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Abstract. We introduce two methods to characterize strong randomness notions
via Martin-Löf randomness. By applying these methods, we investigate ∅′-Schnorr
randomness.

1. Introduction

The goal of this paper is to characterize strong randomness notions via Martin-Löf
randomness.

In the literature, various randomness notions were introduced for different moti-
vations. The most commonly accepted one is Martin-Löf randomness. Martin-Löf
randomness has quite a number of nice properties. For example, van-Lambalgen’s
theorem holds for Martin-Löf randomness and it can be characterized by Kolmogorov
complexity, etc. (these results can be found in [5] and [18]). So we view Martin-Löf
randomness as the standard one. For the other randomness notions stronger than
Martin-Löf’s, we call them strong randomness notions.

One of the goals of algorithmic randomness theory is to compare randomness no-
tions. To compare two randomness notions, we often need to show which randomness
notion is stronger. But this is not just what we want to know. We need to know not
only the question which one is stronger but also the question how strong it is? So we
need to measure the strength of randomness notions.

There are many ways to measure the strength of randomness notions. For example,
by comparing the Kolmogorov complexity of randomness notions, one may compare
their strength. But there are two flaws about the Kolmogorov complexity: One is that
it is difficult to describe the exact Kolmogorov complexity of a randomness notion.
The only successful example is the characterization of ∅′-randomness by the prefix
free Kolmogorov complexity (see [13]). Moreover, for some randomness notions, we
don’t even know whether they are closed upward in the K-degrees; Another one is
many randomness notions cannot be classified level by level. For example, Chaitin’s
Ω is Martin-Löf random but not ∅′-random. However, every ∅′-random real has an
incomparable K-degree with Ω (see [15]).

In this paper, we propose a general way to measure the strength of randomness
notions. Because those randomness notions weaker than Martin-Löf’s have unusual
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properties and are not commonly considered, or in my opinion at least, as “real ran-
domness”, we focus on the stronger ones. The proposed way is to characterize strong
randomness notions via Martin-Löf randomness. In other words, given a random-
ness notion A stronger than Martin-Löf randomness, can it be described precisely in
terms of oracles relativized to Martin-Löf randomness? If this can be done, then we
may transfer the studying of A to the studying of the sets of oracles corresponding
to A . Let’s use ∆(A ) to denote a set of oracles corresponding to A . So the ques-
tion can be translated into the question how powerful are the reals in ∆(A )? Or
which Turing degrees are in ∆(A )? Then we may apply the results in computability
theory, which is well studied, to study algorithmic randomness theory. This kind of
characterization has some advantages. For example, by a carefully selection of ∆(A ),
we may obtain a Kolmogorov complexity characterization of A (see Subsection 3.3).
Moreover, such characterizations also help to clarify the relationship between lowness
and highness properties (see Proposition 3.5) and study the structure of LR-degrees
(such results spread throughout the paper).

We organize the paper as follows: In Section 2, we review the definitions and
notations; In section 3, we introduce two concrete methods to characterize strong
randomness notions by Martin-Löf randomness; In section 4 , we study Π-type char-
acterization for ∅′-Schnorr randomness; In section 5, by putting all the previous results
together, we give a Σ-type characterization for ∅′-Schnorr randomness; We finish the
paper by giving some remarks about characterizing other strong randomness notions
in Section 6.

2. Preliminary

Mostly we follow the terminology and notions from [5]. For the facts in algorithmic
randomness theory, we refer readers to [5] and [18]. For the facts in computability
theory, we refer readers to [20] and [12].

A real x is an element in Cantor space. Given a set of real U , we use µ(A) to denote
the Lebesgue measure of U . x⊕ y = {n | ∃m ∈ x(n = 2m) ∨ ∃m ∈ y(n = 2m + 1)}.
⊕i∈ωzi = {〈i, n〉 | n ∈ zi}.

Given two reals x and y, x =∗ y means that for co-finitely many n’s, x(n) = y(n).
For any partial computable function Φ, we use Φ(n)[s] to denote the n-th value of Φ

at stage s (if it is defined; otherwise, we use Φ(n)[s] ↑ to denote that it is undefined).
Given a c.e. set U , we use U [s] to denote the state of U enumerated up to stage s.
For a real x, we use x′ to denote the Turing jump of x. x is low if x′ ≡T ∅′.

Given two reals x and y, we say that x is c.e. traceable by y if for every function
f ≤T x, there is a uniformly y-c.e sequence {Te}e∈ω and a computable function h so
that for every e, |Te| ≤ h(e) and f(e) ∈ Te.
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A Schnorr-test is a uniformly c.e. sequence of open sets {Un}n∈ω so that µ(Un) =
2−n. A real x is Schnorr random if and only if for any Schnorr test {Un}n∈ω, x 6∈⋂
n Un.
A Martin-Löf test is an uniformly c.e. sequence of open sets {Un}n∈ω so that

µ(Un) < 2−n for every n. A real x is Martin-Löf random (or 1-random) if for every
Martin-Löf test {Un}n∈ω, x 6∈

⋂
n∈ω Un. There exists a universal Martin-Löf test. A

very special Martin-Löf random real is Chaitin’s Ω.
A generalized Martin-Löf test is an uniformly c.e. sequence of open sets {Un}n∈ω

so that limn→∞ µ(Un) = 0 for every n. A real x is weakly-2-random if for every
generalized Martin-Löf test {Un}n∈ω, x 6∈

⋂
n∈ω Un. There is no universal generalized

Martin-Löf test.
We use ML, W2R, Sch to denote the collection of Martin-Löf random, weakly-2-

random and Schnorr random reals respectively.
All these notions can be relativized. We use x-randomness to denote Martin-Löf

randomness relativized to x.
x ≤LR y if for every y-random real is x-random.
Given two randomness notions R and S, let

Low(R, S) = {x | R ⊆ S(x)}
and

High(R, S) = {x | R(x) ⊆ S}
, where R(x) and S(x) denote R, S relativized to x respectively.

We use C and K to denote Kolmogorov complexity and prefix free Kolmogorov
complexity respectively.

〈·, ·〉 is a recursive 1-1 onto function from ω × ω to ω so that for every pair 〈i, j〉,
〈i, j〉 ≤ max{i3, j3}. We also define 〈·, ·, ·〉 = 〈·, 〈·, ·〉〉. We identify an open set U
as a prefix-free subset of 2<ω. We also identify a finite string σ ∈ 2<ω as a natural
number.

3. Two methods to characterize strong randomness notions

We introduce two methods to characterize strong randomness notions.

3.1. Π-type characterization. The first is a Π-type characterization.

Definition 3.1. Given a randomness notion A stronger than Martin-Löf random-
ness, we use F(A ) to denote the collection of all the classes R’s which have the
property that for every real z, z ∈ A if and only if for every real x ∈ R, z ∈ ML(x).

Intuitively, every class R ∈ F(A ) characterizes randomness notion A . For ex-
ample, let A = ML, then the Turing degree 0 = {x | x is computable.} belongs
to F(ML). Note that F(A ) may be empty even if A is stronger than ML (see the
discussion in Section 6).
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Suppose that F(A ) is not empty, then may pick up a special class from F(A ).
Let

R̃ =
⋃

R∈F(A )

R.

Then it is clear that R̃ ∈ F(A ). So R̃ is the largest member in F(A ). Thus we

may use the unique set R̃ to characterize A . This defines a partial map Π from
strong randomness notions to sets of reals so that

Π(A ) = R̃.

There are two problems about the map Π. The first is that Π(A ) may not exist.
Obviously for any randomness notion A weaker than ML, Π(A ) is undefined. The
second is about the complexity of Π(A ). By the definition of Π(A ), Π(A ) does not
appear to be second order arithmetical definable. So even Π(A ) is defined, Π(A )
may be rather complicated. But we have a better calculation of the complexity of
Π(A ).

Proposition 3.2. If Π(A ) exists, then

(1) If R ∈ F(A ) and x ≤LR y for some y ∈ R, then R ∪ {x} ∈ F(A );
(2) Π(A ) = Low(A ,ML).

Proof. Suppose that Π(A ) exists.
For (1). Obviously.
For (2). Clearly Π(A ) ⊆ Low(A ,ML).
For any R ∈ F(A ) and x ∈ Low(A ,ML), we have that R ∪ {x} ∈ F(A ). So

Π(A ) = Low(A ,ML). �

So if A is Σ1
1, then Π(A ) is Π1

1. In some special cases, Π(A ) can be fairly
simple. For example, the set KT = {x | x is K-trvial. } is arithmetical. But KT =
Low(ML,ML) (see [17]). So Π(ML) is arithmetical.

3.2. Σ-type characterization. The second is a Σ-type characterization.

Definition 3.3. Given a strong randomness notion A than Martin-Löf randomness,
we use G(A ) to denote the collection of all the classes R’s which have the property
that for every real z, z ∈ A if and only if for there exists some real x ∈ R, z ∈ ML(x).

For example, the Turing degree 0 = {x | x is computable.} also belongs to G(ML).
Note that G(A ) maybe empty.

Suppose that G(A ) is not empty, then may also pick up a special class from G(A ).
Let

R̂ =
⋃

R∈G(A )

R.
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Then it is clear that R̂ ∈ G(A ). So R̂ is the largest member in G(A ). So from

the randomness notion A , we may find the unique set R̂ to characterize A . This
defines a partial map Σ from strong randomness notions to sets of reals so that

Σ(A ) = R̂.

Proposition 3.4. If Σ(A ) exists, then

(1) If R ∈ G(A ) and y ≤LR x for some y ∈ R, then R ∪ {x} ∈ G(A );
(2) Σ(A ) = High(ML,A ).

Proof. Suppose that Σ(A ) exists.
For (1). Obviously.
For (2). Clearly Σ(A ) ⊆ High(ML,A ).
For any R ∈ Σ(A ) and x ∈ High(ML,A ), we have that R ∪ {x} ∈ F(A ). So

Σ(A ) = High(ML,A ). �

So if A is Π1
1, then Σ(A ) is Π1

1. In some special cases, Σ(A ) can be fairly simple.
For example, 2ω = High(ML,ML). So Σ(ML) is arithmetical.

The following proposition builds a connection between Σ(A ) and Π(A ).

Proposition 3.5. Suppose that both Σ(A ) and Π(A ) are defined. Then a real
x ∈ Σ(A ) if and only if for every y ∈ Π(A ), y ≤LR x.

Proof. If x ∈ Σ(A ), then every x-random real z belongs to A . So z must be y-random
for every y ∈ Π(A ). Thus x ≥T y for every y ∈ Π(A ).

If every y ∈ Π(A ), y ≤LR x. Then every x-random real must belong to A . In
other words, x ∈ High(ML,A ). By Proposition 3.4, x ∈ Σ(A ). �

3.3. Characterizing randomness via Kolmogorov complexity. In [14], it was
asked whether some randomness notions can be characterized by Kolmogorov com-
plexity and whether they are closed upwards in the K-degrees or C-degrees. In
[9], Hölzl et al prove a number of results related. But their characterization is not
very satisfactory. Some of their characterizations don’t even guarantee the upward
closedness in the K-degrees. For example, it is not even clear, according to their
characterization, whether ML(∅′), a very simple randomness notion, is upward closed
in the K-degrees. Here we give a program to answer these questions by applying the
previous results.

We need the following result.

Theorem 3.6 (Miller and Yu [15]). x⊕ y is Martin-Löf random if and only if there
is a constant c such that for every n, K(x � n) + C(y � n) ≥ 2n− c.

By applying Theorem 3.6 and the previous discussions, we have the following result.

Proposition 3.7. Given a randomness notion A stronger than ML. Suppose R ⊆
ML, then
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(1) If R ∈ F(A ), then x ∈ A if and only if for every y ∈ R, there is a constant
c so that for every n, K(x � n) ≥ 2n− C(y � n)− c;

(2) If R ∈ G(A ), then x ∈ A if and only if there is some y ∈ R and a constant
c so that for every n, K(x � n) ≥ 2n− C(y � n)− c.

In either case, A is closed upward in the K-degrees.

Proof. Suppose R ⊆ ML.
For (1). Suppose that R ∈ F(A ). By van-Lambalgen’s Theorem, x ∈ A if and

only if for every y ∈ R, x ⊕ y is Martin-Löf random and so, by Theorem 3.6, if and
only if there is a constant c so that for every n, K(x � n) ≥ 2n− C(y � n)− c. So if
z ≥K x, then z ⊕ y is Martin-Löf random for every y ∈ R. Thus z ∈ A .

For (2). Then x ∈ A if and only if there is a y ∈ R, x ⊕ y is Martin-Löf random
and so, by Theorem 3.6, if and only if there is a constant c so that for every n,
K(x � n) ≥ 2n − C(y � n) − c. So if z ≥K x, then z ⊕ y is Martin-Löf random for
some y ∈ R. Thus z ∈ A . �

It is clear that Proposition 3.7 remains true if one interchanges K with C.
For example, {Ω} ∈ F(ML(∅′)) ∩ G(ML(∅′)), so ML(∅′) is closed upward in the

both K-degrees and C-degrees.

In the subsequent sections, we apply the ideas in this section to study some strong
randomness notions. In particular, we obtain a complete characterization of ∅′-
Schnorr randomness.

4. The Π-type characterization of ∅′-Schnorr randomness

In this section, we study Π(Sch(∅′)) by applying the methods in Section 3.

4.1. The collection of low reals belongs to F(Sch(∅′)). We show that F(Sch(∅′))
is not empty.

Theorem 4.1. For every ∅′-Schnorr test {U∅′e }e∈ω, there is a real z with z′ ≤T ∅′
such that there is z-Martin-Löf-test {V z

e }e∈ω so that
⋂
e∈ω V

z
e ⊇

⋂
e∈ω U

∅′
e .

Theorem 4.1 also follows the proof in Theorem 4.5. But we give a proof of Theorem
4.1 as a warming up of the proof of Theorem 4.5. Moreover, the proof here is more
flexible than there. For example, one may combine it with genericity requirements.1

Proof. We prove that for every ∅′-Schnorr test {U∅′e }e∈ω, there is a real z with z′ ≤T ∅′
such that there is z-Martin-Löf-test {V z

e }e∈ω so that
⋂
e∈ω V

z
e ⊇

⋂
e∈ω U

∅′
e .

The proof is by a finite injury argument.
We will describe the strategies and leave the rest to the reader.
We build a low real z and z-Martin-Löf test {V z

e }e∈ω by a full approximation
priority argument. We need to satisfy two kinds of requirements:

1Mr. Higuchi [8] proves that the real z in Theorem 4.1 can be 1-generic.
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Ne : ∃∞sΦzs
e (e)[s] ↓ =⇒ Φz

e(e) ↓;
Pe : U∅

′

2e ⊆ V z
e .

It is easy to see that if all the Ne’s are satisfied, then z′ ≤T ∅′ (see [20]).
To satisfy Pe, we need to decompose Pe into infinitely many subrequirements P〈e,n〉.

For every e, n, let

U∅
′

e � n = U∅
′

e ∩ 2≤l
e
n = {σ | |σ| ≤ len ∧ σ ∈ U∅

′

e }
where len is the least number l such that µ(U∅

′
e ∩ 2≤l) > 2−e(1− 2−2n

). It is Obvious
that U∅

′
e � n ⊆ U∅

′
e � (n + 1) for every n. Notice that since {U∅′e }e∈ω is a ∅′-Schnorr

test, we may ∅′-recursively find len for every n and e.
So there is a computable function f : ω × 2<ω × ω2 → 2 so that for every e, n and

σ,

(1) lims f(e, σ, s, n) = 0 or 1;
(2) lims f(e, σ, s, n) = 1 if and only if σ ∈ U∅′e � n.

Set

P〈e,n〉 : U∅
′

2e � n ⊆ V z
e .

It suffices to satisfy those P〈e,n〉’s so that e ≤ n. Then we may set the priority list
as Ne < P〈0,e〉 < P〈1,e〉 < ...P〈e,e〉 < Ne+1, e ∈ ω.

As in the usual finite injury argument, we build a restriction function r(e, s) >
φzs
e (e) for every negative requirement Ne at every stage e where φzs

e (e) is the use
function of Φzs

e (e)[s]. Set

R(e, s) =
∑
i≤e

r(i, s).

At stage s, Ne requires attention if Φzs
e (e)[s] ↓ but Ne has not received attention

after it has been initialized (if ever) before stage s. Then Ne sets up a restriction
r(e, s).

At every stage s, for every e, n, let

U∅
′
s
e [s] � n = U∅

′
s
e [s] ∩ 2≤l

e
n[s] = {σ ∈ 2<ω | |σ| ≤ len[s] ∧ σ ∈ U∅′se [s]}

where len[s] is the least number l such that µ(U
∅′s
e [s]∩2≤l) > 2−e(1−2−2n

). Obviously

lims l
e
n[s] = lem. Obviously U

∅′s
e [s] � n ⊆ U

∅′s
e [s] � (n+ 1) for every n.

The basic strategy for P〈e,n〉 is: At any stage s, for each σ, there is a follower

〈2e, σ, ts〉 attached to σ. If σ enters U
∅′s
2e [s] � n−U∅

′
s

2e [s] � (n− 1) (i.e. f(2e, σ, s, n) = 1
but f(2e, σ, s, n′) = 0 for all n′ < n), then we set zs(〈2e, σ, ts〉) = 1. If σ exits

U
∅′s
2e [s] � n (i.e. f(2e, σ, s, n) = 0), then we set zs(〈2e, σ, ts〉) = 0. So we may define

V zs
e [s] = {σ | zs(〈2e, σ, ts〉) = 1} and V z

e = {σ | ∃s(z(〈2e, σ, ts〉) = 1)}.
The rule attributing a follower to P〈e,n〉 at stage s is: For any σ with len[s] ≥ |σ| >

len−1[s], if either there is no a follower attributed to σ at stage s − 1 or the follower
attributed at s−1 was initialized, we attribute a new follower 〈2e, σ, ts〉 to σ such that
ts greater than all the parameters mentioned in the higher priority requirements no
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later than stage s; otherwise, we keep the older attributed follower being unchanged
by setting ts = ts−1.
P〈e,n〉 requires attention at stage s if either

(1) σ enters U
∅′s
2e [s] � n − U∅

′
s

2e [s] � (n − 1) but zs(〈2e, σ, ts〉) = 0. The action is to
zs+1(〈2e, σ, ts〉) = 1; or

(2) σ exits U
∅′s
2e [s] � n but zs(〈2e, σ, ts〉) = 1. The action is to zs+1(〈2e, σ, ts〉) = 0.

To avoid the confliction between P〈e0,n0〉 and P〈e1,n1〉, say P〈e0,n0〉 < P〈e1,n1〉, we ini-
tialize all the parameters for P〈e1,n1〉 and set zs+1(〈2e1 , σ, ts〉) = 0 for any parameter
〈2e1 , σ, ts〉 for P〈e1,n1〉 once upon P〈e0,n0〉 receives attention. This cannot happen infin-

itely often by the property of f and {U∅′e }e∈ω.
Notice that there are at most 2−2e−(2n−1) measure of clopen sets which can be put

into V z
e by P〈e,n〉 for any pair 〈e, n〉.

Since {U∅′e }e∈ω is a ∅′-Schnorr test, by a usual finite injury argument, it is easy to
show that Ne will be injured at most finitely many times for every e. Thus Ne is
satisfied and so z must be low.

For each P〈e,n〉 with n ≥ e, there are n many negative requirements {Nk}k≤n having
higher priority than P〈e,n〉. For each k ≤ n, once Nk set up a restriction r(k, s), then
P〈e,n〉 cannot change its parameters less than R(k, s) anymore until some P〈e′,n′〉 higher
than Nk receives attention. So P〈e,n〉 may make at most 2n-times mistakes by putting
clopen sets into U z

n. The measure of the sum of these mistakes is no more than
2n · 2−2e−2n+1. Thus for e ≥ 2,

µ(V z
e ) ≤

∑
n∈ω

(2n) · 2−2e−2n+1 ≤
∑
n∈ω

2−2e−n+1 = 2−2e+2 ≤ 2−e.

So {V z
e }e≥2 is a z-Martin-Löf test. By the definition of V z

e , U∅
′

2e ⊆ V z
e for every e.

So
⋂
e∈ω U

∅′
e ⊆

⋂
e∈ω V

z
e .

This completes the proof. �

Corollary 4.2. 2 For any reals x ≥T ∅′ and z, the followings are equivalent:

(1) z is x-Schnorr random;
(2) For any real y with y′ ≤T x, z is weakly-2-random relativized to y;
(3) For any real y with y′ ≤T x, z is Martin-Löf-random relativized to y.

So Lx = {y | y′ ≡T x} belongs to F(Sch(x)).

Proof. (1) =⇒ (2): Suppose that y′ ≤T x and z ∈ {Uy
e }e∈ω is a generalized Martin-

Löf test relativized to y. Since the statement “µ(Uy
e ) > p” is Σ0

1(y) when p ranges
over rationals and e ranges over ω, it is not difficult to see that {Ue}ye∈ω can be covered
by a Schnorr test relativized to x. So z must be weakly-2-random relativized to y

(2) =⇒ (3) is obvious.

2Mr. Peng, in his Master Thesis [19], studied the so-called L-randomness, which is the collection
of random reals relativized to all low reals.
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We show that (3) =⇒ (1). Since x ≥T ∅′, there is a real z0 ≤T x so that z′0 ≡T x.
Relativizing the proof of Theorem 4.1 to z0, every x-Schnorr random real is Martin-
Löf-random relativized to y for some y with z0 ≤ y and y′ ≤T x. �

It should be pointed out that ∅′ is the least Turing degree in High(Sch,ML) (see
[6]). So Corollary 4.2 characterizes all the relativized Schnorr randomness stronger
than Martin-Löf randomness.

We give an application of Theorem 4.1 to LR-degrees.

Corollary 4.3. For any pair of low reals x and y, there is a low real z ≥LR x, y.

Proof. It is easy to see that given any two low reals x and y and universal x- and
y-Martin-Löf test {V x

n }n∈ω and {V y
n }n∈ω, there is a ∅′-Schnorr test {U∅′n }n∈ω so that⋂

n∈ω U
∅′
n ⊃

⋂
n∈ω V

x
n ∪

⋂
n∈ω V

y
n . Then by Theorem 4.1, there is a real z with z′ ≤T ∅′

such that there is z-Martin-Löf-test {V z
n }n∈ω so that

⋂
n∈ω V

z
n ⊇

⋂
n∈ω U

∅′
n . So every

z-random real is both x- and y-random. �

Diamondstone, by a direct argument, proves the following stronger result.

Theorem 4.4 (Diamondstone [3]). For any pair of low reals x and y, there is a low
c.e. real z ≥LR x, y.

4.2. On low random reals. We prove the following result.

Theorem 4.5. For every low real z, there is a low random real x ≥LR z.

The proof of Theorem 4.5 is a combination of Kučera’s coding with the proof of
low basis theorem. We need a technique lemma.

Lemma 4.6 (Kučera [11] and Gács [7], see Lemma 3.3.1 in [18]). Suppose T ⊆ 2<ω is
a tree and σ ∈ 2<ω. If µ(T � σ) ≥ 2−r−|σ| for some r ∈ ω where T � σ = {τ ∈ T | τ ≺
σ∨τ � σ}. Then there are two distinct strings σ0, σ1 � σ with |σ0| = |σ1| = |σ|+r+1
so that µ(T � σi) > 2−r−1−|σi| for i = 0, 1.

Proof. of Theorem 4.5.

If z is low and {Ũ z
n}n∈ω is a z-Martin-Löf test, then there must exist a ∅′-Schnorr

test {U∅′n }n∈ω so that
⋂
n∈ω Ũ

z
n ⊆

⋂
n∈ω U

z
n. So it is sufficient to prove that for every

∅′-Schnorr test {U∅′n }n∈ω, there is a low random real x and an x-Martin-Löf test
{V x

n }n∈ω so that for every n, U∅
′

2n ⊆ V x
n .

Fix a computable tree T ⊆ 2<ω so that [T ] = {x ∈ 2ω | ∀n(x � n ∈ T )} only
contains Martin-Löf random reals. We may assume that µ([T ]) > 2−1.

For every e, let Qe = {σ ∈ 2<ω | Φσ
e (e)[|σ|] ↑} be a computable tree. Let f : ω 7→

P<ω(2<ω) be a computable bijection where P<ω(2<ω) is the collection of all finite
subsets of 2<ω.
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Since {U∅′e }e∈ω is a ∅′-Schnorr test, there is a ∅′-computable function g : ω×ω 7→ ω
so that for any two numbers e, n, g(e, n) is the unique number m so that

f(m) = U∅
′

e � n− U∅′e � (n− 1)

where U∅
′
e � n is a finite subsets so that

U∅
′

e � n = U∅
′

e ∩ 2≤l
e
n = {σ ∈ 2<ω | |σ| ≤ len ∧ σ ∈ U∅

′

e }

where len is the least number l such that µ(U∅
′
e ∩ 2l) > 2−e(1 − 2−2n

). Note that
µ(f(m)) ≤ 2−e−2n+1.

We do the coding construction. It is essentially an effective forcing argument.
At level 0, let T0 = T , σ0 = λ, r0 = 1.
Suppose at level s, we have the following parameters: Ts is a computable tree;

σs ∈ 2<ω so that |σs| ≥ s and for every τ ∈ Ts, either τ � σs or τ ≺ σs; rs is a natural
number so that µ(Ts) > 2−rs .

At level s+ 1, check whether µ([Qs] ∩ [Ts]) ≥ 2−rs−1.

Case(1). No. Then µ([Ts])− µ([Qs]∩ [Ts]) ≥ 2−rs−1. Since Us = 2ω −Qs is a c.e. open
set, we may let t be the least level so that µ(Us[t] ∩ [Ts]) ≥ 2−rs−2. Let

T 1
s = Ts ∩ {σ | ∃τ(τ ∈ Us[t] ∧ (σ � τ ∨ σ ≺ τ)}

be a computable tree. Then µ(T 1
s ) ≥ 2−rs−2. Pick up the unique pair js and

ns so that 〈js, ns〉 = s. Let es = 2js . Set rs + 3 + |σs| = rs0 < rs1 < rs2 <
... < rsg(es,ns)

to be a finite sequence so that rsi+1 = rsi + rs + 4 + i for every

i < g(es, ns). Note that

µ(T 1
s � σs) = µ(T 1

s ) ≥ 2−rs−2 ≥ 2−(rs+2)−|σs|.

By Lemma 4.6, it is not difficult to see that there is a finite sequence σs ≺
τ0 ≺ τ1 ≺ ... ≺ τg(es,ns) such that
(1) ∀i ≤ g(es, ns)(|τi| = rsi );
(2) τ0 is the leftmost τ ∈ T 1

s such that σs ≺ τ of length rs0 has the property
that µ(T 1

s � τ) > 2−rs−3−|τ |;
(3) ∀i < g(es, ns)− 1, τi+1 is the leftmost τ ∈ T 1

s such that τi ≺ τ of length
rsi+1 has the property that µ(T 1

s � τ) > 2−rs−4−i−|τ |;
(4) τg(es,ns) is the rightmost τ ∈ T 1

s such that τg(es,ns)−1 ≺ τ of length rsg(es,ns)

has the property that µ(T 1
s � τ) > 2−rs−3−g(es,ns)−|τ |.

Let σs+1 = τg(es,ns), Ts+1 = T 1
s � σs+1 and rs+1 = rs + 3 + g(es, ns) + |σs+1|.

Case(2). Yes. Then let T 1
s = Qs∩Ts be a computable tree. Note that µ(T 1

s ) ≥ 2−rs−1 >
2−rs−2. Then we perform the same construction as in Case(1).

Let σs+1 = τg(es,ns), Ts+1 = T 1
s � σs+1 and rs+1 = rs + 3 + g(es, ns) + |σs+1|.

This finishes the construction at level s+ 1.

Obviously σs ≺ σs+1 for all s. Let x =
⋃
s∈ω σs.
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The construction is ∅′-computable, so x ≤T ∅′. Moreover, to check whether Φx
e(e) ↑

or not, one just needs to check which case applied at level e+ 1 in the construction.
Again, this is ∅′-decidable. So x′ ≤T ∅′.

Now we construct an x-Martin-Löf test {V x
n }n∈ω so that for every n, U∅

′

2n ⊆ V x
n .

To do this, we decode the coding construction using x.
At level 0, let T 0

0 = T , σ0
0 = λ and r0

0 = 1. And put nothing into V x
n for every n.

For any level s ≥ 0, we always keep these parameters unchanged.
For any computable tree T , define µ(T [s]), the measure of T at level s, to be

2−s · |{σ ∈ 2s | σ ∈ T}|.
Without loss of generality, we may assume that µ(T 0

s [s]) > 2−r
0
s−1 for every s ≥ 0.

Suppose at level s, we have the following parameters: a finite sequence of numbers
{ris}i≤s; {T is}i≤s is a finite sequence of computable tree so that µ(T is [s]) > 2−r

i
s and

T i+1
s ⊆ T is for every i ≤ s; σis ≺ x so that |σis| ≥ s and for every τ ∈ T is , either
τ ′ � σ′s or τ ≺ σ′s. Note that it is not necessary that for every i ≤ s, the parameters
corresponding to i are defined. Some of them may be void. We also have a finite
string νs ∈ 2s so that for each i ≥ 0, νs(i) = 0 if and only if µ(Qi ∩ T is [s]) ≥ 2−r

i
s−1.

At level s + 1, check whether there is some i ≤ s so that the parameters corre-
sponding to i are defined and νs(i) = 0 but µ(Qi ∩ T is [s+ 1]) < 2−r

i
s−1.

Case(1) Yes. Then we say that j is injured at level s+ 1 for every j > i. Pick up the
least such i and initialize all the parameters for every j with j > i. Then we
set up νs+1(i) = 1.

Then µ(T is [s])−µ(Qi∩T is [s]) ≥ 2−r
i
s−1. Let Ui be a c.e. open set which is the

complement of Qi. Then let t ≤ s be the least level so that µ(Ui[t] ∩ Ts[s]) ≥
2−r

i
s−2. Let

T 1,i
s = T is ∩ {σ | ∃τ(τ ∈ Us[t] ∧ (σ � τ ∨ σ ≺ τ)}

be a computable tree so that µ(T 1,i
s [s]) ≥ 2−r

i
s−2. Pick up the unique pair ji

and ni so that 〈ji, ni〉 = i. Let ei = 2ji . We try to x-computably find a finite
sequence σis ≺ τ0 ≺ τ1 ≺ ... ≺ τk ≺ x such that
(1) |τ0| = |σis|+ 3 + ris;
(2) ∀j < k − 1(|τj+1| = |τj|+ |σis|+ 4 + j);
(3) τ0 is the leftmost τ ∈ T 1,i

s such that σs ≺ τ of length |τ0| has the property

that µ(T 1,i
s � τ [s]) > 2−r

i
s−3−|τ |;

(4) ∀i < k − 1, τi+1 is the leftmost τ ∈ T 1,i
s such that τi ≺ τ of length

|τ + i+ 1| has the property that µ(T 1,i
s � τ [s]) > 2−r

i
s−4−i−|τ |;

(5) τk is the rightmost τ ∈ T 1,i
s such that τk−1 ≺ τ of length |τk| has the

property that µ(T 1,i
s � τ [s]) > 2−r

i
s−3−k−|τ |.

If these parameters can be found, then we just let σi+1
s+1 = τk, T

i+1
s+1 = T 1,i

s �
σs+1, r

i+1
s+1 = |σs| + k and νs+1(i) = 1. Put all σ ∈ f(k) into V x

ji
if µ(f(k)) <
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2−ei−2ni+1; Otherwise, we cancel this all the parameters defined for i and go
to next level. Keep all the parameters corresponding to i′ ≤ i unchanged.

Case(2) Otherwise. Then for every i ≤ s, if the parameters corresponding to i are

defined, then if νs(i) = 0 then µ(Qi∩T is [s]) ≥ 2−r
i
s−1. But by the construction,

if νs(i) = 1 then µ(Qi ∩ T is [s]) < 2−r
i
s−1 (since “µ(Qi ∩ T is) < 2−r

i
s−1 ” is a

Σ0
1-fact). Thus, in this case, if the parameters corresponding to i are defined,

then νs(i) = 0 if and only if µ(Qi ∩ T is [s]) ≥ 2−r
i
s−1.

Case(2.1) Every i ≤ s is defined. Then keep the parameters for i = s + 1 be
undefined (the slow down construction is to avoid duplicate construction).

Case(2.2) Otherwise. Pick up the least i ≤ s so that the parameters corresponding
to i are undefined. There are two subcases:

Case(2.2.1) νs(i− 1) = 1. Then µ(Qi−1 ∩ T i−1
s [s+ 1]) < 2−r

i−1
s −1. Then just do

the same the construction as in Case (1) by replacing i with i− 1.
We can define the parameters corresponding to i and put σ ∈ f(k)
into V x

ji
if µ(f(k)) < 2−ei−2ni+1.

Case(2.2.2) νs(i − 1) = 0. Then µ(Qi−1 ∩ T i−1
s [s + 1]) ≥ 2−r

i−1
s −1. Then let

T 1,i−1
s = Qs ∩ T i−1

s be a computable tree. Note that µ(T 1,i−1
s [s +

1]) ≥ 2−rs−1 > 2−rs−2. Then we perform the same construction as
in Case(2.2.1), define the corresponding the parameters to i and
put σ ∈ f(k) into V x

ji
if µ(f(k)) < 2−ei−2ni+1.

This finishes the decoding construction at level s+ 1. �

Obviously {V x
n }nω is an x-c.e. sequence of open sets.

Lemma 4.7. (1) For any i ∈ ω and level s, if νs(i) = 1 > 0 = νs+1(i), then there
must be some i′ < i so that νs(i

′) 6= νs+1(i
′);

(2) For any i ∈ ω, |{s | νs(i) 6= νs+1(i)}| ≤ 2i.

Proof. For (1). For any level s, if s is the first level so that νs(i) = 1, then µ(Qi ∩
T is [s + 1]) < 2−r

i
s−1 and so µ(Qi ∩ T is) < 2−r

i
s−1. Thus for any level t > s, if the

parameters corresponding to i are not initialized between any level s and t, then
νt(i) = νs(i). This means that νt(i) changes from 1 to 0 at any level t+ 1 > s only if
the parameters corresponding to i are initialized at level t + 1. Thus there must be
some i′ < i so that νt(i

′) 6= νt+1(i
′).

For (2). Immediately from (1). �

Lemma 4.8. (1) For some j0, {V x
j }j>j0 is an x-Martin Löf test;

(2) For every j, U∅
′

2j ⊆ V x
j .

Proof. For (1). For every j, at any level s + 1, we put something into Vj only if
νs+1(in) 6= νs(in) and in = 〈j, n〉 for some n. Moreover, at each time, we put at most
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2−2j−2n+1 measure of reals into V x
j . By Lemma 4.7, if j is big enough, then

µ(V x
j ) ≤

∑
n∈ω

2in · 2−2j−2n+1 =
∑
n≤j

2in · 2−2j−2n+1 +
∑
n≥j

2in · 2−2j−2n+1

≤
∑
n≤j

2j
3 · 2−2j−2n+1 +

∑
n≥j

2n
3 · 2−2j−2n+1 ≤ 2−j.

So {V x
j }j>j0 is an x-Martin Löf test for some big enough j0.

For (2). For any j and σ ∈ U∅
′

2j , let n be the unique number so that σ ∈ U∅
′

2j �
n − U∅

′

2j � (n − 1). Let i = 〈j, n〉 and si be the last level at which the parameters
corresponding to i are defined. If σ ∈ V x

j [si − 1], then we are done. Otherwise, we

claim that σ ∈ V x
j [si]. Obviously, νt(k) = νsi

(k) and T kt = T ksi
for any k ≤ i and

t ≥ si. Then, by an easy induction on k ≤ i, Tk, the tree constructed at level k in
the coding construction, is the same as T ksi

for any k ≤ i. So T 1
i = T 1,i

si
. Pick up the

unique pair ji and ni so that 〈ji, ni〉 = i. Let ei = 2ji . We may x-computably find a
finite sequence σis ≺ τ0 ≺ τ1 ≺ ... ≺ τk ≺ x such that

(1) |τ0| = |σis|+ 3 + ris;
(2) ∀j < k − 1(|τj+1| = |τj|+ |σis|+ 4 + j);
(3) τ0 is the leftmost τ ∈ T 1,i

s such that σs ≺ τ of length |τ0| has the property

that µ(T 1,i
s � τ [s]) > 2−r

i
s−3−|τ |;

(4) ∀i < k − 1, τi+1 is the leftmost τ ∈ T 1,i
s such that τi ≺ τ of length |τ + i+ 1|

has the property that µ(T 1,i
s � τ [s]) > 2−r

i
s−4−i−|τ |;

(5) τk is the rightmost τ ∈ T 1,i
s such that τk−1 ≺ τ of length |τk| has the property

that µ(T 1,i
s � τ [s]) > 2−r

i
s−3−k−|τ |.

By the coding construction, k is exactly g(j, n). So f(k) = f(g(j, n)) = U∅
′

2j � n−U∅′
2j �

(n − 1). By the decoding construction, we put all the elements in f(k) into V x
j at

level si. So σ ∈ V x
j [si]. �

This completes the proof of Theorem 4.5.

By Proposition 3.7 and Theorem 4.5, we have the following conclusion.

Corollary 4.9. ML∩{x | x′ ≡T ∅′} ∈ F(Sch(∅′)). So Sch(∅′) is closed upward in the
both K-degrees and C-degrees.

Proof. Obviously every ∅′-Schnorr random is x-Martin-Löf random for every x ∈
ML∩{y | y′ ≡T ∅′}. Morover, By Theorem 4.5 and Corollary 4.2, if z is x-Martin-Löf
random for every x ∈ ML ∩ {y | y′ ≡T ∅′}, then z must be ∅′-Schnorr random. So
ML ∩ {y | y′ ≡T ∅′} ∈ F(Sch(∅′)).

By Proposition 3.7, Sch(∅′) is closed upward in the both K-degrees and C-degrees.
�

By the relativization of the proof of Theorem 4.5, we have the following results.
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Corollary 4.10. Suppose both x and z are low, then there is a z-random real y so
that y ⊕ z is low and y ⊕ z ≥LR x.

Corollary 4.11. There is a sequence of reals {zn}n∈ω so that for every n,

(1) zn+1 is ⊕i≤nzi-random;
(2) ⊕i≤nzi is low;
(3) z = ⊕i∈ωzi is LR-above all the low reals.

4.3. On Π(Sch(∅′)). We characterize Π(Sch(∅′)).
Before proceeding with the proof, we need the following technique theorems.

Theorem 4.12 (Nies [18]). If y ≤T x′ and y ≤LR x, then y′ ≤T x′.

Theorem 4.13 (Kjos-Hanssen, Miller and Solomon [10]). For any two real x and y,
x ≤LR y and x ≤T y′ if and only if for every Π0

1(x) set P , there is a Σ0
2(y) set Q ⊆ P

such that µ(Q) = µ(P ).

Let BL = {x | ∃z(z′ ≡T ∅′ ∧ x ≤LR z)}. By Theorem 4.12, every ∆0
2 real in BL is

low.
We remark that BL contains lots of reals due to the following theorem.

Theorem 4.14 (Barmpalias, Lewis and Stephan [1]). There is a c.e. real x with
x′ ≤T ∅′ so that the set {z | z ≤LR x} contains a perfect Π0

1 subset.

Proposition 4.15. BL ∈ F(Sch(∅′)).

Proof. It is clear that if z ∈ Sch(∅′) and x ≤LR y where y is low, then z is Martin-Löf
random relativized to x.

By Theorem 4.1, if z is Martin-Löf random relativized to x for every low real x,
then z ∈ Sch(∅′). �

So F(Sch(∅′)) exists. We show that BL = Π(Sch(∅′)).

Theorem 4.16. If x 6∈ BL, then there is a ∅′-Schnorr random real which is not
x-random.

We use a forcing argument to prove Theorem 4.16.
Let P = (P,≤) where P is the collection of Π0

1(y) set of reals having positive
measure for some low real y. For P1, P2 ∈ P, P1 ⊆ P2 if and only if P1 ≤ P2.

Lemma 4.17. For any low real y, the class

Dy = {P ∈ P | P only contains Martin-Löf random reals relativized to y ∧ µ(P ) > 0}
is dense. In other words, for any P0 ∈ P, there is a Q ≤ P0 in Dy.
Proof. Given a condition P0 ∈ P and a low real y0 so that P0 is Π0

1(y0). By Theorem
4.3, there is a low real z so that every z-random real is both y0- and y-random.

Let P be a Π0
1(y) set of reals so that P only contains y-random reals and µ(P∩P0) >

µ(P0)
2

. Note that y, y0 ≤T ∅′ ≡T z′ and y, y0 ≤LR z. So by Theorem 4.13, there are
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Σ0
2(z) sets Q̃, Q̃0 ⊆ P such that µ(Q̃) = µ(Q̃0) = µ(P ). Then there are Π0

1(z) sets Q
and Q0 so that

(1) Q0 ⊆ Q̃0 ⊆ P0 and Q ⊆ Q̃ ⊆ P ; and

(2) µ(P0 −Q0) + µ(P −Q) ≤ µ(P0)
4

.

Let Q1 = Q ∩Q0 ⊆ P ∩ P0 be a Π0
1(z) set of reals. Moreover,

µ(Q0 ∩Q) ≥ µ(P0 ∩ P )− (µ(P0 −Q0) + µ(P −Q)) ≥ µ(P0)

2
− µ(P0)

4
=
µ(P0)

4
.

Since Q1 ⊆ P has positive measure, we have that Q1 ∈ Dy and Q1 ≤ P0. �

We need a lemma due to Kučera.

Lemma 4.18 (Kučera[11]). For any Π0
1 set of reals P and Martin-Löf random real

x, there is a real y ∈ P so that x =∗ y.

Fix a universal x-Martin-Löf test {Ux
n}n∈ω.

Lemma 4.19. For any n, the class

Dn = {P ∈ P | P ⊆ Ux
n}

is dense.

Proof. Given a condition P0 ∈ P and a low real y0 so that P is Π0
1(y0). Note that

we may find a Π0
1(y0) set P ′0 which only contains y0-random reals and has big enough

measure so that µ(P0 ∩P ′0) > 0. So we may assume that P0 only contains y0-random
reals. Note that for every y0-random real z, there is a real z0 ∈ P0 so that z =∗ z0.

Since x 6≤LR y0, there must be a y0-random real which is not x-random. We claim
that for every i, Ux

i ∩ P0 6= ∅. Otherwise, there is some i so that Ux
i ∩ P0 = ∅. Since

{Ux
i }i∈ω is a universal x-Martin-Löf test, every real in P0 is x-random. Since, by

Lemma 4.18, for every real z, there is a real z0 ∈ P0 so that z =∗ z0, then z must be
x-random. Thus x ≤LR y0 which contradicts to x 6≤LR y0.

So there must be some σ with [σ] ⊆ Ux
n but [σ] ∩ P0 6= ∅. Let P = [σ] ∩ P0. Since

P is Π0
1(y0) and only contains y0-random reals, µ(P ) > 0. Then P ∈ Dn. �

So if g, as a generic real corresponding to P, meets all the previous dense sets, then
g must be (by Lemma 4.17) y-random for every low real y but not (by Lemma 4.19)
x-random.

This completes the proof of Theorem 4.16.

By Proposition 3.2, we have the following result.

Corollary 4.20. BL = Π(Sch(∅′)) = Low(Sch(∅′),ML).
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5. The Σ-type characterization of ∅′-Schnorr randomness

In this section, we study Σ(Sch(∅′)) by applying the methods in Section 3.
We need a technique result due to Miyabe.

Theorem 5.1 (Miyabe [16]). Given a sequence reals {zn}nω so that for every n, zn+1

is ⊕i≤nzi-random. Then there is a sequence {z∗n}n∈ω so that for every n, z∗n =∗ zn
and z∗ = ⊕n∈ωz∗n is Martin-Löf random.

Barmpalias, Miller and Nies give a characterization of High(Sch(∅′),ML).

Theorem 5.2 (Barmpalias, Miller and Nies [2]). For any real x, x ∈ High(ML, Sch(∅′))
if and only if ∅′ is c.e. traceable by x.

Then we have the following result characterizing the reals LR-above all the low
reals.

Corollary 5.3. A real z is an upper bound of the collection of low LR-degrees if and
only if ∅′ is c.e. traceable by z.

Proof. By Corollary 4.2 and Proposition 3.5, z is an upper bound of the collection
of low LR-degrees if and only if z ∈ High(ML, Sch(∅′)). Then, by Theorem 5.2,
z ∈ High(ML, Sch(∅′)) if and only if ∅′ is c.e. traceable by z. �

Finally by putting all the previous results together, we prove the the following
theorem.

Theorem 5.4. (1) ML ∩ High(ML, Sch(∅′)) ∈ G(Sch(∅′));
(2) Σ(Sch(∅′)) = High(ML, Sch(∅′)).

Proof. For (1). It suffices to show that for every real x ∈ Sch(∅′), there is real
Martin-Löf random real z∗ ∈ High(ML, Sch(∅′)) so that x is z∗-random. Fix a real
x ∈ Sch(∅′) and a real z = ⊕n∈ωzn as in Corollary 4.11. Since z is LR above all the
low reals, by Corollary 5.3, z ∈ High(ML, Sch(∅′)).

Note that x is ⊕i≤nzi-random for every n. So by van-Lambalgen’s Theorem, zn+1

is x ⊕ (⊕i≤nzi)-random for every n. By Theorem 5.1, there is a Martin-Löf random
real x∗⊕z∗ = x⊕(⊕n∈ωz∗n) as in Theorem 5.1 (viewing x as z−1). Obviously z∗ is LR-
above all the low reals. By Corollary 4.2, z∗ ∈ High(ML, Sch(∅′)). By van-Lambalgen
Theorem, x∗ is z∗-random. Since x =∗ x∗, x is also z∗-random.

For (2). By (1), Σ(Sch(∅′)) exists. Thus by Proposition 3.4,
Σ(Sch(∅′)) = High(ML, Sch(∅′)). �

6. Some remarks on other randomness notions

It is clear that both Π and Σ are undefined over A if A is weaker than ML. One
may ask whether both maps Π and Σ are defined over all the randomness notions
stronger than ML. The answer is no.
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Theorem 6.1 (Downey, Nies, Weber and Yu [4]). Low(W2R,ML) = Low(ML,ML).

Suppose that Π(W2R) exist,, then Π(W2R) = Low(ML,ML). Pick up a Martin-
Löf random real x which is not weakly-2-random, then x is Martin-Löf random relative
to any real in Low(ML,ML), a contradiction.

We don’t know whether Σ(A ) can be undefined for some randomness notion A
stronger than Martin-Löf randomness. For the weak-2-randomness, Barmpalias et al
have the following theorem.

Theorem 6.2 (Barmpalias, Miller and Nies [2]). For any real x, x ∈ High(ML,W2R)
if and only if for any function f ≤T ∅′, there is a number n so that Φx

n(n) ↓ and
f(n) = Φx

n(n).

But we don’t know whether Theorem 6.2 can be used to show the existence of
Σ(W2R).3

A plenty of highness properties related to other randomness notions stronger than
Martin-Löf randomness were explored in [2]. But we don’t know whether the char-
acterizations exist.
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[14] Joseph S. Miller and André Nies. Randomness and computability: open questions. Bull. Symb.
Log., 12(3):390–410, 2006.

[15] Joseph S. Miller and Liang Yu. On initial segment complexity and degrees of randomness.
Trans. Am. Math. Soc., 360(6):3193–3210, 2008.

[16] Kenshi Miyabe. An extension of van lambalgen’s theorem to infinitely many relative 1-random
realse. Notre Dame J. Formal Logic, 51(3):337–349, 2010.
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