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ABSTRACT

We prove that the exponent set of symmetric primitive (0, 1) matrices with zero
trace (the adjacency matrices of the simple graphs) is {2,3,...,2n — 4]\ §, where S is
the set of all odd numbers in {n —2,n —1,...,2n —5}). We also obtain a characteriza-
tion of the symmetric primitive matrices with zero trace whose exponents attain the
upper bound 2n —4.
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1. INTRODUCTION

An n X n (0,1) matrix A over the binary Boolean algebra {0,1) is called a
primitive matrix if there exists a positive integer k such that A¥ = ]. The
least such k is called the exponent of A, denoted by y(A). The associated
digraph of A=(a,)), denoted by G(A), is the digraph with vertex set
V(G(A) =(1,2,...,n) such that there is an arc from i to j in G(A) iff
a,=1A digraph G is primitive if there exists an integer k > 0 such that for
all ordered pairs of vertices i, j € V(G) (not necessarily distinct), there is a
walk from i to j with length k. The least such k is called the exponent of
the digraph G, denoted by (G). Clearly,"a matrix A is primitive iff its
associated digraph G(A) is primitive, and in this case we have y(A)=
y(G(A)). Other definitions and notation not in this article can be found
in [1]. .

Let L(D)={y,,¥:---,7,)} denote the sct of distinct lengths of cycles of
the digraph D. Let i, j be vertices of the digraph D. The exponent from i to
j, denoted by (i, j), is the least integer y such that there exists a walk of
length m from i to j for all m>y. '

The properties of a primitive digraph and its exponent given in the
following three propositions are well known.

Provosimion 1. A digraph D is primitive iff D satisfies the following two
condilions:

(i) D is strongly connected;
(i) ged {yy,...,72) =1, where (D) ={y,,..., 7).

When A is a symmetric matrix, G(A) can be regarded as an undirected
graph. Since G(A) must contain a 2-cycle in this case, it follows that:

Prorosition 2. An undirected graph G is primitive iff G is connected
and has odd eycles.

By the definition, it is obvious that:

Prorosition 3. y(D)= max; ;e v(u)?("vj)-

We will find the following result very useful.

Prorosirion 4. Let G be a primitive simple graph, and let i and j be any
pair of vertices in V(G). If there are two walks Py, Py from i to j with lengths
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ky and k, respectively, where k, and k, have different parity, then y(i, j) <
max{k,, k,} — 1.

3

Proof. Note that every vertex belongs to a cycle of length 2, so we can

~ get walks of all lengths k., +2¢, m=1o0r 2 and ¢ >0, from i to j by using
2-cycles. . e

2. THE MAIN RESULT

.]n t‘he study of primitive matrices, we are interested in the problem of
estimating the exponent y(A) and characterizing the exponent set. In 1950,

H. Wielandt [7] stated the exact general upper bound y(A) <(n — 1)* +1 for
n X n primitive matrices. Let

={me Z*|m=y(A) for some n X n primitive matrix A}.

Then
E,c{1.2,...(n-1)%+1).

The problem of determining the exponent set E, is completely solved in [4]
and [8]. "

One can also ask for the exponent set of some particular classes of
primitive matrices. In [3] the exact upper hound of the exponent set of n X n
doubly stochastic primitive matrices was determined. Then [2] and [5]
considered the exponent set of n X n nearly reducible primitive matrices,
and got a new estimate, the exact upper and lower bounds of the exporient
set. Besides the primitive tournament matrices, the only complete descrip-
tion is in [6] for the exponent set E, of n X n symmetric primitive matrices:

E,=(1,2,....2n -2\ D, (a)

where D is the set of odd numbers in {n,n +1,...,2n — 9).

\ln this paper, we consider a particular class .of primitive matrices—
symmelric primitive matrices with zero trace, i.e., the adjacency matrices of
the simple primitive graphs. Denote its exponent set by E. That is,

E,=[me Z*|m=1y(A) for some n X n symmetric

primitive matrix A with zero diagonal}.

{ Clearly, E, € E,. In the following sections, we prove
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Tueorem 1. En={2,3,...,2rz—4}\5, where S is the set of all odd

" numbers in (n—2.n—1,...,2n—5}.
Let P =u,...0; be a path of length k —1, and let C be a cycle of length

I, with v € C. The connected graph L is called (v,, vg; k, D-lollipop, or a

" (v,,0v;) lollipop for short, obtained by identifying the vertices vy and v; see

Figure 1. C is denoted by C(L), and P hy P(L). .
Let G be a primitive simple graph. By [6, Theorem 2.2], we have

y(G) <2n—4. (B)
We next characterize those G attaining this upper bound.

Tneonem 2. Y(G)=2n—4 iff G=G, where Gy is a (v, 0,90~
2, 3)-lollipop.

Proof. Sufficiency: It is easy to see that any walk of odd length from v,
to vy in G, must pass through all vertices of G. Thus any walk of odd length
from v, to v; has length at least 2n —3. Hence ¥(Gy) > 2n —4 by defini-
tion. So ¥(G,)=2n—4 by (B). '

Necessity: If y(G)=2n —4, then there is at least one odd cycle C with
length r > 3 in G, sinke G is primitive. On the other hand, by Proposition 3,
there are two vertices (say v, and v) in G with (v, v)=2n—4. Let P
be a shortest path from v, to vy in G, and [ its length. If PN C # @, then
there exist v, v, € PN C (perhaps v, =v,), where v, (v,) is the first (last)
vertex on C along P. Let v, v, divide C into two parts C',C" and let P, be
the part of P from v, to v, and P, be the part of P from v, to vy. Thus the
lengths of walks P,UC'U Py and PyUC"U Py have different parity and are
not greater than n, so y(v,,v;) <n by Proposition 4. This is a contradiction.
Hence PNC= . Let P, be a shortest path from P to C. Clearly, the
length of P, is at most n—r —1. Also, the lengths of the walks P and
PU2P,UC have different parity, and are not greater than 2n—r —1 So
ylo,o)<2n—1— I—1. Thus I =0 and r = 3, since y(v,,0,)=2n—4. 5o

the length of Py mustbe n —3. Therefore G is a (v}, vg,, _g:2n —2,3)-lollipop. %

.1J|1310"_kun_k+l — Uj

£ 3. EXISTENCE OF GRAPHS WITH GIVEN EXPONENT

In order to deterinine E,, we first establish that certain numbers belong

Jto E, and then in next section find the gaps of E .

Lemma L (2,4,....2n—4lCE

I
Proof. Consider the graph G, in Fi
2
the following, we will prove T(G:)’. 2(’?“-:3)‘, where k €{0,1,...,n -3] In
Let VI = [UI,DE,. T U"—k}’ VZ ={Un—k+liun—k+2l o -,Unl

Case 1. If v;,v, € V}, by Propositi
. .0y 1» by Proposition 4 we h i
exist paths from o, to v, with length 2 and 3 e Plia S Jahics et
Case 2. i i< v
walksas':z : If E“:jni ‘;E;let i<j=n—k+1y. Note that the lengths of the
Vi1 0y iy U U0, 4 D 0 v, | di
ent parity. So, by Proposition 4 o o Elh ), B e il
e position 4, we have y(v;,v,) < 2(k +1). In particular,
Case 3. If v, €V, v, E(}fz, let j=n—k+y. If v+0, let W,=
and W, = o,p,, 0,0 v
) = - avaen 1
:;,:),_lulvnikuﬂ_kﬂ...vj; if ;=0 let Wy=0,¢ :u ktik+tl>j and JW O_r
18 k=100 -k¥n—k+1--- 05 Then the lengths of \?V- nd W, | o
. n—k+1: and W, have diff
parity. So by Proposition 4 we have y( v,0)<y +f‘2 <k +22< 2(;c3 -:-Il)ﬂrent

Finally, from cases 1, 2 and 3
5 , , and we h )= =
0.1,...,n —2. Therefore (2,4,...,.2n -4} C E . - 2(k+1),k;

LEmma 2,

() Ifn=2k+]1, then {3.5,... 2k
) 1 1, 5,....2k —3=n—4) c
(ii) If n=2k, then (3,5,...,2k -3 =n —n3] glﬁg.ﬁn'

F~~_ O\

V. V. v, . * 7. o
2 3 (] Vaak Vak+t V=W kay va !

Fic. 2.

125



BOLIAN LIU ET AL, .
126

Proof. (i) If n=2k+1, we consider G, and F"s in Figur(i .'],, wll:ae‘rlz
I=4,5,...,(n—1)/2. Using Proposition 4 as in proving Lemma5 . “;k !
¥(G;)=3 and y(Gy)=21-3, = 4,5,...,(n —1)/2. Hence {3,5,...,
=n—4jCE,. - = i o B

'(i-i): )If n =2k, we consider G, and Gg in Figurg 4, wh;ere l—(4éE), =:3
(n —1)/2. Using Proposition 4 as in proving Lemma 1, we mveﬁy 4 .
and y(Gg)=21—1,1=4,5,...,4n — 1. Hence {3,5,...,2k =3} C E,,.

Ve V201
- . /\ st
Y Vos a2 Yea e Ve Vew2 202
G,
Fic. 3.
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4. GAPSOF E,

Let L be a (v, vy, k, D-lollipop. Then P(L)U C(L)U P(L) is a walk from
0y to vy in L. It length, 2k + | —2, is called the length of L. Clearly, the

. length of L is odd iff I is odd.

Prorostrion 5. If there is a u

-u walk of length k in a gra};h G, where k
- is odd, then there is a (u, v)-lollip

op in G of odd length at most k, for some v.

Proof. Note that there is an odd cycle in the u-u walk, since k is odd.

AR T T
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Lesiva 30 If G is a primitive simple graph on n vertices, then y(G) is
not odd{n —2,n —1). That is, odd{n —2,n —1) & E,,.

Proof. Suppose there is a simple primitive graph G with ¥(G)=
odd{n —2,n —1). Then for any vertex u € V(G), there is a u-u walk of length
odd{n —2,n —1). By Proposition 5, for any vertex u € V(G), there exists a
(1, uy)-lollipop L, with odd length at most odd{n —2,n — 1). So, in order to
prove this lemma it is enough to prove that if u and o have lollipops L, and
L, of odd lengths at most odd{n —2,n — 1), then there is an even u-v walk of

oE Eb :
nu (a) v . u (b) v

LE i : I8 2
u () v u (d) v
Fic. 8. s
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length at most odd{n —2,n —1) — 1. Note that any u-v path will do as long as
it avoids at least one vertex of G.

Let C,, P, denote C(L,), P(L,) respectively. Similarly define C| and P,.
In the following we divide the proof into four cases. \

Case 1. L,NL,=2. Then, since G is connected, there exists a path
P from L, to L, which is internally disjoint from I, and L.

Case 1,1. P joins P, to P,. Then one of the walks in Figure 5, which all
avoid at least one vertex of G, is even and short enough. :

Case 1.2. P joins P, to C, (or vice versa). Then one of the paths in Figure
6, which each avoid a vertex of G, is even.

Case 13. P joins C, to C,. Then one of the paths in Figure 7, which each

avoid a vertex of G, is even.

Case 2. C,NC,#@. Let x be a vertex in C,NC,. In the following,
our diagrams may now contain verlices which appear to be different but are
actually the same vertex, due to overlapping of the two lollipops. Consider
the four walks (usually not paths) in Figure 8. Either (a) and (b) are both
even or (¢) and (d) are both even. The lengths of the walks in (a) and (b) add
to (the length of L,)+ (the length of L,) <2 (odd{n —2,n — 1)). Hence one
of (2) and (b) has length at most odd{n —2,n — 1). The same is true for (c)
and (d). So one of the four walks has even length at most n —2.

Case 3. P,NP,#@. Let x denote the vertex in P, NP, which is the
closest to v, where the distance from v is measured along the path P,
Cousider the three walks in Figure 9. If (a) has even length, then we are

(a)
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done, since its length is strictly less than the average of the lengths of L, anc
L,. Otherwise, the lengths of (b) and (c) are both even, so we are done as ir
case 2. ' ’

Case 4. C,NC,=@, P,NP,=D,C,NP,+@ (or C,N P, #&). Let1
be the vertex in C, N P, which is closest to v along P, (similar to x in case
3). Consider the two paths in Figure 10. One of them is even, and both avoic

_ a vertex in G (in particular, the vertex at the intersection of P, and C,). Sc

we are done in this case. [ |

111eorem 1 follows from (@), (B), Lemmas 1, 2, and 3, and the fact tha
1¢ 8,
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