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ABSTRACT

In this paper, it is proved that o tournament T' with p vertices has are-pancyelicity, if and
only if T has both 3-are-eyelicity and p-are—cyclieity.

Let T = (V, A) be a tournament with p vertices. A tournament T is called k-
arc—cyclic if for any are (vg,v,) € 4, there is a (k — 1)-path g (v1,70) from v to
ve in T, k(3 < k< p) being an integer. A tournament T is called arc-pancyclic if
for any integer k (3<k<p), T has k-arc-cyclicity.

In 1967, B. Alspach first studied the arc-pancyclicity of tournaments. A suffi-
cient condition on are-pancyclicity of tournaments was presented in [1]. In 1979,
Zhu Yongjin and Tian Feng studied the problem again.® And Zhu Yongjin
put forth the following problem in [3]. “If the squared graph of a tournament T is
completely symmetrical, has T arc-pancyclicity?” By Lemma 2 in [4], we know that
this problem is equivalent to one asking whether or not the 8-arc—cyclicity of a
tournament T is the necessary and sufficient condition for its are-pancyclicity. In
another paper?, we have given a negative answer to this problem in a more general case.
We have proved: “For p =6 and p == 7.9, there exists a tournament with p vertices
which is k-arc-cyclic (k= 8,4,---, p— 1) but not are—pancyelic”. On the other
hand, in [2] it has been shown that “For p = 2q >4, there exists an almost regu-
lar tournament which is k-arc—cyclic (k= 4,5, --+,p) but not are—paneyelic”. So,
it is very likely to suggest a conjecture as stated in the following Theorem 1. The
main purpose of this paper is to prove this conjecture,

Theorem 1. A tournament T = (V, A) with p wvertices has arc—pancyelicity if
and only if T has both 3-arc—cyclicity and p—arc—cyclicity.

The necessity is very clear. The sufficiency will be also clear after the following
Theorem 2 is proved.

Theorem 2. Suppose a tournament T = (V, A) with p vertices has 3-arc—cyclic-
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ity. Let (vo,v)) € A. If there is a (p — 1)~path pp—r(v1, o) from vy to vg in I then
there exists an (h — 1)~path pp—(vy,ve) (h=4,5, -+, p —1) from v, to vy in T.

Proof. By the above assumptions, it is evident that the Theorem is equivalent
to the following proposition. If for any integer k(3 <<k <<p —1), there is a (k —
1)-path:

pr—1(v1,10) = {v1, 05,7 7, Ve = Vol
then there exists a k-path pp(vy,ve) from vy to v.
Now let us prove this proposition.
For convenience, v,(4 = 1,2, -++, k) will be simply denoted by 7, and let
WZV—[J)‘—1=.V_{1>27 ""k}-
Since £k <p — 1, we have |W| > 1, || being the number of the vertices of V.

Now, for exhausting all possible cases, we shall prove that there always exists a
path yk(l, k)

(I) If (L, wg), (wg m) €A, where ug€ W and 1=C1<Cm =<k, then there exist
(t:wg) and (wg,t + 1) € A, where | << ¢ << m. Thus we obtain:

f’k(1> k) = {17 st 'u'oyt + 1, .-, A}
o, 1n the following, we always assume that for any vertex w € W, there exists
an integral index s(w)(1 << s(w) <<k —+ 1) such that
(uy 1), (aey 2)5 -+, Gy sCw) — 1), (sCae), )y (sCue)
+ 1, V«'), tt (k; ’M/') € :10.
Let s, = min {s(w)}, ;= max {s(w)}.
wewW . weW
(I1) Suppose s; = 1. Then there exists w; € W such that s(u,) = s = 1. Note

that % = 3 and (3, w,) € 4. By the assumptions of the theorem, there exists a 2-path
{wy,u, 3}. Clearly, u€ux—,. Hence u € W, and thus we have

w(L k) = {1 wy, %, 3, - -+, k.
Similarly, we can prove that when s, =k + 1, there also exists u(1, k).

Thus in the following, we always assume that 2 <<s; <<s,<<%k. In other words,
for any vertex w€ W, we have (w, 1), (k, w)€ A.

(III) Now, we shall prove s; = 2. Otherwise, there exists w,€ W such that
s(w) = s, = 2. We consider the case of (k, w;) € A. By the assumptions of the theorem,
there exists a 2-path {wy,%, k}. By the final assumption of (II), for any vertex
w€ W, we have (k,w)€ A, Thus by (u, k)€ A we have u€l, i. e. u€ g, And
we have u=1 by (w,u)€A. Hence, (1,k)€ A. Tt contradicts the assumption
(k,1) = (0,1) € A. Thus we have s§; > 2.

Similarly, we have s, 2 k.

Therefore, in the following, we always assume 3 < s <<s; <<k — 1 (thus k>=4).

1) By s(w) =1, we mean that (1, w), (2, w), ==+, (k, w) €4, and by s(w) =%k + 1, we mean that
(w,f D, (w, 2D, <=0, Gy ) € 4,
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Then for any vertex w € VW, we have (w, 1), (w, 2), (5 — 1, w), (k, w) € A.

(IV) Suppose s; > s, satisfying 3 <s <s;<<k — 1. Thus k=5. Let s(w;) =
s;,8(w;) = s,, where w;,w; € W. We consider the case of (k, w;) € A. By the assump-
tions of the theorem, there exists a 2-path {wi, 1, k}. Clearly, I€W and 2 <1 <<, — 1.
Thus we have proved that there exists an integer (2 << <Cs;—1) such that (I, k)¢
4. Consider the ease of (w,, 1) € A. Similarly, there exists an integer m(s, << m <
k — 1), satisfying (1, m) € A. Since s;<<s;, we have I + 1 <Cm — 1. Now, two cases
may be considered separately.

1. When I +1=m—1, from | +1<<s;<s;,—1<<m—1, we have I + 1=
$; =38, — 1= m — 1. Since |W| > 1, there are w’, w” € . Without loss of general-
ity, assume that (w’, w”’)€ A. By the final assumption of (III) there are (k — 1,
w) and (w”,2)€ A. Thus we have

we(LE)={1L,m=s, -+, k—1Luw w2 -8 —2=1LEk}.
2. When I+ 1 < — 1, we consider two possible cases.
(1) For I + 2 <s,, we have
wel(LEY={Lm -~ bk — 1w, 1+ 2, -~ ,m—1,1,2 -+, 1, k}.
(2) For I+ 22=s, noting s, +1>=1-+2 =s;, we have s, + 1 =35, Thus m—
2>1>2s,—2=38 —1 and we have
(L E) = {l,m -k —Lw, L+ 1, ---,m—2,u,2, -+, L, k}.

Therefore, in the following, we always assume that s, =s,=s and 3 <Cs<<k —
1, i. e. for any vertex w€ W, we have (w, 1), (w,2), ---, (w,s — 1), (s, w), -,
(k— 1L w), (k,w)€ A.

At this point, the following lemmas are valid.

Lemma 1. T[W] = (W, dy), the subgraph of T induced by W is a 3~arc—cyclic
tournament. Ience W/ =3, and T[W] is strongly connected.

Proof. Clearly, T[W] is a tournament. Note that 7 has 3-are—cyclicity. Thus
for any (wy,u;) € A,(Z1), there must be a 2-path {w,,w.2,}. Clearly u€ pz—;, so
that uw € W. Henee {u,,u,w;} is a 2-path in T[W]. Q. E. D.

Lemma 2. If (a,7),(vr —1,6)€ 4, where 1<a<s—2,a+1<r<si<k
and s+ 1=<C 5, then there is a k-path p(1, k) from 1 to k.

Proof. Taking we€ W, we have

we(L,E)={L - a7r,-+86 —Lw,e+1 -+, —1,6 -+, k}. Q E.D.

Lemma 3. If (a.7), (£6)€d, where 1< a<p<s—lands<<7v <<é&<k
then there is a w—path w (1, k) from 1 to k.
Proof. Two cases may be considered.
(1) When v >s-+ 1, taking wpw, € W, we have
we(L,EY={1, a7, -6 —Lw,8+1,---
Y — 2w, a1, e, 88, s kT
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(2) When 7 = s+ 1, noting g < s— 2, we examine two possible cases
(a) For £ <<s -2, taking wy, W, € W, we have

a(Lk) = {1, - 0,7, -0 — 1w, + 2, -,
$=7 ~=Lw,a+ 158k}
(b) For g =35 — 29, by Lemma 1, there is a 2-path {wy,w, w3} in T[VW]. Then
we have
'uk(L k) ={1, - aqr=s4+1,-++,56 —1, Wy, Wa, U3,
a+1,--,8—2=48 "k}
The proof of the lemma is completed.

Lemma 4, [Let

R(z)—{l(zi)e‘4,<i<k} a<i<<s—1),

<
and
L) ={il(ired,1<i<s—1} (s<r<h).
Then for any integer 1(1<1<s—1), we have R(1) % ¢, and kER(1). And for
any integer r(s <r < k), we have L(r) > ¢, and 1EL(k).

Proof,  Taking we€ W. we have (ug,l)€ 4. By the assumptions of the theorem,
there is a 2—p<1th {l,u, wo} in T, where u€ V, Clearly u€TW U{1,2,++-,5s—1}. Hence
w€{s,s+1, -, %} and (I, u)e 4, so that u€ R(1), R(1) = ¢. Since (1, k)EA, we
have AER(I). Similarly, we can prove the rest of the lemma. Q. E. D.

Let
; ¢(1) = max R(1), ¢y(1) = min R(1), A<i<s—1);
o ¢(r) = min L(r), ¢(r) = max L(r), (<r<k).
Thus (L, ¢(1)), (I &1, (p(r), 1), (@r(r)y 1) € 4, and
s<a <D<k  (2<I<s—1),
s<o(D< <k -1
1< p(r)< pr)<s—1, <r<k-—1),

2 (W) < (k) <s—1.
(V) Let 4<<s<<{k — 2. Thus k> 6. Two cases may be considered.

1. When 2 << @(k) <<s—1, we examine two possible cases.

(1) For s<¢p(1) <k —1, letting a=1, g = @(k), » = ¢(1) and 6 = k, we
have z,(1,%) by Lemma 3.

(2) For ¢(1) =s, by the following 8 steps, we shall prove that there always
exists ,(1, k).

1) If gi(s+1) =1, letting a = ¢y(s + 1) =1, = @(k), ¥ =s+ 1 and 5— k,
we have p,(1,%) by Lemma 3.

If p(s+1)=5—1, letting a=1, r = (1) =5, and 6 =s+ 1, we have
#:(1, k) by Lemma 2.

If ¢i(s+ 1) =5 —2, taking wy,w,€ W, and assuming (wy,w,) € 4, we have
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.“k(ly k) = {17 ¢’(1) = 8, Wy, W, 2y ©" "5 S - 2= (Pl(s -+ 1>’ s+ 1, k}
Thus, in the following, we shall assume that 2 << (s + 1) <s —3,
2) If s<P(s —1) <k, lettinga=1,7=¢(1)=s, and § = ¢(s —1), we
have p(1,%) by Lemma 2.

Thus, in the following, we shall assume that (s —1) =35, i. e (s—1,5)€A4
and (4,s —1)€ A, where s << i<Ck.

3) If (s,k)€ A, letting a = ¢(s + 1), =s+ 1, and § = k, we have p(1,k)
by Lemma 2.

Thus, in the following, we shall assume that (k,s) € A,

4) By the final assumption of 2) we have (k,s — 1) € 4, Thus by the assumptions
of the theorem, there is a 2-path {s — 1, ¢, k}, where g € V. Clearly, g€W. Thus by the
final assumptions of 2) and 3) once again, and (k,1)€ 4, we have 2<Cg<s—2,

It pc+1)<g<s—2, lettinga=q¢(s+1), f=¢, v =s-+1"and 6§ =k,
we have g.(1,%k) by Lemma 3.

Thus, in the following, we shall assume that there are (s —1,¢q), (¢, k)€ 4,
where 2 << g << (s + 1). ,

5) If there is (g—1, 7)€ A, where s << rq<<k, lettinga=¢—1,=¢q, 7 = g
and & =k, we have u(1,%) by Lamma 3.

Thus, in the following, we shall assume that there are (r,g —1)€4,(s<r<
k), i.e. ¢(¢q—1) =35 or k.

6) It ¢(q —1) =3, taking wy€ W, by the final assumptions of 1) and 4), we

" have
(L E) ={1,--+q—1,&(q —1) =5, wp, p(s+1)+1,---,
s_lyQV "',([)1<S+ 1)7S+ 17 "';k}-

Thus in the following, let ¢(q — 1) =k so that ¢ = 2. Hence, we have 3 <<
qg < (s + 1),

) If (p(s+ 1)+ 1,k —1)€ A4, by the final assumption of 1), and the defini-
tion of ¢i(s+ 1), we have k — 1 s + 1. Letting a = @(s+1), 8 = @(s+1) + 1,
vy=3s5+1and 6§ =k — 1, we have g(1,%) by Lemma 3.

If (2, p(s+1)+1)€A, lettinga=2, v =¢(s+1)+1 and 6§ =s+ 1, and
noting s = 4, by the final assumptions of 6} and 1), we have w(1, k) by
Lemma 2 '

Thus, in the following, we shall assume (k —1, (s + 1) + 1), (g(s+ 1) +
1,2) € A,

8) Noting all the assumptions mentioned above, and taking a vertex wg€ W, we
have
me(L k) = {1, (1) =5, wo, (s + 1)+ 2,585 —=1,g
p(s+1)s+1, - k—1, 4 1) +1,2-,¢—1,¢4(¢ —1) =k}
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Therefore, we have proved that there always exists p(1, k).

2. When (k) =s — 1, we examine two possible cases.

1) When ¢(1) =s, letting a=1,7 = ¢(1) =s and & = k, we have pe(1,%),
by Lemma 2.

2) When s<<¢(1) <<k —1, we consider the converse of T, denoted by T*.
Clearly T'* is of Case 1(2). Hence, there exists pf(k,1) in T*. Then we invert the
direction of the ares of uf(%k, 1), and obtain u#:(1, %) in T.

Thus, in the following, we always let s = 3 or k& — 1,

(VI) When s = 3, for any vertex w € 1, there are (w, 1), (u,2), (3, W)y * vy
(k,w) € A. By the assumptions of the theorem, there exists up—i(1, k). At this point,
pp—(1, k) must be in the form

{17 1'3, tte ,1'1,,u,2, [ ES PR ',7k—l;k}>

where u# is a Hamilton path in T'[W], and 45, 14 - - -, ix— is a permutation cf 3,4,
ok —1, and ! 22 3. Thus taking a vertex wy€ 11", we have

p(1s k) = {1, Tay 0y U, W0, 2 g, 0y Ty, KL
Thus, in the following, we always suppose s = k& — 1,

(VII) When s=Fk — 1, we consider the converse T*. Clearly, T* is of Case
(VI). Hence there is a path g}(k,1) in T'*. Then we invert the direction of the
ares of pi(k, 1), and obtain u#x(1, k) in 7.

Thus, the proof of Theoremn 2 is completed.

Remark. Recently, Hong Yuan of Hua-dong Normal University, who suggests a
seneral conjecture as follows: Suppose a tournament T with p vertices has h-arc—
cyelicity (h = 3,4, -+, 1;1 =< p) if and only if 7 has both 3—arc—cyclicity and [-are—
cyelicity. This conjeeture can be proved by the same method used in proving Theo-
rems 1 and 2.

The authers are thankful to Zhu Yongjin and Tian Feng of the Institute of Sys-
tems Science of Academia Sinica, for their valuable suggestions on this paper.
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