T H such that
G′ ≡T G⊕K ≡T H [3].

Now one can take in the world relative to G a high r.e. and incomplete set I and
split it using Sack’s splitting theorem [9] into two low halves I0 and I1. Let Y0 = G⊕I0
and Y1 = G⊕I1. Y0 and Y1 are low relative to G and thus there is a total H-recursive
function f majorising the partial universal functions e, x 7→ ϕYa

e (x) for a = 0, 1. This
function f is majorised by a total K-recursive function g. Hence Y0 ≤pmaj K and
Y1 ≤pmaj K. Let X0 = G⊕ I and X1 = K. As Y0, Y1 are Turing reducible to G⊕ I,
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Y0 ≤pmaj X0 ∧ Y1 ≤pmaj X0. Furthermore, as seen, Y0 ≤pmaj X1 ∧ Y1 ≤pmaj X1.
Note that the convergence module of G′ relative to G is majorised by an X1-

recursive function and, as X0 has incomplete r.e. Turing degree relative G, X1 6≤pmaj

X0. Furthermore, the halting problem of X0 cannot be solved by an X1-recursive
function, as X ′0 ≥T G′′ > K = X1. Assume now by way of contradiction that
X0 ≤pmaj X1. As X ′0 6≤T X ′1 by choice, it follows from Theorem 2.3 that every partial
X0-recursive function would be majorised by a total X1-recursive function. However,
applying this result to the partial function which gives the time to enumerate elements
into the Halting set relative to X0, one could decide the Halting problem of X0 relative
to X0 ⊕X1. As X0, X1 are both below G′, this implies X ′0 ≤T G′ and X0 would be
low relative to G in contradiction to the choice. Hence X0 6≤pmaj X1.

Now assume that Z is a common lower bound of X0 and X1. It cannot be that
Z >T K as then Z 6≤pmaj X1. It also cannot be that Z ≡T K, as X0 6≤pmaj X1.
Hence Z 6≥T K. As X0 6≥T K, it follows that Z ≤T X0 and therefore Z 6≤T K. Hence
Z ′ ≤T H and Z is low relative to G. Hence Y0, Y1 ≤pmaj Z only if Y0, Y1 ≤T Z. The
latter is wrong as the join of Y0 and Y1 is Turing equivalent to I ⊕ G and not low
(relative to G). So Z cannot be above Y0 and Y1; in particular, X0, X1 are a bounding
pair.

By choice, L 6≤pmaj X1. If L >T K, then L 6≤pmaj X0 as no set above K is pmaj-
reducible to X0. If L 6≥T K then L ≤pmaj X0 implies L ≤T X0 and L ≤T H. As
H has minimal Turing degree above K, and L 6≤T K, it follows that H ≤T L′ in
contradiction to the choice of H. Thus L 6≤pmaj X0 in both cases. Hence L is not the
lower bound of any half of this bounding pair. �

4. Pmaj-bases and their applications

The notion of a pmaj-basis permits to relativise the definition of the results of the
previous sections to the pmaj-degree above this basis. The main idea of a pmaj-basis
is that its upper cone is the same for the pmaj-relation and the Turing reduction.

Definition 4.1. A set S is called a pmaj-basis iff every set Z satisfies S ≤pmaj Z ⇔
S ≤T Z.

Remark 4.2. The notion of a pmaj-basis permits to bring over various results from
the previous section to the cone above the basis. So, in the following let S be a
pmaj-basis. Then the following are some sample results which generalise.

Let X be pmaj-above S. If X 6≥T S ′ then {Y : S ≤pmaj Y ≤pmaj X} = {Y : S ≤T
Y ≤T X} else {Y : S ≤pmaj Y ≤pmaj X} is uncountable.

If S ≤pmaj X ≤pmaj Y then either X ′ ≤T Y ′ or every partial X-recursive function
is majorised by a total Y -recursive function.

One can also relativise the notion of a bounding pair to the pmaj-degres above S and
define that using the parameter S.
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Definition 4.3. Call a pair X0, X1 is a bounding pair above S iff there are Y0, Y1

satisfying S ≤pmaj Y0, S ≤pmaj Y1, Y0 ≤pmaj X0, Y0 ≤pmaj X1, Y1 ≤pmaj X0, Y1 ≤pmaj

X1 and there is no set Z satisfying Y0 ≤pmaj Z, Y1 ≤pmaj Z, Z ≤pmaj X0, Z ≤pmaj X1.

This permits now to define the following result.

Theorem 4.4. Assume that S is a pmaj-basis. Then S ′ is a member of greatest
pmaj-degree in the class {T : S ≤pmaj T and for every bounding pair X0, X1 above S
either T ≤pmaj X0 or T ≤pmaj X1}. In particular, if S is definable and a pmaj-basis
then S ′ is definable in the partial order of the pmaj-degrees.

The proof is a direct relativisation of the previous proof, working in the world Turing
above S instead of the unrelativised world. The corresponding results used relativise.
Now it is interesting to know which pmaj-degrees can be a pmaj-basis. Indeed, there
are only countably many of them and every ∆0

2 set is a pmaj-basis.

Proposition 4.5. For every recursive ordinal α, ∅(α) is a pmaj-basis.

Proof. For every recursive ordinal α, there is a function f ∈ ωω such that f ≡T ∅(α)

for which f is the unique infinite path in some recursive tree T ⊆ N∗ [10]. Then for
every function g majorising f , g ≥T f ≡T ∅(α). So ∅(α) is a pmaj-basis. �

Corollary 4.6. The finite jumps K, K ′, K ′′, . . . are definable in the pmaj-degrees.

Remark 4.7. There is a close connection between pmaj-bases and recursively en-
codable sets. Here a set X is called recursively encodable if for every infinite set Z
there is a set Y ⊆ Z so that X ≤T Y . Obviously, every pmaj-basis is recursively
encodable. Solovay [16] showed that a set is recursively encodable if and only if it is
hyperarithmetic. So every pmaj-basis is hyperarithmetic and X is hyperarithmetic
iff X ≤pmaj Y for a pmaj-basis Y .

5. Weak Truth-Table Reduction

One can also consider partial functions which are wtt-reducible to an oracle. Here
p ≤wtt X iff there is a recursive function f and a partial X-recursive function ψX

such that, for all x, ψX(x) = ψX∩{0,1,...,f(x)}(x), where either both sides of = are
defined and equal or both sides are undefined. In other words, f(x) denotes the
largest relevant query of the algorithm computing ψX from X on input x.

Definition 5.1. The set X is strongly hyperimmune-free relative to the set Y with
respect to weak truth-table reducibility (X ≤wttpmaj Y ) iff every partial p wtt-reducible
to X is majorised by a partial q wtt-reducible to Y .

Note that this relation is transitive and satisfies X ≤wtt Y ⇒ X ≤wttpmaj Y . One
important difference to the pmaj-relation is that the sets wtt-above K form a single
uncountable degree which sits above all other degrees.

Theorem 5.2. K ≤wtt X iff ∀Y [Y ≤wttpmaj X].
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Proof. First assume that K ≤wtt X and Y is any further set. Let p ≤wtt Y be a partial
function. There is a recursive bound f(x) on the largest query used to compute p(x),
whenever that is defined. Hence there is a total function q ≤wtt K which returns
for input x the largest possible value which the algorithm for p(x) with input x can
produce on any oracle queries Z(0), Z(1), . . . , Z(f(x)) where it terminates. Obviously
q ≤wtt X and q majorises p. So Y ≤wttpmaj X.

For the converse assume that Y ≤wttpmaj X for all Y . Then in particular K ≤wttpmaj

X. Consider the function p where for n ∈ K the value p(n) is the least number s+ 1
such that n is enumerated into K within s steps and for n /∈ K it holds that p(n) = 0.
Then p is total and p ≤wtt K. Now p is majorised by a total function q ≤wtt X and
n ∈ K ⇔ n is enumerated into K within q(n) steps. Thus K ≤wtt X. �

So one has that X ≤wtt Y ∨K ≤wtt Y ⇒ X ≤wttpmaj Y and one may ask whether the
converse of this result holds. The converse of it holds in a restricted way where one
replaces on the right hand side weak truth-table reducibility by Turing reducibility.

Theorem 5.3. If K 6≤T Y then X ≤wttpmaj Y implies X ≤pmaj Y and X ≤T Y ; in
particular,

X ≤wttpmaj Y ⇒ X ≤T Y ∨K ≤T Y.

Proof. Assume that X ≤wttpmaj Y . Let cK(y) be the time to enumerated y into K
and note that cK(y) is undefined for y /∈ K; Now consider the following partial X-
recursive function with domain N×N×{0, 1}: If X(x) = a then let p(x, y, a) = cK(y)
else let p(x, y, a) = 0.

It is clear that p ≤wtt X and therefore there is a function q ≤wtt Y majorising p.
One can compute relative to Y for each input pair (x, y) a value a(x, y) ∈ {0, 1} such
that q(x, y, a(x, y)) is defined. There are now two cases.

Case (a): For every x one can, using Y , find a value y(x) such that y(x) ∈ K and
cK(y(x)) > (x, y(x), a(x, y(x))). Then a(x, y(x)) 6= X(x) and X(x) = 1− a(x, y(x)).
It follows that X ≤T Y .

Case (b): There is an x such that for all y ∈ K, cK(y) ≤ q(x, y, a(x, y)). Now one
fixes this x and K ≤T Y as one can check for each y whether y is enumerated into
K within q(x, y, a(x, y)) steps; if so then y ∈ K else y /∈ K.

It is easy to see that always either (a) or (b) applies. This case distinction then
shows the statement of the theorem. �

Furthermore, for X and Y of hyperimmune-free Turing degree one has that X ≤pmaj

Y ⇔ X ≤wttpmaj Y ⇔ X ≤wtt Y ⇔ X ≤T Y . The anonymous referee observed that
the same applies if X and Y have strongly contiguous r.e. Turing degree. The next
result shows that one cannot strengthen the right hand side of Theorem 5.3 to wtt
reducibility.

Theorem 5.4. There are sets X and Y with

X ≤wttpmaj Y 6⇒ X ≤wtt Y ∨K ≤wtt Y.
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Proof. Let f be a K-recursive function which grows faster than every recursive
function and which satisfies f(u + 1) > f(u) + 2 for all u. Now let a0 = 0,
an+1 = f(f(f(an))). Let Z be any set not Turing reducible to K and define X, Y as
follows:

X(x) =

 1 if x = an ∨ x = f(an) ∨ x = f(f(an)) for some n;
Z(n) if x = an + 1 for that n;
0 otherwise.

Y (〈x, y〉) =


1 if x = an ∨ x = f(an) ∨ x = f(f(an)) for some n;
K(y) if x = an + 1 and y ≤ f(f(an)) for some n;
Z(n) if x = f(an) + 1 for that n;
0 otherwise.

Now X 6≤wtt Y as for retrieving X(an + 1) one has to access Y (〈f(an), 1〉) or beyond
for infinitely many n as otherwise Z ≤T K would follow from f ≤T K in contradiction
to the choice of f .

Furthermore, one can show that K 6≤wtt Y as follows. There is a function g ≤wtt K
such that the Kolmogorov complexity of g(m) is at least 5m for each m. If g ≤wtt Y
then the Kolmogorov complexity of g(f(f(an))) would, for all sufficiently large n, be
bounded by 3f(f(an))+2n+5 as one would take into account that the values Y (〈x, y〉)
with x, y < an+1 can be computed from the values Y (〈x, y〉) with x, y < f(f(an)) and
those one can describe by describing n with n+1 bits, Z(0), . . . , Z(n) with n+1 bits,
f(f(an)) with f(f(an))+1 bits and {a0, f(a0), f(f(a0)), a1, f(a1), f(f(a1)), a2, . . . , an,
f(an), f(f(an))} with f(f(an)) + 1 bits and K up to f(f(an)) by f(f(an)) + 1 bits.
These information would, for almost all n, permit to reconstruct Y up to the bound
queried when calculating g(f(f(an))) and therefore the Kolmogorov complexity of
g(f(f(an))) would be strictly less than 5f(f(an)) for almost all n in contradiction to
the choice of g. Hence g is not wtt-reducible to Y and K 6≤wtt Y .

So it remains to show that X ≤wttpmaj Y . So let p be a partial function which is

wtt-reducible to X with use h; h is a recursive function majorised by f . Let h̃(x) be
a recursive use function so that one can wtt-compute an upper bound for p(x) from

the oracle K with use h̃; without loss of generality h̃(x) ≥ x + h(x) for all x. Now
one defines the function q ≤wtt Y by the first of the following cases which applies;
note that querying Y (〈u, 0〉) for u = 0, 1, . . . , h̃(x) reveals which case applies.

• If f(f(an)) < h̃(x) < an+1 for an n then one sets q(x) = p(x) and p(x) can be

computed relative to Y by inspecting Y (〈u, 0〉) for u = 0, 1, . . . , h̃(x) + 1 and
reconstructing X(u) for the same u.

• If an ≤ h̃(x) ≤ f(f(an)) for an n then one can compute an upper bound of

p(x) by searching for an via inspecting Y (〈u, 0〉) for u = 0, 1, . . . , h̃(x) + 1 and
then retrieving the corresponding values of K by inspecting Y (〈an + 1, u〉) for

u = 0, 1, . . . , h̃(x).
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• In the finitely many remaining cases, q(x) = p(x) through a corresponding
lookup in a finite table.

One can easily see that the use for the computation of the so defined function q
is in the first two cases bounded by 〈h̃(x) + 1, h̃(x) + 1〉 and in the third case the
oracle is not queried at all. Hence one can see that the so defined function q is weak
truth-table reducible to Y and majorises p. �

6. Conclusion

The relation studied is when X is strongly hyperimmune-free relative to Y , that
is, when every partial X-recursive function p is majorised by a partial Y -recursive
function q. Here q majorises p if every x in the domain of p is also in the domain of q
and satisfies p(x) < q(x). An initial result states that X ≤pmaj Y if either X ′ ≤T Y ′
or every partial X-recursive function is majorised by a total Y -recursive function. It
is natural to ask whether this relation can be strengthened.

Question 6.1. Does X ≤pmaj Y hold iff X ≤T Y or every partial X-recursive
function is majorised by a total Y -recursive one?

It was shown that X ≡pmaj Y iff X ≡T Y . So the degrees coincide, but not the
ordering between them; only the implication X ≤T Y ⇒ X ≤pmaj Y holds but not
its converse. It is interesting to know how related these degrees (with their partial
orderings) are.

Question 6.2. Is the Turing reducibility definable in the pmaj-degrees? Is the Turing
jump definable in the pmaj-degrees?

One could also ask the reverse question whether one can define in the Turing degrees
that a degree is strongly hyperimmune-free relative to another one.

Question 6.3. Is the pmaj reducibility definable in the Turing degrees?
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