A NECESSARY AND SUFFICIENT CONDITION FOR ARC-PANCYCLICITY OF TOURNAMENTS

Wu Zhengsheng* (吴正声), Zhang Kemin** (张克民)

AND ZOU YUAN (邹 园)
(Nanjing University)

Received April 8, 1980; revised September 4, 1980.

ABSTRACT

In this paper, it is proved that a tournament T with p vertices has are-pancyclicity, if and only if T has both 3-are-cyclicity and p-are-cyclicity.

Let T=(V,A) be a tournament with p vertices. A tournament T is called k-arc-cyclic if for any arc $(v_0,v_1)\in A$, there is a (k-1)-path μ_{k-1} (v_1,v_0) from v_1 to v_0 in T, $k(3 \le k \le p)$ being an integer. A tournament T is called arc-pancyclic if for any integer k $(3 \le k \le p)$, T has k-arc-cyclicity.

In 1967, B. Alspach first studied the arc-pancyclicity of tournaments. A sufficient condition on arc-pancyclicity of tournaments was presented in [1]. In 1979, Zhu Yongjin and Tian Feng studied the problem again. And Zhu Yongjin put forth the following problem in [3]. If the squared graph of a tournament T is completely symmetrical, has T arc-pancyclicity? By Lemma 2 in [4], we know that this problem is equivalent to one asking whether or not the 3-arc-cyclicity of a tournament T is the necessary and sufficient condition for its arc-pancyclicity. In another paper, we have given a negative answer to this problem in a more general case. We have proved: For $p \ge 6$ and $p \ge 7.9$, there exists a tournament with p vertices which is k-arc-cyclic ($k = 3, 4, \dots, p-1$) but not arc-pancyclic. On the other hand, in [2] it has been shown that For p = 2q > 4, there exists an almost regular tournament which is k-arc-cyclic ($k = 4, 5, \dots, p$) but not arc-pancyclic. So, it is very likely to suggest a conjecture as stated in the following Theorem 1. The main purpose of this paper is to prove this conjecture.

Theorem 1. A tournament T = (V, A) with p vertices has are-pancyclicity if and only if T has both 3-are-cyclicity and p-are-cyclicity.

The necessity is very clear. The sufficiency will be also clear after the following Theorem 2 is proved.

Theorem 2. Suppose a tournament T = (V, A) with p vertices has 3-arc-cyclic-

^{*} Present address: Department of Mathematics, Nanjing Teachers' Institute, Nanjing, China.

^{**} Present address: Nanjing University, Nanjing, China.

¹⁾ See: 吴正声,张克民,邹园,"关于竞赛图弧泛回路性的一类反倒"。

ity. Let $(v_0, v_1) \in A$. If there is a (p-1)-path $\mu_{p-1}(v_1, v_0)$ from v_1 to v_0 in T then there exists an (h-1)-path $\mu_{h-1}(v_1, v_0)$ $(h=4, 5, \dots, p-1)$ from v_1 to v_0 in T.

Proof. By the above assumptions, it is evident that the Theorem is equivalent to the following proposition. If for any integer $k(3 \le k < p-1)$, there is a (k-1)-path:

$$\mu_{k-1}(v_1,v_0)=\{v_1,v_2,\cdots,v_k=v_0\},\$$

then there exists a k-path $\mu_k(v_1, v_k)$ from v_1 to v_k .

Now let us prove this proposition.

For convenience, $v_i(i=1,2,\cdots,k)$ will be simply denoted by i, and let

$$W = V - \mu_{k-1} = V - \{1, 2, \dots, k\}.$$

Since k < p-1, we have |W| > 1, |W| being the number of the vertices of W.

Now, for exhausting all possible cases, we shall prove that there always exists a path $\mu_k(1, k)$.

(I) If (l, w_0) , $(w_0, m) \in A$, where $w_0 \in W$ and $1 \le l < m \le k$, then there exist (t, w_0) and $(w_0, t+1) \in A$, where $l \le t < m$. Thus we obtain:

$$\mu_k(1,k) = \{1, \dots, t, w_0, t+1, \dots, k\}.$$

So, in the following, we always assume that for any vertex $w \in W$, there exists an integral index $s(w)(1 \le s(w) \le k+1)$ such that

$$(w, 1), (w, 2), \dots, (w, s(w) - 1), (s(w), w), (s(w) + 1, w), \dots, (k, w) \in A^{12}.$$

Let $s_1 = \min_{w \in W} \{s(w)\}, \quad s_2 = \max_{w \in W} \{s(w)\}.$

(II) Suppose $s_1 = 1$. Then there exists $w_1 \in W$ such that $s(w_1) = s_1 = 1$. Note that $k \ge 3$ and $(3, w_1) \in A$. By the assumptions of the theorem, there exists a 2-path $\{w_1, u, 3\}$. Clearly, $u \in \mu_{k-1}$. Hence $u \in W$, and thus we have

$$\mu_k(1,k) = \{1, w_1, u, 3, \dots, k\}.$$

Similarly, we can prove that when $s_2 = k + 1$, there also exists $\mu_k(1, k)$.

Thus in the following, we always assume that $2 \le s_1 \le s_2 \le k$. In other words, for any vertex $w \in W$, we have (w, 1), $(k, w) \in A$.

(III) Now, we shall prove $s_1 \neq 2$. Otherwise, there exists $w_1 \in W$ such that $s(w_1) = s_1 = 2$. We consider the case of $(k, w_1) \in A$. By the assumptions of the theorem, there exists a 2-path $\{w_1, u, k\}$. By the final assumption of (Π) , for any vertex $w \in W$, we have $(k, w) \in A$. Thus by $(u, k) \in A$ we have $u \in W$, i. e. $u \in \mu_{k-1}$. And we have u = 1 by $(w_1, u) \in A$. Hence, $(1, k) \in A$. It contradicts the assumption $(k, 1) = (0, 1) \in A$. Thus we have $s_1 \neq 2$.

Similarly, we have $s_2 \neq k$.

Therefore, in the following, we always assume $3 \le s_1 \le s_2 \le k-1$ (thus $k \ge 4$).

¹⁾ By s(w) = 1, we mean that (1, w), (2, w), ..., $(k, w) \in A$, and by s(w) = k + 1, we mean that (w, 1), (w, 2), ..., $(w, k) \in A$.

Then for any vertex $w \in W$, we have $(w, 1), (w, 2), (k - 1, w), (k, w) \in A$.

- (IV) Suppose $s_1 \neq s_2$ satisfying $3 \leq s_1 < s_2 \leq k-1$. Thus $k \geq 5$. Let $s(w_1) = s_1, s(w_2) = s_2$, where $w_1, w_2 \in W$. We consider the case of $(k, w_1) \in A$. By the assumptions of the theorem, there exists a 2-path $\{w_1, l, k\}$. Clearly, $l \in W$ and $2 \leq l \leq s_1 1$. Thus we have proved that there exists an integer $l(2 \leq l \leq s_1 1)$ such that $(l, k) \in A$. Consider the case of $(w_2, 1) \in A$. Similarly, there exists an integer $m(s_2 \leq m \leq k-1)$, satisfying $(1, m) \in A$. Since $s_1 < s_2$, we have $l+1 \leq m-1$. Now, two cases may be considered separately.
- 1. When l+1=m-1, from $l+1 \le s_1 \le s_2-1 \le m-1$, we have $l+1=s_1=s_2-1=m-1$. Since |W|>1, there are $w', w'' \in W$. Without loss of generality, assume that $(w', w'') \in A$. By the final assumption of (III) there are (k-1, w') and $(w'', 2) \in A$. Thus we have

$$\mu_k(1,k) = \{1, m = s_2, \dots, k-1, u', w'', 2, \dots, s_2-2 = l, k\}.$$

- 2. When l+1 < m-1, we consider two possible cases.
- (1) For $l+2 < s_2$, we have

$$\mu_k(1,k) = \{1, m, \dots, k-1, w_2, l+2, \dots, m-1, w_1, 2, \dots, l, k\}.$$

(2) For $l+2 \ge s_2$, noting $s_1+1 \ge l+2 \ge s_2$, we have $s_1+1=s_2$. Thus $m-2>l \ge s_2-2=s_1-1$ and we have

$$\mu_k(1,k) = \{1, m, \dots, k-1, w_2, l+1, \dots, m-2, w_1, 2, \dots, l, k\}.$$

Therefore, in the following, we always assume that $s_1 = s_2 = s$ and $3 \le s \le k - 1$, i. e. for any vertex $w \in W$, we have $(w, 1), (w, 2), \dots, (w, s - 1), (s, w), \dots, (k - 1, w), (k, w) \in A$.

At this point, the following lemmas are valid.

Lemma 1. $T[W] = (W, A_W)$, the subgraph of T induced by W is a 3-arc-cyclic tournament. Hence $|W| \ge 3$, and T[W] is strongly connected.

Proof. Clearly, T[W] is a tournament. Note that T has 3-arc-cyclicity. Thus for any $(w_1, w_2) \in A_{\mathcal{W}}(\subseteq A)$, there must be a 2-path $\{w_2, u, w_1\}$. Clearly $u \in \mu_{k-1}$, so that $u \in W$. Hence $\{w_2, u, w_1\}$ is a 2-path in T[W]. Q. E. D.

Lemma 2. If (α, γ) , $(\gamma - 1, \delta) \in A$, where $1 \le \alpha \le s - 2$, $\alpha + 1 < \gamma < \delta \le k$ and $s + 1 \le \delta$, then there is a k-path $\mu_k(1, k)$ from 1 to k.

Proof. Taking $w_0 \in W$, we have

$$\mu_k(1,k) = \{1, \dots, \alpha, \gamma, \dots, \delta-1, w_0, \alpha+1, \dots, \gamma-1, \delta, \dots, k\}. \quad Q. \quad E. \quad D.$$

Lemma 3. If (α, γ) , $(\beta, \delta) \in A$, where $1 \le \alpha < \beta < s - 1$ and $s < \gamma < \delta \le k$, then there is a μ_k -path $\mu_k(1, k)$ from 1 to k.

Proof. Two cases may be considered.

(1) When $\gamma > s + 1$, taking $w_1, w_2 \in W$, we have

$$\mu_k(1, k) = \{1, \dots, \alpha, \gamma, \dots, \delta - 1, w_1, \beta + 1, \dots, \gamma - 2, w_2, \alpha + 1, \dots, \beta, \delta, \dots, k\}.$$

- (2) When $\gamma = s + 1$, noting $\beta \leqslant s 2$, we examine two possible cases
- (a) For $\beta < s-2$, taking $w_1, w_2 \in W$, we have

$$\mu_{\mathbf{k}}(1,\mathbf{k}) = \{1, \dots, \alpha, \gamma, \dots, \delta - 1, w_1, \beta + 2, \dots, s = \gamma - 1, w_2, \alpha + 1, \dots, \beta, \delta, \dots, k\}.$$

(b) For $\beta = s - 2$, by Lemma 1, there is a 2-path $\{w_1, w_2, w_3\}$ in T[W]. Then we have

$$\mu_k(1, k) = \{1, \dots, \alpha, \gamma = s + 1, \dots, \delta - 1, w_1, w_2, w_3, \alpha + 1, \dots, s - 2 = \beta, \delta, \dots, k\}.$$

The proof of the lemma is completed.

Lemma 4. Let

$$R(l) = \{i | (l, i) \in A, s \leqslant i \leqslant k\} \qquad (1 \leqslant l \leqslant s - 1),$$

and

$$L(r) = \{i \mid (i, r) \in A, 1 \leqslant i \leqslant s - 1\} \qquad (s \leqslant r \leqslant k).$$

Then for any integer $l(1 \le l \le s-1)$, we have $R(l) \ne \phi$, and $k \in R(1)$. And for any integer $r(s \le r \le k)$, we have $L(r) \ne \phi$, and $1 \in L(k)$.

Proof. Taking $w_0 \in W$, we have $(w_0, l) \in A$. By the assumptions of the theorem, there is a 2-path $\{l, u, w_0\}$ in T, where $u \in V$. Clearly $u \in W \cup \{1, 2, \dots, s-1\}$. Hence $u \in \{s, s+1, \dots, k\}$ and $(l, u) \in A$, so that $u \in R(l)$, $R(l) \rightleftharpoons \phi$. Since $(1, k) \in A$, we have $k \in R(1)$. Similarly, we can prove the rest of the lemma. Q. E. D.

Let

$$\phi(l) = \max R(l), \quad \phi_1(l) = \min R(l), \qquad (1 \leqslant l \leqslant s - 1);$$

and

$$\varphi(r) = \min L(r), \quad \varphi_1(r) = \max L(r), \quad (s \leqslant r \leqslant k).$$

Thus $(l, \phi(l)), (l, \phi_1(l)), (\varphi(r), r), (\varphi_1(r), r) \in A$, and

$$s \leqslant \phi_1(l) \leqslant \phi(l) \leqslant k, \qquad (2 \leqslant l \leqslant s-1),$$

 $s \leqslant \phi_1(1) \leqslant \phi(1) \leqslant k-1;$
 $1 \leqslant \varphi(r) \leqslant \varphi_1(r) \leqslant s-1, \qquad (s \leqslant r \leqslant k-1),$
 $2 \leqslant \varphi(k) \leqslant \varphi_1(k) \leqslant s-1.$

- (V) Let $4 \le s \le k-2$. Thus $k \ge 6$. Two cases may be considered.
- 1. When $2 \le \varphi(k) < s 1$, we examine two possible cases.
- (1) For $s < \psi(1) \le k-1$, letting $\alpha = 1$, $\beta = \varphi(k)$, $\gamma = \psi(1)$ and $\delta = k$, we have $\mu_k(1, k)$ by Lemma 3.
- (2) For $\psi(1) = s$, by the following 8 steps, we shall prove that there always exists $\mu_k(1, k)_{\bullet}$
- 1) If $\varphi_1(s+1)=1$, letting $\alpha=\varphi_1(s+1)=1$, $\beta=\varphi_1(k)$, $\gamma=s+1$ and $\delta=k$, we have $\mu_k(1,k)$ by Lemma 3.

If $\varphi_1(s+1) = s-1$, letting $\alpha = 1$, $\gamma = \psi(1) = s$, and $\delta = s+1$, we have $\mu_k(1,k)$ by Lemma 2.

If $\varphi_1(s+1) = s-2$, taking $w_1, w_2 \in W$, and assuming $(w_1, w_2) \in A$, we have

$$\mu_k(1,k) = \{1, \phi(1) = s, w_1, w_2, 2, \dots, s-2 = \varphi_1(s+1), s+1, \dots, k\}.$$

Thus, in the following, we shall assume that $2\leqslant \varphi_1(s+1)\leqslant s-3_{ullet}$

2) If $s < \phi(s-1) \le k$, letting $\alpha = 1$, $\gamma = \phi(1) = s$, and $\delta = \phi(s-1)$, we have $\mu_k(1, k)$ by Lemma 2.

Thus, in the following, we shall assume that $\phi(s-1)=s$, i. e. $(s-1,s)\in A$ and $(i,s-1)\in A$, where $s< i\leqslant k$.

3) If $(s, k) \in A$, letting $\alpha = \varphi_1(s+1)$, $\gamma = s+1$, and $\delta = k$, we have $\mu_k(1, k)$ by Lemma 2.

Thus, in the following, we shall assume that $(k, s) \in A$.

4) By the final assumption of 2) we have $(k, s-1) \in A$. Thus by the assumptions of the theorem, there is a 2-path $\{s-1, q, k\}$, where $q \in V$. Clearly, $q \in W$. Thus by the final assumptions of 2) and 3) once again, and $(k, 1) \in A$, we have $2 \leq q \leq s-2$.

If $\varphi_1(s+1) < q \leqslant s-2$, letting $\alpha = \varphi_1(s+1)$, $\beta = q$, $\gamma = s+1$ and $\delta = k$, we have $\mu_k(1,k)$ by Lemma 3.

Thus, in the following, we shall assume that there are (s-1,q), $(q,k) \in A$, where $2 \le q \le \varphi_1(s+1)$.

5) If there is $(q-1, r_0) \in A$, where $s < r_0 < k$, letting $\alpha = q - 1, \beta = q, \gamma = r_0$ and $\delta = k$, we have $\mu_k(1, k)$ by Lamma 3.

Thus, in the following, we shall assume that there are $(r, q-1) \in A$, (s < r < k), i. e. $\psi(q-1) = s$ or k.

6) If $\psi(q-1)=s$, taking $w_0\in W$, by the final assumptions of 1) and 4), we have

$$\mu_k(1,k) = \{1, \dots, q-1, \phi(q-1) = s, w_0, \varphi_1(s+1) + 1, \dots, s-1, q, \dots, \phi_1(s+1), s+1, \dots, k\}.$$

Thus in the following, let $\psi(q-1)=k$ so that $q \neq 2$. Hence, we have $3 \leq q \leq \varphi_1(s+1)$.

7) If $(\varphi_1(s+1)+1, k-1) \in A$, by the final assumption of 1), and the definition of $\varphi_1(s+1)$, we have $k-1 \ni s+1$. Letting $\alpha = \varphi_1(s+1), \beta = \varphi_1(s+1)+1$, $\gamma = s+1$ and $\delta = k-1$, we have $\mu_k(1,k)$ by Lemma 3.

If $(2, \varphi_1(s+1)+1) \in A$, letting $\alpha = 2, \gamma = \varphi_1(s+1)+1$ and $\delta = s+1$, and noting $s \ge 4$, by the final assumptions of 6) and 1), we have $\mu_k(1, k)$ by Lemma 2

Thus, in the following, we shall assume $(k-1, \varphi_1(s+1)+1)$, $(\varphi_1(s+1)+1, 2) \in A_{\bullet}$

8) Noting all the assumptions mentioned above, and taking a vertex $w_0 \in W$, we have

$$\mu_k(1,k) = \{1, \phi(1) = s, w_0, \varphi_1(s+1) + 2, \dots, s-1, q, \dots, \varphi_1(s+1), s+1, \dots, k-1, \varphi_1(s+1) + 1, 2, \dots, q-1, \phi(q-1) = k\}.$$

Therefore, we have proved that there always exists $\mu_k(1, k)$.

- 2. When $\varphi(k) = s 1$, we examine two possible cases.
- 1) When $\psi(1) = s$, letting $\alpha = 1$, $\gamma = \psi(1) = s$ and $\delta = k$, we have $\mu_k(1, k)$, by Lemma 2.
- 2) When $s < \phi(1) \le k-1$, we consider the converse of T, denoted by T^* . Clearly T^* is of Case 1(2). Hence, there exists $\mu_k^*(k,1)$ in T^* . Then we invert the direction of the arcs of $\mu_k^*(k,1)$, and obtain $\mu_k(1,k)$ in T.

Thus, in the following, we always let s = 3 or k - 1.

(VI) When s = 3, for any vertex $w \in W$, there are $(w, 1), (w, 2), (3, w), \dots$, $(k, w) \in A$. By the assumptions of the theorem, there exists $\mu_{p-1}(1, k)$. At this point, $\mu_{p-1}(1, k)$ must be in the form

$$\{1, i_3, \cdots, i_l, \mu, 2, i_{l+1}, \cdots, i_{k-1}, k\},\$$

where μ is a Hamilton path in T[W], and i_3, i_4, \dots, i_{k-1} is a permutation of 3, 4, $\dots, k-1$, and $l \ge 3$. Thus taking a vertex $w_0 \in W$, we have

$$\mu_k(1, k) = \{1, i_3, \dots, i_l, w_0, 2, i_{l+1}, \dots, i_{k-1}, k\}.$$

Thus, in the following, we always suppose s = k - 1.

(VII) When s = k - 1, we consider the converse T^* . Clearly, T^* is of Case (VI). Hence there is a path $\mu_k^*(k,1)$ in T^* . Then we invert the direction of the arcs of $\mu_k^*(k,1)$, and obtain $\mu_k(1,k)$ in T.

Thus, the proof of Theorem 2 is completed.

Remark. Recently, Hong Yuan of Hua-dong Normal University, who suggests a general conjecture as follows: Suppose a tournament T with p vertices has h-arc-cyclicity ($h = 3, 4, \dots, l; l \leq p$) if and only if T has both 3-arc-cyclicity and l-arc-cyclicity. This conjecture can be proved by the same method used in proving Theorems 1 and 2.

The authers are thankful to Zhu Yongjin and Tian Feng of the Institute of Systems Science of Academia Sinica, for their valuable suggestions on this paper.

REFERENCES

- [1] Alspach, B., Cycles of each length in regular tournaments, Canad. Math. Bull., 10 (1967), 283—286.
- [2] Zhu Yongjin & Tian Feng, On the strong path connectivity of a tournament, Scientia Sinica, Special Issue (II) 1979, 18-28.
- [3] 朱永津,竞赛图方面研究工作的现状及展望,曲阜师范学院学报(运筹学专刊),1980,60-64.
- [4] 吴正声,张克民,邹园,一类竞赛图顶点的非正则性,南京师范学院学报(自然科学版), 1980, 1: 1—10.