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Abstract. An n-r.e. set can be defined as the symmetric difference of n recursively
enumerable sets. The classes of these sets form a natural hierarchy which became a
well-studied topic in recursion theory. In a series of ground-breaking papers, Ershov
generalized this hierarchy to transfinite levels based on Kleene’s notations of ordinals
and this work lead to a fruitful study of these sets and their many-one and Turing
degrees. The Ershov hierarchy is a natural measure of complexity of the sets below the
halting problem. In this paper, we survey the early work by Ershov and others on this
hierarchy and present the most fundamental results. We also provide some pointers to
concurrent work in the field.

1. Introduction

This paper aims to achieve two goals. One is to give a survey on the Turing degree
structure of Ershov hierarchy, including some recent results on elementary equivalence and
elementary substructure problems. The other is presenting short proofs to some selected
results of transfinite levels of Ershov hierarchy. In his three classic papers [9], [10] and
[11], Ershov studied a hierarchy of sets generated by the recursively enumerable sets. At
the finite levels, the hierarchy is also referred as difference hierarchy, which forms a proper
subclass of the ∆0

2-sets. The transfinite extension of the difference hierarchy exhausts all
∆0

2-sets. Although the finite levels of Ershov hierarchy have been studied by recursion
theorists extensively, the same cannot be said on transfinite levels. Things started to
change only recently. The transfinite levels of Ershov hierarchy appeared naturally in
many areas, for example, in recursion theory and recursive model theory, see Downey
and Gale [13] and Khoussainov, Stephan and Yang [17], and in inductive inference, see
Ambainis, Freivalds and Smith [2], Carlucci, Case and Jain [5] and Freivalds and Smith
[12]. Yet we still feel that Ershov’s theorems did not achieve the popularity which they
deserved. It is a pity that such a treasure remains obscure due to partially the limited
availability of Ershov’s original papers and the notations used almost 40 years ago. We
hope our selection of results and our presentation would make the transfinite levels of
Ershov hierarchy more accessible for beginners.

The paper is organized as follows. In Section 2, we discuss the elementary equivalent
problems among finite levels of Ershov hierarchy; in Section 3, we remind the readers
some basic facts about ordinal notations which is necessary for the later part; in Section
4, we present some basic results on transfinite levels of Ershov hierarchy; in the Section
5 we discuss some applications to the area of inductive inference. We conclude with two
interesting open problems.
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Y. Yang) and R252-000-308-112 (F. Stephan); National Natural Science Fund of China, No. 10701041
(L. Yu) and Research Fund for the Doctoral Program of Higher Education, No. 20070284043 (L. Yu).
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2. The Finite Levels of Ershov Hierarchy

The finite levels of the Ershov hierarchy cover those sets which are the symmetric dif-
ference of finitely many r.e. sets. This class coincides with the sets which are bounded
truth-table reducible to the halting problem K = {e : ϕe(e) ↓}.

2.1. The basic definitions. Let us begin with the well-known Limit Lemma which
characterizes the class of sets Turing reducible to K as the class of the limit-recursive
sets.

Theorem 2.1 (Shoenfield). Let A ⊆ ω. The following are equivalent:

(a) A ≤T K.
(b) A is ∆0

2.
(c) There is a recursive function f : ω × ω → {0, 1} such that

(1) for all x ∈ ω, f(x, 0) = 0;
(2) for all x ∈ ω, lims→∞ f(x, s) = A(x), here we identified A with its character-

istic function.

Definition 2.2. Let n be fixed a fixed natural number. If a set A ⊆ ω satisfies condition
(c) in Limit Lemma together with

(3) for all x, |{s : f(x, s + 1) 6= f(x, s)}| ≤ n

then A is called an n-r.e. set.

The classes of n-r.e. sets form the finite levels of Ershov hierarchy. Clearly a 1-r.e. set is
just a r.e. set in the usual sense. A 2-r.e. set can be expressed as the difference of two
r.e. sets, hence they are often called d-r.e. sets. In fact, any n-r.e. set can be expressed as
the symmetric difference of n recursively enumerable sets. This is the reason why finite
levels of Ershov hierarchy is also called the difference hierarchy. An easy diagonalization
argument shows that if n < m then there is an m-r.e. set which is not n-r.e. Consequently
the hierarchy is proper.

Traditionally when n-r.e. sets were studied, the so-called ω-r.e. sets were normally
included also, even if strictly speaking they do not belong to the finite levels of Ershov
hierarchy. In section 4, we will look at the same class of sets again but with a different
definition. Below is the definition of ω-r.e. sets used in this section.

Definition 2.3. Let g : ω → ω be a fixed recursive function. If a set A satisfies condition
(c) in Limit Lemma together with

(3) for all x, |{s : f(x, s + 1) 6= f(x, s)}| ≤ g(x)

then A is called an ω-r.e. set.

Historically the notion of n-r.e. sets was first introduced by Putnam [22] and Gold [14]
in the middle of 1960’s. It should be noted that we do not state the definitions as in the
original literatures.

The notions of n-r.e. and ω-r.e. sets can be naturally extended to degrees. Ershov had
studies the m-degrees intensively in his three papers. We will study their Turing degrees
instead. Let Dn and Dω denote the class of n-r.e. and ω-r.e. sets respectively. What
we are interested in is the partially ordered structures Dn = (Dn,≤) and Dω = (Dω,≤)
where ≤ is the Turing reducibility. For historical reasons, the notation R is often used
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to denote D1. Clearly the class of n-r.e. and ω r.e. degrees are contained inside D(≤ 0′)
which are the ∆0

2-degrees.
The study of n-r.e. Turing degrees can be traced back to Cooper [6] who showed that

the degrees of difference hierarchy do not collapse.

Theorem 2.4 (Cooper). There is a d-r.e. set D such that for all r.e. set W , D 6≡T W .

The proof of Cooper’s theorem can be generalized to show the proper containment of the
following nested degree structures.

R ( D2 ( · · · ( Dω ( D(≤ 0′).(1)

2.2. Elementary equivalence problems. Thus when the number of changes allowed
in the approximation increases, we get more and more degrees. One natural question
to ask is whether the corresponding partial order structures also become more and more
complicated. More precisely:

(a) Are degrees appeared in (1) elementarily equivalent?
(b) If not, at which level does the difference show up?

Recall that two structures A and B over the some language are called elementarily equiv-
alent (written A ≡ B) if for any sentence σ in that language,

A |= σ iff B |= σ.

If the above holds only for Σk-sentences, then we say that A is Σk-elementarily equivalent
to B, written A ≡Σk

B or simply A ≡k B.
The elementary differences among structures in (1) would not occur at the Σ1-level,

which is a fact first observed by Sacks.

Theorem 2.5. For any natural numbers m, n ≥ 1, Dm ≡1 Dn, Dm ≡1 Dω and Dm ≡1

D(≤ 0′).

The outline of the proof is as follows: By modifying the proof of Friedberg-Muchnik The-
orem, we can embed all countable partial orders into any of the above degrees structures,
say D∗. Therefore for any Σ1-sentence σ, D∗ satisfies σ if and only if σ is consistent with
the theory of partial orderings. In other words, σ is true in one of the structures if and
only if it is true in any other structures.

The same cannot be said at Σ2-level. Indeed we are going to quote contrasting pairs
of results about degree structures and conclude that most of the degree structures in (1)
are not elementarily equivalent and the differences show up at level two.

We begin with separating D(≤ 0′) with the rest.

Theorem 2.6 (Sacks [25], 1961). There is a minimal degree less than 0′.

In fact the minimal degree built by Sacks is in Dω.

Theorem 2.7 (Sacks [26], 1964). R is dense.

Corollary 2.8. R 6≡2 Dω and R 6≡2 D(≤ 0′).

One can also use the existence of minimal degrees to separate Dω from Dn by the following
theorem.

Theorem 2.9 (Lachlan). Let n ≥ 2 be a natural number. For any d ∈ Dn, if d 6= 0
then there is c ∈ Dn−1 such that 0 < c ≤ d. Moreover d is r.e. in c. Consequently for
all natural number n, Dn is downward dense.

3



Proof. We prove the case when n = 2 to illustrate the idea. Let D be any nonrecursive
d-r.e. set. Fix a recursive approximation Ds of D, such that D0 = ∅, Ds(x) can at most
change twice and at any stage only one element can enter or leave D. Let

A = {s : (∃x)[x enters D at stage s and ∃t > s(x 6∈ Dt)]}.
It’s easy to verify that A is r.e., A ≤T D and D is r.e. in A. If D is properly d-r.e., then
the set A cannot be recursive, since otherwise D is r.e. in a recursive set, contradicting D
being properly d-r.e. To finish the proof of downward density, if D is not properly d-r.e.,
then it follows from Sacks Density Theorem. �

Corollary 2.10. For any natural number n ≥ 1, Dn 6≡2 Dω and Dn 6≡2 D(≤ 0′).

Next we separate R from Dn (n ≥ 2). The clearest distinction is the nondensity theorem
of n-r.e. degrees:

Theorem 2.11 (Cooper, Harrington, Lachlan, Lempp and Soare [7], 1991). For every
natural number n ≥ 2 there is a maximal element in Dn.

The technical theorem they showed is actually stronger:

Theorem 2.12. There is a d-r.e. degree d such that no ω-r.e. degree a can have d <
a < 0′.

Corollary 2.13. For every natural number n ≥ 2,

R 6≡2 Dn.

It also gives another instance of
R 6≡2 Dω.

Furthermore, observe that for any ∆2-set D <T K, K is r.e. in D. Thus by relativizing
Sacks Density Theorem, we see that D(≤ 0′) is upward dense, thus we can separate Dn

and Dω from D(≤ 0′).

Corollary 2.14. For each natural number n ≥ 2

Dn 6≡2 D(≤ 0′) and Dω 6≡2 D(≤ 0′).

Historically, it was Downey [8] who first demonstrated a Σ2-difference between R and Dn

by showing that diamond exists in Dn, in contrast with Lachlan’s Nondiamond Theorem
[19], which says there is no diamond in R. The result motivated Downey to propose the
following Conjecture 2.15:

Conjecture 2.15 (Downey [8]). For any natural number n,m ≥ 2, the structures Dn

and Dm are elementarily equivalent.

It is said that Downey did not believe that Dn and Dm (n 6= m) are elementarily equiva-
lent. He proposed his conjecture in this way to challenge people to explore the structural
differences among Dn and Dm for n, m > 1. It was one of the major problems in the area
of difference hierarchy.

Recently Arslanov, Kalimullin and Lempp [3] announced a negative solution to Con-
jecture 2.15.

Theorem 2.16 (Arslanov, Kalimullin and Lempp [3]). D2 6≡2 D3.

The technical statement of the difference goes as follows.
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Theorem 2.17 (Arslanov, Kalimullin and Lempp [3]).

(a) There are 3-r.e. degrees f > e > d > 0 such that any 3-r.e. degree u ≤ e is
comparable with d, and any 3-r.e. degree u with d ≤ u ≤ f is comparable with e.

(b) There are no d-r.e. degrees f > e > d > 0 such that any d-r.e. degree u ≤ e is
comparable with d, and any d-r.e. degree u with d ≤ u ≤ f is comparable with e.

The question whether Dn ≡2 Dm for 2 < n < m remains open, though Arslanov,
Kalimullin and Lempp suggested that their techniques might be generalized to settle
it negatively.

2.3. Elementary substructure problems. What remains is whether one structure can
be a Σ1-elementary substructure of the other.

Recall: When A is a substructure of B, there is a finer notion to gauge the structural
differences by allowing parameters from the universe of A. More precisely, let LA be the
extended language L ∪ {a : a ∈ A} obtained by adding a constant symbol a for each
element a in A (here A denotes the universe of A).

Definition 2.18. Let n be a natural number. We say that A is a Σn-substructure of B,
written A 4n B, if for all Σn-formulas ϕ(x1, x2, ..., xm) and all a1, a2, ..., am ∈ A,

A |= ϕ(a1, a2, ..., am) if and only if B |= ϕ(a1, a2, ..., am).

In Ershov hierarchy the natural question is: Can one structure in (1) be a Σ1-elementary
substructure of another?

The first breakthrough related to the Σ1-elementary substructure problem was obtained
by Slaman [29] in 1983.

Theorem 2.19 (Slaman).

(i) There are r.e. sets A, B and C and a ∆0
2-set X such that

(a) ∅ <T X ≤T A;
(b) C 6≤T B ⊕X;
(c) for all r.e. set W , ∅ <T W ≤T A ⇒ C ≤T B ⊕W .

(ii) For each natural number n ≥ 1, Dn 641 D(≤ 0′).

The r.e. sets A, B and C in Theorem 2.19 form the so-called Slaman triple. If one tries
to use Slaman triples to separate R and D2, one immediately runs into the following
difficulty. By Theorem 2.9 of Lachlan, every nonrecursive n-r.e. degree bounds a nonre-
cursive r.e. degree, one cannot hope that any n-r.e. degree D plays the role of X as in
Theorem 2.19. In 2006, Yang and Yu [30] solved the difficulty by introducing another
parameter to control the r.e. degrees below the degree of D. The technical statement is
as follows:

Theorem 2.20 (Yang and Yu).

(i) There are r.e. sets A, B, C and E and a d.r.e. set D such that
(a) D ≤T A and D 6≤T E;
(b) C 6≤T B ⊕D;
(c) for all r.e. set W , if W ≤T A then either C ≤T B ⊕W or W ≤T E.

(ii) For each natural number n ≥ 2, R 641 Dn.
5



Shore and Slaman (2007) have announced that Dm 64 Dn for natural numbers m < n,
thus completely settled the Σ1-elementary equivalence problem for finite levels of Ershov
hierarchy. However, many questions on transfinite levels of Ershov hierarchy are still
open.

3. Ordinal Notations

In this section, we remind the readers some basic definitions and facts about ordinal no-
tations, which are necessary for the development of Ershov hierarchy to transfinite levels.
We will only prove Markwald Theorem (Theorem 3.5) in detail, because its technique
would be used in Section 4. Other materials can be found in standard reference books
such as Rogers [23], Sacks [24] and Ash and Knight [4].

3.1. Kleene’s O. We define a set of notations O ⊂ ω, a function | |O taking each
a ∈ O to an ordinal α = |a|O and a strict partial ordering <O on O simultaneously. The
elements of O are the notations and |a|O is the ordinal represented by the notation a.

• We let 1 be the notation for 0; that is, |1|O = 0.
• If a is a notation for α, then 2a is a notation for α + 1, i.e., |2a|O = α + 1. Let

b <O 2a if b <O a or b = a.
• If ϕe is a total recursive function such that for each n ∈ ω, we have defined
|ϕe(n)|O = αn and ϕe(n) <O ϕe(n + 1), then 3 · 5e is a notation for α = limn αn,
i.e., |3 · 5e|O = α. Let b <O 3 · 5e if there exists some n such that b <O ϕe(n).

That finishes the definition of our system of notations.
The initial part of O looks like the figure below, where the vertical line to the left

indicates the ordinal line:

•

•

•

•

•

0

1

2

3

..

.

ω

...

•

•

•

•

.

..

•

1

2

22

222

.

..

. . . •

...

•

...

•

...

•

...

•

...

. . .

We will also need the following results on effective addition on O.

Lemma 3.1. There is a 2-place total recursive function +O such that for all a, b ∈ O,

|a +O b|O = |a|O + |b|O.
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3.2. Constructive and recursive ordinals.

Definition 3.2. The ordinals having notations in O are called constructive ordinals.

Since O is countable, there are countably many constructive ordinals. The first noncon-
structive ordinal is denoted by ωCK

1 for Church-Kleene.

Definition 3.3. An ordinal α is recursive if it is finite or it is isomorphic to some
recursive well-ordering of ω.

Using Recursion Theorem and transfinite induction up to ωCK
1 , one can show that

Theorem 3.4. Fix an enumeration of all r.e. sets {We : e ∈ ω}.
(1) There exists a total recursive function p such that for all b in O,

Wp(b) = {a : a <O b}.

(2) There exists a total recursive function q such that for all b in O,

Wq(b) = {〈u, v〉 : u <O v <O b}.

Therefore all constructive ordinals are recursive because r.e. linear orderings are recursive.
The converse is also true:

Theorem 3.5 (Markwald). Every recursive ordinal is constructive.

The proof follows from the two Lemmas 3.6 and 3.7, which we give detailed proof in a
moment. Assuming the two Lemmas, the argument goes as follows. For any recursive
ordinal α, first embed it into a recursive well-ordering B as specified in Lemma 3.6; then
into O as in Lemma 3.7. Since |B| ≥ α as ordinals, α is embedded too.

Lemma 3.6. Given a recursive index for a linear ordering A, we can find a recursive
index for a linear order B of type ω · (1 + A) + 1 in which we can apply uniform effective
procedure to

(a) determine whether a given element b is first, last, a successor, or a limit point;
(b) for any successor element b, find all the immediate predecessor, and for any limit

b, determine an increasing sequence l(b, i) with limit b.

Furthermore, we can effectively determine a recursive index for the embedding that takes
a in A to the first element of the corresponding copy of ω in B.

Note if A is a linear ordering then B is an well-ordering if and only if A is an well-ordering.
Moreover if A is well-ordered of order type α then the order type of B is β > α.

Proof. We may suppose that the universe of A is ω \ {0} or a finite initial segment. Let
A∗ be the result of adding 0 at the front of A. Let B be the linear order which is the
product of A∗ and ω with lexicographic order, with an extra last point ∞.

Now B is recursive and its limit points are exactly (x, 0) for x > 1 and ∞. Also its
successors are exactly the newly add elements, (x, y) for y 6= 0, hence the predecessor is
(x, y − 1).

It remains to show the second part of (b). If b is a limit point in B, define bi+1 =
µ〈x, y〉[bi <B 〈x, y〉 <B b], where the µ-operator searches through the normal order of ω.
It’s easy to see that for any b′ <B b there is i such that b′ <B bi <B b. �
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Lemma 3.7. Given an index for a recursive linear ordering B with the special properties
in Lemma above (there are first, last element, the sets of successor and limit elements are
recursive with recursive witnessing functions and the index for B tells us how to compute
all of these things), we can find a recursive index for a function g defined on all of B
such that

(a) if pred(x), which is the set {y : y <B x}, is well-ordered, then g(x) is a notation
in O for the height x;

(b) if pred(x) is not well-ordered then g(x) 6∈ O.

Proof. We begin by defining a partial recursive function f such that if e is a recursive
index for a function with the behavior we want for g on pred(x) (thinking of B as well-
ordered), then f(e, x) has the value we want for g(x). We consider three cases.

Case 1. If x is the first element of B, then f(e, x) = 1.
Case 2. If x is the successor of y in B, then f(e, x) = 2ϕe(y).
Case 3. If x is a limit element of B and l(x, i) is the recursive increasing sequence with

limit b defined in the proof of previous lemma, let h(e, b) be the recursive function given
by s-m-n Theorem such that

ϕh(e,x)(i) = ϕe(l(e, i)),

then f(e, x) = 3 · 5h(e,x).
Note that f(e, x) is defined for all e and all x ∈ B, even when B is not well-ordered

or the function with index e is badly behaved. Now f(e, x) = ϕk(e)(x) for some k, by
Recursion Theorem, there is an n such that for all x ∈ B,

ϕn(x) = ϕk(n)(x) = f(n, x).

Let g(x) = ϕn(x). We show that g is what we wanted. Note that g(x) is defined for all
x ∈ B since f is.

Claim 1. If pred(x) is well-ordered and x has height α, then |g(x)|O = α.

Claim 1 can be proven by transfinite induction on α.

Claim 2. If g(x) ∈ O, then pred(x) is well-ordered in B.

Claim 2 can be proven by showing that whenever |a|O = α and g(x) = a then x has
height α in B. This is done by transfinite induction on α, here we used the definition of
f and the choice of n. �

3.3. O is Π1
1-complete. Recall that a set X ⊆ ω is called Σ1

1 if X = {z : ∃f∀yR(f, y, z)}
where R is recursive and the quantifiers ∃f and ∀y are ranging over functions and numbers
respectively. X is Π1

1 if the complement of X is Σ1
1. X is ∆1

1 if X is both Σ1
1 and Π1

1. The
connection of Π1

1-sets and well-orderings can be seen below. Kleene [18] showed that O
is Π1

1-complete and hence O is not Σ1
1.

Theorem 3.8 (Kleene [18]).

(1) Every Π1
1-set is many-one reducible to O.

(2) O is Π1
1.

Theorem 3.9 (Kleene Boundedness Theorem). Suppose X ⊆ O and X is Σ1
1. Then

X ⊆ Ob for some b ∈ O, where Ob = {a : a ∈ O ∧ |a|O < |b|O}.
8



Note that in Kleene’s O, each finite ordinal has a unique notation, while for an infinite
ordinal if there is one notation, then there are infinitely many. In other words, the
notations of many ordinals are not unique. This is a consequence of the fact that O is
some type of universal structure in which every well-ordering with possibilities to identify
successors and limit-ordinals can be embedded. Harrison [16] showed that one can have
all recursive ordinals without losing uniqueness.

Theorem 3.10 (Harrison [16]). There is a recursive linear ordering @ on the natural
numbers such that for every recursive ordinal there is exactly one representative n such
that ({m : m @ n}, @) is order isomorphic to this ordinal.

It follows that an initial segment of the natural numbers with the ordering @ is order
isomorphic to ωCK

1 but this initial segment does not have a supremum with respect to @.
Note that one can improve this structure in order to get more operations on ordinals to
be recursive. So, given Harrison’s recursive linear ordering @, let

L = {(a1, a2, . . . , an) : n ∈ ω ∧ a1 A a2 A . . . A an}

and

(a1, a2, . . . , an) @ (b1, b2, . . . , bm) ⇔ ∃k ≤ 1 + min{m, n} [∀` ∈ {1, 2, . . . , k − 1}
[a` = b` ∧ (n < k ≤ m ∨ (k ≤ n,m ∧ ak < bk))]];

(a1, a2, . . . , an) + (b1, b2, . . . , bm) = (a1, a2, . . . , ak, b1, b2, . . . , bm)

for the maximal k ≤ n with ak ≤ b1.

The empty sequence λ is also an element of L and satisfies λ @ z for all z ∈ L−{λ} and
λ + z = z + λ = z for all z ∈ L.

One can show that for any (a1, a2, . . . , an) ∈ L where all ak represent a recursive ordinal
αk in Harrison’s given ordering, the set {z ∈ L : z @ (a1, a2, . . . , an)} is order isomorphic
to the ordinal ωα1 + ωα2 + . . . + ωαn . Hence (L, @) is a recursive linear ordering where
the initial part represents all recursive ordinals and where one can test for the ordinals in
the initial segment how they are composed of ω-powers and what the coefficients of the
lowest ordinals ωn, ωn−1, . . . , ω1, ω0 for a fixed constant n are. This shows that Kleene’s
O is not the only system where one can represent all recursive ordinals adequately and
(L, @) has the advantage that it is a linear ordering with unique representatives for the
recursive ordinals where various natural operations on the ordinals are recursive.

Somehow, such a system of representatives would have the short-coming that not every
notation in O could be translated into a notation in it effectively and so one could argue
that it picks the representatives of the ordinals a bit arbitrarily out of O. Furthermore,
as already said, the set of the ordinals in a linear ordering can never by Π1

1-complete;
indeed, such a set is even not many-one hard for the halting problem.

4. Transfinite Levels of Ershov Hierarchy

We are now ready to extend the Ershov hierarchy to transfinite levels. We begin with
extending the notions of n-r.e. sets and degrees to the transfinite levels and then prove
some important theorems of Ershov.
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4.1. a-r.e. Sets and Degrees. In the following, we will define Da for each a ∈ O. As we
shall see the definition is heavily notation dependent. For example, for ordinals α ≥ ω2

we may have a and b both are notations for α, yet Da and Db are different. The is the
reason we do not define α-r.e. sets for recursive ordinals α, instead we can only define a-
r.e. sets for ordinal notations a ∈ O. It should also be noted that our phrasing is different
from the original definition by Ershov. In fact, there are several different versions of the
same notion in literatures.

Definition 4.1. For each a ∈ O, a subset A of ω is a-r.e. if and only if there are
recursive functions f : ω × ω → {0, 1} and o : ω × ω → O such that

(1) For all x, f(x, 0) = 0 and o(x, 0) <O a.
(2) For all x and s, o(x, s + 1) ≤O o(x, s).
(3) For all x and s, if f(x, s + 1) 6= f(x, s) then o(x, s + 1) 6= o(x, s).
(4) For all x, lims f(x, s) = A(x).

we use Da to denote the class of all a-r.e. sets.
It is easy to see that a set A is ω-r.e. as in Definition 2.3 if and only if A is a-r.e. for

some a such that |a|O = ω.
There is slight inconsistency of notations between the finite and transfinite levels. In

this section, we only talk about a-r.e. sets where a is a notation of an infinite ordinal α.
It is easy to see that for all a ∈ O there is a a-r.e. set which is not b-r.e. for any b <O a.

Selivanov [27] transferred this result to Turing degrees.

Theorem 4.2 (Selivanov [27]). For all a ∈ O, there is a set X ∈ Da such that for all
Y ∈

⋃
{Db : b <O a}, X 6≡T Y .

The major steps of the proof can be outlined as follows: For each fixed notation a,
by Theorem 3.4 we can effectively enumerate all {b : b <O a}. For each fixed b we
can effectively enumerate all sets in Db. Thus we can effectively enumerate all sets in⋃
{Db : b <O a}. Once we have the enumeration, we can apply Cooper’s technique used

in the proof of Theorem 2.4 to find an X ∈ Da such that Y 6≡T Y .
Let Da to denote class of a-r.e. Turing degrees. Selivanov’s Theorem tells us that for

any fixed notation a ∈ O, the set
⋃
{Db : b <O a} will not exhaust all ∆2-degrees.

4.2. Ershov’s Theorems. We now present some interesting theorems by Ershov. We
begin with the one which roughly says all ∆0

2-sets have appeared at level ω2.

Theorem 4.3 (Ershov). A set A is ∆0
2 if and only is there exists some a ∈ O with

|a|O = ω2 such that A is a-r.e.

Proof. Let us only prove the nontrivial direction. Let A be a ∆0
2-set with recursive

approximation f(x, s) as stated in the Limit Lemma. We need to find a notation a ∈ O
and the corresponding o(x, s) : ω × ω → a for f(x, s). We do it in two steps.

Step 1: Obtain a recursive well-ordering of order type ω which “records” the changes of
the approximation of f . The main idea informally is: When f(x, s + 1) = f(x, s) we put
the pair (x, s+1) after (x, s); when f(x, s+1) 6= f(x, s) we put (x, s+1) before all other
pairs (x, y) where y ≤ s.

Fix an recursive ω-ordering < on ω × ω as in the pairing function:

(0, 0) < (0, 1) < (1, 0) < (0, 2) < (1, 1) < (2, 0) < . . .
10



Define ≺ on ω×ω by recursion with respect to <: Suppose we have done all pairs before
(x, y) with respect to the <-order. Assume the numbers between (x− 1, 0) and (x, 0) are

(x− 1, 0) ≺ (u1, v1) ≺ · · · ≺ (uk, vk) ≺ (x, yi) ≺ (x, yi−1) ≺ · · · ≺ (x, 0)

where ui < x for all i ∈ {1, 2, . . . , k}. Consider the pair (x, y). If y = 0 or (y 6= 0 and
f(x, y) = f(x, y− 1)), then put (x, y) in the list following the same <-order. If y 6= 0 and
f(x, y) 6= f(x, y − 1) then insert (x, y) between (uk, vk) and (x, yi).

Clearly ≺ is recursive. Since A is ∆0
2, ≺ is a well-order of order type ω.

Step 2. We obtain a notation for ≺ by following the proof of Lemmas 3.6 and 3.7, the
process of getting the B as in Lemma 3.6 gives us the extra factor ω.

Let g be the embedding of (ω × ω,≺) into O. Then g : ω × ω → a for some a with
|a|O = ω2. Define o : ω × ω → a by o(x, 0) = g(x, 0) and o(x, y + 1) = o(x, y) if
f(x, y +1) = f(x, y); and o(x, y +1) = g(x, y +1) if f(x, y +1) 6= f(x, y). Then o is what
we wanted. �

The next theorem shows that ω2 is the first level where one can exhaust all ∆0
2-sets.

Theorem 4.4 (Ershov). There is a ∆2-set A such that A 6≡T B for any B ∈
⋃
{Db :

b ∈ O ∧ |b|O < ω2}.

Proof. We first show a Claim which says that Da has certain invariance for notations a
such that |a|O < ω2. The point is that there are only finitely many limit points below
|a|O, thus we can code the information (nonuniformly).

Claim 1. If a, b ∈ O and |a|O = |b|O = α < ω2, then there is a partial recursive function
φ such that φ � {k : k <O a} is an isomorphism from {k : k <O a} → {k : k <O b}.

Claim 1 can be proven as follows: Suppose α = ω · i + j for some i, j ∈ ω. Let n1, . . . , ni

and m1, . . . ,mi be the notations of ω, . . . , ω · i below a and b respectively. Define φ such
that φ(nl) = ml and naturally extend to the notations of successor ordinals.

Claim 2. If a, b ∈ O and |a|O = |b|O = α < ω2, then Da = Db.

For a proof of Claim 2, assume that f and o1 are the witnessing functions for a set A
being in Da. Then f and o2 = φ ◦ o1 witness A being in Db, where φ is the isomorphism
in Claim 1.

Finally fix any notation a0 such that |a0|O = ω2. By Selivanov Theorem, there is
A ∈ Da0 such that for any B ∈

⋃
{Da : a <O a0}, A 6≡T B. By Claim 2, diagonalizing

against all {Da : a <O a0} is as good as diagonalizing against all {Da : |a|O < ω2}. Thus
this A is what we wanted. �

Since there are uncountably many paths of height ≥ ω2 on O, and O is countable, there
are many paths of height ω2. We now study the classes Da when a belongs to some path
T on O.

Theorem 4.5 (Ershov). (a) There is a path T ⊂ O with |T | = ω3 such that A ∈ ∆0
2

if and only if A ∈ Da for some a ∈ T .
(b) For each path T ⊂ O, if |T | < ω3, then there is some ∆0

2-set A such that A is not
in

⋃
{Da : a ∈ T}.
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Proof. We just give a proof sketch. For (a), list all ∆2-sets {Xi : i ∈ ω} and choose a
notation ai such that |ai|O = ω2 and Xi ∈ Di. ai exists by Theorem 4.3. Note that the
listing and choice are done noneffectively. Then T = {a0 +O · · · +O an : n ∈ ω} is the
path that we wanted.

For (b), first observe that for any given notation a0, we can mimic the proof of Theorem
4.4 to get a notation a1 with |a1|O = ω2 and a set A ∈ Da0+Oa1 which is not in⋃

{Da : a0 <O a and |a0 +O a|O < |a0|O + ω2}.

Suppose that |T | = ω2 · i + α for some i ∈ ω, α < ω2. If α 6= 0, let a0 ∈ T be such that
|a0|O = ω2 · i; if α = 0, then i ≥ 1 by Theorem 4.4, let a0 ∈ T be a notation such that
|a0|O = ω2 · (i− 1). Apply the above observation to a0, the result follows. �

One can also get the following result about ∆0
2-sets and long paths through O.

Theorem 4.6 (Ershov).

(a) There is an unbounded path T through O such that for any ∆0
2-set A, there is an

a ∈ T such that A ∈ Da. Furthermore, this T can be chosen recursive in O.
(b) Such a path cannot be Π1

1.

Proof. Fix an enumeration of ∆0
2-sets An, we build a path T recursively in O in stages

as follows: At stage s, suppose we have had Ts ∈ O. Let as ∈ O be such that |as| = ω2

and As ∈ Das . Let

Ts+1 =

{
Ts +O as +O s, if s ∈ O;
Ts +O as, otherwise.

Clear T =
⋃

s{a : a <O Ts} is what we wanted.
For (2), suppose that T is Π1

1. Define a function h : ω → T by h(n) = the <O-least
a ∈ T such that An appears in Da. Then h is a total Π1

1-function, therefore ∆1
1. By

Theorem 3.9 of Kleene, the range of h is bounded, contradiction. �

5. Applications to Inductive Inference

In inductive inference, transfinite ordinals were initially used to generalize the notion of
counters. The general setting is that a learner M — which in the following discussion is
always assumed to be recursive — reads from an infinite tape more and more data and
eventually outputs a finite sequence of indices of r.e. sets such that for the last index e
in this sequence it holds that We enumerates exactly all the elements the learner finds
on the tape [15]. A class of r.e. sets is explanatorily learnable iff there is a single learner
M which learns every set in the class from every possible way how its elements can be
written down on the tape; such tape contents are called texts in learning theory. Not
every class is learnable.

Theorem 5.1 (Gold [15]). The class of the set of all natural numbers plus all of its finite
subsets is not explanatorily learnable.

In his paper, Gold introduced the initial definitions and results of inductive inference
which were then the basis for work which spans now already more than four decades.
Freivalds and Smith [12] investigated restrictions on the number of mind changes or
hypotheses by adding to the learner a counter [12]. This counter takes initially a fixed
value a ∈ O before starting the learning process and outputting any hypothesis; then,
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whenever the learner outputs a hypothesis, the current value in the counter, say b, is
replaced by a new value c with c <O b; if such a c does not exist, the learner does not
output a new conjecture. Note that b, c ≤O a by induction. Such a learner can be called
an a-shot learner, as a bounds the number of attempts the learner can make to output
a hypothesis. Note that it is enforced that an a-shot learner outputs only finitely many
conjectures. There are learnable classes which cannot be learnt by any a-shot learner for
any a ∈ O. An example of such a class is the class of all finite sets. A characterization for
such classes is based on the following notion: Osherson, Stob and Weinstein [21] called
a learner M confident iff M converges on every text, even on those texts which are for
languages which do not belong to the class to be learnt or which are even not recursively
enumerable.

Theorem 5.2 (Ambainis, Freivalds and Smith [2]). A class L of r.e. sets is confidently
learnable iff there is an a ∈ O such that L is learnable by an a-shot learner.

Sharma, Stephan and Ventsov [28] considered generalizations of this result and also char-
acterized when a class is learnable by a learner converging on all recursive texts and so
on. Freivalds and Smith [12] showed that the hierarchy of learning from ordinal notations
does not collapse.

Theorem 5.3 (Freivalds and Smith [12]). For every notation a ∈ O there is a class
which can be learnt by an a-shot learner but not by a b-shot learner whenever b ∈ O and
|b|O < |a|O.

This can be proven by using the class of all sets Lb = {x : b ≤O x <O a} with b <O a.
Note that this class is even uniformly recursively enumerable. Ordinal counters serve as a
measure of complexity in various areas of inductive inference. There is also a connection
to a-r.e. sets. Given an a-r.e. set A with an approximation f as defined in Definition 4.1;
now let Lx,y = {〈x, 0〉, 〈x, 1〉, . . . , 〈x, y〉} and consider the class L of all Lx,y satisfying
the additional constraint f(x, y + 1) 6= f(x, y). Now L is learnable by an a-shot learner.
Furthermore, whenever it is learnable by a b-shot learner then A is b-r.e.; the converse
fails as one could have that A = ∅ but the approximation is ω-r.e. with f(x, y) = 1 iff
y ≤ x and y is odd. Then, for all n < ω, the corresponding class has no n-shot learner
although A is an n-r.e. set.

Carlucci, Case and Jain [5] called approximations as the f in Definition 4.1 an a-cor-
rection-grammar. They considered the learning of classes of r.e. languages where the
learner is permitted to output conjectures which are a-correction-grammars for the set
to be learnt; they showed that there is a hierarchy along the notations of ordinals for ex-
planatory learning and for every pair a, b ∈ O with a <O b there is a class of r.e. languages
which can be learnt using b-correction-grammars but not using a-correction-grammars.
They also considered the question for behaviourally correct learning where a behaviourally
correct learner outputs an infinite sequence of hypotheses such that almost all of them
are correct (although they can all be distinct). Carlucci, Case and Jain [5] showed that
for behaviourally correct learning, the corresponding hierarchy collapsed to the level ω.
That is, every class of languages which is learnable using a-correction-grammars is also
learnable using b-correction-grammars whenever |b|O ≥ ω. So all correction-grammars
for transfinite notations of ordinals have the same inference power as hypothesis space
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with respect to behaviourally correct learning.
Other applications of ordinals in learning theory refer to measuring how far the hypoth-

esis can go off the minimal index of the target language [1]. Some papers also abstract
from the requirement that learners have to be recursive and can then use ordinals directly
in place of their notations [20].

6. Conclusion

In this paper we reviewed the usage of recursive ordinals in recursion and learning theory.
We first reviewed the finite levels of the Ershov hierarchy and the degree structures of
these sets. Then we turned to the concept of recursive ordinals and ways to represent
them, with a particular emphasis on Kleene’s O and notations of ordinals. The notation
a used to represent a given recursive ordinal has a strong impact on which limit-recursive
sets are a-r.e. and hence the world of a-r.e. sets is not only a study of recursive ordinals
but also of notatinos of recursive ordinals. We summarize the ground-breaking results
of Ershov and show which counterparts of the results on the finite levels of the Ershov
Hierarchy hold on the transfinite levels. At the end we survey the usage of ordinals in
inductive inference, where the notion of a recursive ordinal turned out to be a natural
method to measure convergence speed and learning complexity.

We end our survey with two open problems. The first one can be viewed as a generalized
version of Downey’s Conjecture:

Conjecture 6.1. For all a 6= b ∈ O, if ω ≤ |a|O, |b|O < ω2 then Da ≡ Db.

We know that
⋃
{Da : a ∈ O∧|a|O < ω2} is a proper subset of all ∆0

2-degrees by Theorem
4.4, however, is there any degree theoretic difference?

Conjecture 6.2.
⋃
{Da : a ∈ O ∧ |a|O < ω2} ≡ D(≤ 0′).
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