Some questions in higher randomness

Liang Yu
Institute of Mathematical Science
Nanjing University

May 24, 2010
Given a class $\Gamma \subseteq \mathcal{P}(2^\omega)$, a real x is Γ random if $x \notin P$ for all null set $V \in \Gamma$.

x is Δ^1_1-random if $x \notin P$ for any Δ^1_1-null set P.

x is Π^1_1-random if $x \notin P$ for any Π^1_1-null set P.

Theorem (Chong, Nies and Yu)

x is Π^1_1-random if and only if x is Δ^1_1-random and $x \not\geq_h \emptyset$.

Given a class $\Gamma \subseteq \mathcal{P}(2^\omega)$, a real x is Γ random if $x \notin P$ for all null set $V \in \Gamma$.

x is Δ_1^1-random if $x \notin P$ for any Δ_1^1-null set P.

x is Π_1^1-random if $x \notin P$ for any Π_1^1-null set P.

Theorem (Chong, Nies and Yu)

x is Π_1^1-random if and only if x is Δ_1^1-random and $x \not\geq_h O$.
Theorem (Chong, Nies, Yu)

There are 2^{\aleph_0} many reals low for Δ^1_1-randomness.
Lowness for randomness

x is low for Γ-random if every Γ-random real is $\Gamma(x)$-random.

Theorem (Chong, Nies, Yu)

\[There are \, 2^{\aleph_0} \, many \, reals \, low \, for \, \Delta^1_1 \,-\,randomness.\]
A real x is Γ-random cuppable if there is a Γ-random real y so that $x \oplus y \geq_h \emptyset$.

Since every hyperdegree greater or equal to \emptyset contains a Δ^1_1-random real, we have that every real is Δ^1_1-random cuppable.

Question

Is every nonhyperarithmetic real Π^1_1-random cuppable?
A real x is Γ-random cuppable if there is a Γ-random real y so that $x \oplus y \geq_h \emptyset$.
Since every hyperdegree greater or equal to \emptyset contains a Δ^1_1-random real, we have that every real is Δ^1_1-random cuppable.

Question

Is every nonhyperarithmetic real Π^1_1-random cuppable?
A real x is Γ-random cuppable if there is a Γ-random real y so that $x \oplus y \geq_h \emptyset$. Since every hyperdegree greater or equal to \emptyset contains a Δ^1_1-random real, we have that every real is Δ^1_1-random cuppable.

Question

Is every nonhyperarithmetic real Π^1_1-random cuppable?
Theorem (Harrington, Nies and Slaman)

A real is low for Π^1_1-randomness if and only if it is low for Δ^1_1-randomness and non-Π^1_1-random cuppable?

Proof.

$\quad \Rightarrow: \{y \mid y \oplus x \geq_h x\}$ is a $\Pi^1_1(x)$-null set. The set $C = \bigcup\{B \mid B \in \Delta^1_1 \land \mu(B) = 0\}$ is a Π^1_1-null set. So if $2^\omega - C$ contains a non-$\Delta^1_1(x)$ random real, then it must contain a non-$\Delta^1_1(x)$ random z so that $x \oplus z \not\geq O$. Then z must be Π^1_1-random, a contradiction.

Another direction. The largest $\Pi^1_1(x)$-null set Q is a union of countably many $\Delta^1_1(x)$-null set Q_n with $P = \{y \mid y \oplus x \geq_h O\}$. Some questions in higher randomness.
Lowness for Π^1_1-randomness

Theorem (Harrington, Nies and Slaman)

A real is low for Π^1_1-randomness if and only if it is low for Δ^1_1-randomness and non-Π^1_1-random cuppable?

Proof.

\implies: $\{y \mid y \oplus x \geq_h x\}$ is a $\Pi^1_1(x)$-null set. The set $C = \bigcup\{B \mid B \in \Delta^1_1 \land \mu(B) = 0\}$ is a Π^1_1-null set. So if $2^\omega - C$ contains a non-$\Delta^1_1(x)$ random real, then it must contain a non-$\Delta^1_1(x)$ random z so that $x \oplus z \not\in \mathcal{O}$. Then z must be Π^1_1-random, a contradiction.

Another direction. The largest $\Pi^1_1(x)$-null set Q is a union of countably many $\Delta^1_1(x)$-null set Q_n with $P = \{y \mid y \oplus x \geq_h \mathcal{O}\}$.
Question

Is there a nonhyparithmetic real low for Π^1_1-randomness?
A real x is strong Π^1_1-ML-random if x passes all the generalized Π^1_1-ML-test.

Theorem (Yu)

No left-Π^1_1-random real can be strongly Π^1_1-ML-random.
Strong Π_1^1-ML-randomness

A real x is strong Π_1^1-ML-random if x passes all the generalized Π_1^1-ML-test.

Theorem (Yu)

No left-Π_1^1-random real can be strongly Π_1^1-ML-random.
Every Π^1_1-random real is strongly Π^1_1-ML-random real.

Question

Is there a strongly Π^1_1-ML-random real which is not Π^1_1-random? Or is there a strongly Π^1_1-ML-random real x with $x \geq_h \emptyset$?
Strong Π_1^1-ML-randomness vs Π_1^1-randomness

Every Π_1^1-random real is strongly Π_1^1-ML-random real.

Question

Is there a strongly Π_1^1-ML-random real which is not Π_1^1-random?
Or is there a strongly Π_1^1-ML-random real x with $x \geq_h \emptyset$?
A real x is Γ-Kurtz random if x does not belong to any Γ closed null set.

By effective descriptive set theory, a real x is Δ^1_1-Kurtz random if and only if x does not belong to any closed null set with a Δ^1_1-code. This greatly simplifies the study of Δ^1_1-Kurtz randomness.

Theorem (Kjos-Hanssen, Nies, Stephan and Yu)

If $\omega^x_1 = \omega^{CK}_1$, then x is Δ^1_1-Kurtz random if and only if x is Π^1_1-Kurtz random.
A real x is Γ-Kurtz random if x does not belong to any Γ closed null set. By effective descriptive set theory, a real x is Δ^1_1-Kurtz random if and only if x does not belong to any closed null set with a Δ^1_1-code. This greatly simplifies the study of Δ^1_1-Kurtz randomness.

Theorem (Kjos-Hanssen, Nies, Stephan and Yu)

If $\omega^x_1 = \omega^{CK}_1$, then x is Δ^1_1-Kurtz random if and only if x is Π^1_1-Kurtz random.
A real x is Γ-Kurtz random if x does not belong to any Γ closed null set.

By effective descriptive set theory, a real x is Δ^1_1-Kurtz random if and only if x does not belong to any closed null set with a Δ^1_1-code. This greatly simplifies the study of Δ^1_1-Kurtz randomness.

Theorem (Kjos-Hanssen, Nies, Stephan and Yu)

If $\omega^x_1 = \omega^\text{CK}_1$, then x is Δ^1_1-Kurtz random if and only if x is Π^1_1-Kurtz random.
Lowness for Π_1^1-Kurtz randomness

Theorem (KH, Nies, Stephan and Yu)

Every low for Π_1^1-Kurtz randomness real is low for Δ_1^1-Kurtz randomness.

Proof.

The set $C = \bigcup\{B \mid B$ is closed, null and $\Delta_1^1\}$ is Π_1^1 and null.

Question

Is there a nonhyperarithmetic real which is low for Π_1^1-Kurtz randomness?
Theorem (KH, Nies, Stephan and Yu)

Every low for Π_1^1-Kurtz randomness real is low for Δ_1^1-Kurtz randomness.

Proof.

The set $C = \bigcup\{B \mid B$ is closed, null and $\Delta_1^1\}$ is Π_1^1 and null.

Question

Is there a nonhyperarithmetic real which is low for Π_1^1-Kurtz randomness?
Thanks