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Abstract. We study the differences among finite levels of the Ershov hierarchies.
We also give a brief survey on the current state of this area. Some questions are
raised.

1. Preliminary

Putnam [9] is the first one who introduced the n-r.e. sets.

Definition 1.1. (i) A set A is n-r.e. if there is a recursive function f : ω×ω →
ω so that for each m,

– f(0,m) = 0.
– A(m) = lims f(s,m).
– |{s|f(s+ 1,m) 6= f(s,m)}| ≤ n.

• A Turing degree is n-r.e. if it contains an n-r.e. set.

We use Dn to denote the collection of n-r.e. degrees. For simplicity, we redefine
D0 = D1 which is a little unusual.

For other recursion notations, please refer to Soare [13].
In this paper, we work in the partially ordered language, L(≤), through out. L(≤)

includes variables a, b, c, x, y, z, ... and a binary relation ≤ intended to denote a partial
order. Atomic formulas are x = y, x ≤ y. Σ0 formulas are built by the following
induction definition.

• Each atomic formula is Σ0.
• ¬ψ for some Σ0 formula ψ.
• ψ1 ∨ ψ2 for two Σ0 formula ψ1, ψ2.
• ψ1 ∧ ψ2 for two Σ0 formula ψ1, ψ2

• ψ1 =⇒ ψ2 for two Σ0 formula ψ1, ψ2.

A formula ϕ is Σ1 if it is of the form ∃x1∃x2...∃xnψ(x1, x2, ..., xn) for some Σ0

formula ψ.
For each n ≥ 1, a formula ϕ is Πn if it is the form ¬ψ for some Σn formula ψ and a

formula ϕ is Σn+1 if it is the form ∃x1∃x2...∃xmψ(x1, x2, ..., xm) for some Πn formula
ψ .

A sentence is a formula without free variables.
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Given two structures A(A,≤A) and B(B,≤B) for L(≤), we say that A(A,≤A)
is a substructure of B(B,≤B), write A(A,≤A) ⊆ B(B,≤B), if A ⊆ B and the
interpretation ≤A is a restriction to A of ≤B.

Definition 1.2. For n ≥ 0. Given structures A(A,≤A) and B(B,≤B) for L(≤).

(i) We say that A(A,≤A) is a Σn substructure of B(B,≤B), write A(A,≤A) �Σn

B(B,≤B), if A(A,≤A) ⊆ B(B,≤B) and for all Σn formulas ϕ(x1, x2, ..., xn)
and any a1, a2, ..., an ∈ A,

A(A,≤A) |= ϕ(a1, a2, ..., an) if and only if B(B,≤B) |= ϕ(a1, a2, ..., an).

(ii) We say that A(A,≤A) is Σn-elementary-equivalent to B(B,≤B), write A(A,≤A

) ≡Σn B(B,≤B), if for all Σn sentences ϕ,

A(A,≤A) |= ϕ if and only if B(B,≤B) |= ϕ.

In this paper, we study the model theoretical properties of ∆0
2 Turing degrees as the

structure D(≤ 0′) = (D(≤ 0′),≤) of L(≤). We are interested in various substructure
of D(≤ 0′), particularly, the structures of n-r.e. degrees Dn = (Dn,≤). 1 For two
degrees a and b in Dn (or D(≤ 0′)), we use a ∪ b and a ∩ b to denote their least
upper bound and the largest lower bound (if exists) in Dn (or D(≤ 0′)) respectively.

For more model theoretic facts, please refer to [7].

2. Elementary difference among Ershov hierarchies

Comparing the structure difference between Ershov hierarchies has a long history
beginning with Cooper(1970’s) and Lachlan’s (1968) unpublished work. They proved
the following theorem.

Theorem 2.1 (Lachlan, Cooper). (i) For each n ≥ 1, Dn ⊂ Dn+1.
(ii) For each non-recursive n + 1-r.e. degree a, there is a non-recursive n-r.e.

degree b ≤ a.

For any Σ1-sentence ϕ, Dn or D(≤ 0′) satisfies ϕ if and only if ϕ is consistent
with the theory of partial orderings (see, for example, some exercises in Soare [13]).
Therefore,

Theorem 2.2 (Folklore). For all n ∈ ω, Dn ≡Σ1 D(≤ 0′).

Thus elementary differences would not occur at the Σ1-level.
By improving a technique due to Spector, Sacks proved the following result.

Theorem 2.3 (Sacks [10]). There is a ∆0
2 minimal degree.

Comparing with Theorem 2.1, the elementary difference between Dn and D(≤ 0′)
shows up at Σ2-level.

The elementary difference between D1 and Dn(n > 1) was first revealed at Σ3-level
by Arslanov [2] who showed that for every element a in Dn, there is an element
b ∈ Dn of which the supreme is 0′, whereas in D1 this is not true due to Cooper and
Yates. Later many differences at Σ2-level were discovered, for example, the following
pair of theorems offers perhaps the clearest order-theoretic difference:

1We use “1-r.e.” to denote “r.e.”
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Theorem 2.4 (Sacks[11]). D1 is dense.

Theorem 2.5 (Cooper, Harrington, Lachlan, Lempp, Soare[5]). For each natural
number n > 1, there is a maximal element in Dn.

So the following results can be obtained.

Corollary 2.6. For each natural number n > 1, D1 6≡Σ2 Dn.

A further question is how difference between Dn and Dn+m for n > 1. Downey
formulated the following ambitious question which is now known as Downey Conjec-
ture.

Conjecture 2.7 (Downey [6]). For each n > 1 and k ≥ 0, Dn ≡Σk
Dn+m.

Though Downey Conjecture looks too optimal to be true, it remained open more
than fifteen years. The difficulty of Conjecture 2.7 lies in the technique used in the
local theory of Dn. Usually one can generalize a (local) result in D2 to Dn without
any difficult.

Recently, Arslanov, Kalimullin and Lempp announced a negative solution to Con-
jecture 2.7. They proved the following result.

Theorem 2.8 (Arslanov, Kalimullin, Lempp [3]). D2 6≡Σ2 D3.

But the question whether Dn 6≡Σ2 Dn+m is true for some very large numbers n,m
still remains open.

3. Σ1-substructures of D(≤ 0′)

As we have seen that Dn ≡Σ1 D(≤ 0′)(Theorem 2.2), it is natural to ask whether
Dn �Σ1 D(≤ 0′). This was eventually negatively answered by Slaman in 1983.

Theorem 3.1 (Slaman). (i) There are r.e. sets A,B and C and a ∆0
2 set E such

that
– ∅ <T E ≤T A;
– C 6≤T B ⊕ E;
– For all r.e. set W (∅ <T W ≤T A⇒ C ≤T W ⊕B).

(ii) For each natural number n ≥ 1, Dn 6�Σ1 D(≤ 0′).

Proof. We just show how to deduce (ii) from (i). Take a Σ1 formula

ϕ(x1, x2, x3) ≡ ∃e∃y∃z(e ≤ x1 ∧ e ≥ y ∧ e 6= y ∧ z ≥ x2 ∧ z ≥ e ∧ z 6≥ x3).

Take the r.e. degrees a,b, c and a ∆0
2 degree e as in (i). Fix Z = B ⊕ E.

Then D(0′) |= ϕ(a,b, c) since e ≤ a ∧ e > 0 ∧ z 6≥ c.
Then for each n ≥ 1, Dn 6|= ϕ(a,b, c). If not, then there is an n-r.e. degree f > 0

so that f ≤ a and f ∪b 6≥ c. But, by Theorem 2.1, there is a non-recursive r.e. degree
w ≤ f . So w ∪ b 6≥ c. This is impossible by (i). �

Having proved Theorem 3.1, Slaman raised the following conjecture which remained
open more than twenty years.

Conjecture 3.2 (Slaman [5]). For each n > 1, D1 �Σ1 Dn?
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Furthermore, Lempp raised the following conjecture.

Conjecture 3.3 (Lempp). For all n > m, Dm �Σ1 Dn?

To solve conjecture 3.2, one possible argument is to build a finite array just as
Slaman did in Theorem 3.1. However, by the Cooper and Lachlan observation that
every nonrecursive n-r.e. degree bounds a nonrecursive r.e. degree, we cannot hope
that any n-r.e. degree D plays the role of E as in Slaman Theorem.

We first explain that it is necessary to build a complicated formula to refute Sla-
man’s conjecture.

A formula is called positive if it is built by the following induction definition.

• Each atomic formula is positive.
• ψ1 ∨ ψ2 for two positive formula ψ1, ψ2.
• ψ1 ∧ ψ2 for two positive formula ψ1, ψ2.

A formula is called p-Σ1 if it is the form ∃x1∃x2...∃xnϕ(x1, x2, ..., xn) for some
positive formula ϕ.

We say that A(A,≤A) is a p-Σ1 substructure of B(B,≤B), write A(A,≤A) �p-Σ1

B(B,≤B), if A(A,≤A) ⊆ B(B,≤B) and for all p-Σ1 formulas ϕ(x1, x2, ..., xn) and
any a1, a2, ..., an ∈ A,

A(A,≤A) |= ϕ(a1, a2, ..., an) if and only if B(B,≤B) |= ϕ(a1, a2, ..., an).

We have the following proposition

Proposition 3.4. Dn �p-Σ1 Dm for all n ≤ m. Furthermore, (D1,≤,∪,∩) �p-Σ1

(Dn,≤,∪,∩) for all n > 1.

Thus to refute Slaman Conjecture, it is necessary to consider some negative state-
ment.

Eventually we obtained the following formula.

ϕ(x1, x2, x3, x4) ≡ ∃d∃g(d ≤ x1 ∧ d 6≤ x4 ∧ g ≥ x2 ∧ g ≥ d ∧ x3 6≤ g).

The solution to Conjecture 3.2 follows from the following technical result:

Theorem 3.5 (Yang and Yu [15]). There are r.e. sets A,B,C and E and a d.r.e. set
D such that

(1) D ≤T A and D 6≤T E;
(2) C 6≤T B ⊕D;
(3) For all r.e. sets W (W ≤T A⇒ either C ≤T W ⊕B or W ≤T E).

Assuming Theorem 3.5, we can obtain the following result to refute Slaman con-
jecture:

Theorem 3.6 (Yang and Yu [15]). For all n > 1, D1 6�Σ1 Dn.

Proof. Assume n > 1.Let a,b, c,d, e be the degrees of their corresponding sets as
in Theorem 3.5. Note all of them except d belong to D1 and d belongs to Dn. By
Theorem 3.5, just take g = b ∪ d ∈ Dn,

Dn |= ϕ(a,b, c, e).
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However, by Theorem 3.5 again,

D1 |= ∀w∀g((w ≤ a ∧ g ≥ w ∧ g ≥ b ∧w 6≤ e) =⇒ c ≤ g).

In other words,

D1 |= ¬ϕ(a,b, c, e).

�

Although Slaman Conjecture is not true, we can ask where the abnormal parame-
ters refuting the conjecture exist. Inspired by Shore and Slaman [12], we conjecture
that each high r.e. degree bounds the four parameters as in Theorem 3.5 so that
Slaman conjecture fails. But is there a fragment E ⊂ D1 so that E �Σ1 D2? A
critical part of the argument used in the proof of Theorem 3.5 is a modification of
the construction of Slaman triple. A triple (a,b, c) in Dn is called Slaman triple if
0 < a, c 6≤ b and for all non-recursive x ∈ Dn below a, c ≤ b∪x. Shore and Slaman
[12] showed that a Slaman-triple can be found below each high r.e. degree in D1.
However, Harrington, and Bickford and Mills, showed independently that no low2

r.e. degree bounds a Slaman triple in D1. Thus it sounds reasonable to conjecture
that there is fragment E ⊂ D1 in which all of elements are low2 so that E �Σ1 D2. A
non-recursive degree a ∈ Dn is said to be almost deep if for each low b ∈ Dn, a∪b is
low. Cholak et al [4] proved that almost deep degrees exist in D1. Hence it is natural
to ask whether the almost deep degrees in D1 form a Σ1-substructure of D2.

The last question in this section was raised by Khoussainov.

Question 3.7 (Khoussainov). For n > 1, is there a function f : D1 → Dn so that
for any Σ1-formula ϕ(x1, ..., xm),

D1 |= ϕ(x1,x2, ...,xm) iff Dn |= ϕ(f(x1), f(x2), ..., f(xm)),

where x1,x2, ...,xm range over D1?

4. Definable ideals and filters

Recently, Wang and Yu [14] proved that each non-principal ideal in D1 is a Σ1-
substructure of D1. But the question whether any non-principal ideal in D2 is a
Σ1-substructure of D2 is unknown. A set A ⊆ Dn is said to be definable in Dn if
there is a formula ψ so that a ∈ A if and only if Dn |= ψ(a). For D1, by the recent
work due to Nies [8], Yang and Yu [16], there are many definable non-principal ideals
in D1. A natural question is what about D2? To construct a non-principal ideal in
Dn, we just need to take a non-principal ideal I in D1 and then build a non-principal
ideal J = {b|∃a ∈ I(b ≤ a)}. The problem is whether it is definable in Dn. We
formulate the following questions which we are very interested in.

Question 4.1. For n > 1, is there a non-trivial definable Σ1-substructure of Dn?

From the discussion above, we have seen that the definable ideals play a critical
role in the study of global theory. Although there are some non-trivial definable
ideals in D1. It is unknown whether there are infinitely many definable ones in D1.
For D2, we don’t even know whether there is a non-trivial definable ideal in it.
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Wang also recently studied definable filters in D1. It is unknown whether there is
a non-trivial definable filter in D2. We say that a non-zero degree a ∈ Dn is cappable
if there is a non-zero degree b ∈ Dn so that the infimum of them is the recursive
degree 0. Otherwise, a is said to be non-cappable. A possible candidate of definable
filters is the collection of non-cappable degrees in D2. Ambos-Spies et al [1] proved
that the collection of non-cappable degrees form a filter in D1. Thus, to construct a
definable filter in D2, it suffices to prove that each non-cappable 2-r.e. degree bounds
a non-cappable r.e. degree. So the following technique question is raised.

Question 4.2. Can each 2-r.e. non-cappable degree compute an r.e. non-cappable
degree?
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