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Let T=(V,A) be a tournament with p vertices. 7 is called completely strong
path-connected if for each arc (a, b) € 4 and k (k = 2, 3,..., p), there is a path from
b to a of length k (denoted by P,(a, b)) and a path from a to b of length k (denoted
by Pi(a.b)). In this paper, we prove that 7 is completely strong path-connected if
and only if for each arc (a, b) € 4, there exist P,(a, b), P4(a, b) in T, and T satisfies
one of the following conditions: (a) T'# T ,-type graph, (b) T is 2-connected, (c) for
each arc (a, b) € A4, there exists a P, _(a,b) in T.

1. INTRODUCTION

Let D=(V,A) be a digraph with p vertices. D is called arc-pancyclic
(resp. arc-antipancyclic) if for each arc (a, b) € 4, there is a path from b to a
(resp. from a to b) of length k& (k=2,3,..., p— 1) in D, denoted by P,(q, b),
or briefly P, (resp. Pi(a, b), P;). D is called strong path-connected if for each
two vertices a,b € V, there is a path from a to b of length &k (k=4d,
d+ 1., p— 1, where d =d,(a, b) is a distance from a to b) in D.

Clearly, a strong path-connected digraph is arc-antipancyclic.

A tournament T is called completely strong path-connected if T is arc-
pancyclic and arc-antipancyclic.

Faudree and Schelp [3] defined the concept of strong path-connectedness
in undirected graphs. The concept of strong path-connectedness in digraphs
is a natural generalization of that concept. Thomassen [5] defined a concept
of strongly panconnected. Although a completely strong path-connected tour-
nament is strongly panconnected, both the probabilities of the existence of
these two classes of tournaments approach one as p— oo in the case of
random tournaments with p vertices. (See [4, sects. 5 and 9].) In [1, 5, 8],
the authors studied strong panconnectedness and obtained several sufficient
conditions for that. But they do not consider the existence of the P, and Pj.
In this paper, we are going to study the action of the P,, P} in the completely
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strong path-connected tournaments, and obtain three necessary and sufficient
conditions which are stated in Theorems 1-3. Obviously, all of these
conditions are rather easy to verify.

2. THE MAIN RESULTS

THEOREM 1. A tournament T= (V,A) with p vertices is completely
strong path-connected if and only if for each arc e € A, there exist P,(e),
Pi(e) in T, and T # T,-type graph (see Fig. 1).

Vo

g

To — To

Fic. 1. Tytype graph. (Here T,, Ty are tournaments and (Ty, 7¢), (Ty, vg)s (Lo Th) <
A(Ty).)

By Theorem 1, it is easy to obtain Theorems 2 and 3 as follows:

THEOREM 2. A tournament T=(V,A) with p vertices is completely
strong path-connected if and only if T is 2-connected and for each arc e € 4,
there exist P,(e), Pi(e) in T.

THEOREM 3. A tournament T= (V,A) with p vertices is completely
strong path-connected if and only if for each arc e € A, there exist Py(e),
Pi(e), and P.(e) (where r=r(e) > p/2) in T.

We have immediately the following:

COROLLARY (Zhang and Wu |7]). A tournament T = (V,A) with p
vertices is completely strong path-connected if and only if for each e€ A4,
there exist P,(e), Pi(e), and P,_,(e) in T.

The corollary is a conjecture in [7], its general form is still an open
problem as follows:

Conjecture. A tournament T = (V,A) with p vertices is strong path-
connected if and only if for each arc e € A, there exist Pj(e) and P, _,(e) in
T. :
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3. PROOF OoF THEOREM 1|

Necessity. Obvious.
Sufficiency. For T or T,-type graph (see Figs. 2, 3), it is easy to prove

LY

FiG. 2. Tqtype graph. (Where Ty, T{ are tournaments, the directions of the edges without
arrow heads can be chosen arbitrary.)

FIG. 3. Tytype graph. (The directions of the edges without arrow heads can be chosen
arbitrary.)

directly that there exists some arc such that there is no P; with respect to
that arc. So, T is not a Ts- or Ty-type graph. By |6, Theorem 1], T is an arc-
pancyclic tournament. And by [4, Sect. 9], there always exists a Py(a,b)in T
for kK < 6. Then it is only necessary to prove the following:

ProOPOSITION.  For any k (1< k< p—1), if there exists a P;_,(a,b) in
T, then there exists a P;(a,b) in T.
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Proof. From now on, we shall assume that there is a P, _ {a, b) in T, and
denote it by [1, 2,..., k], where a and 1 represent the same vertex in T, so do
b and k. The set of vertices {1, 2,..., k} of P;_,(a, b) is also denoted by P;_,.
Let W= V\P;_,. Hence |W/| > 1. If the conclusion of the proposition were
false, we should assume:

There does not exist any P;{a, b) in T. (%)

We could immediately obtain:

(I) There are no (i,w), (w,j)€A, where we W and i<}/,
i.iepP,_,. '

(II) There is no w € W such that (i, w) € A (resp. (w, i) € A) for each
i€P_,.

Before discussing (III) and (IV), it is convenient to introduce some
notation. Let D= (V,4) be a digraph, vEV, set [ (v)={ujuecV,
(u,v)ye A}t and Op(v)={u|u €V, (v,u) € A} (without ambiguity, they may
be denoted as I(v) and O(v), respectively). An index function s(w) on W is
defined as follows: For each w & W, there is an index s(w) satisfying
I <s(w)<k, such that O'(w)=0w)NP,_,=1{1,2,.,s(w)—1} and
I'iw)=IwynpP,_,=I1s(w),s(w) + 1,.., k}. From (1), (II), it is obvious that
s(w) exists for each we W.

LEMMA 1. For any v, €V in T, there exists a cycle in the induced
subgraph T[O(v,)| (resp. T[I(vy)|). Furthermore, |0(v,), >3, (resp.
(o) 2 3).

Proof. Since T is strongly connected and anti-symmetrical, the
conclusion of Lemma 1 is obvious. [

Set s, = s(w,) = min{s(w) | w € W} and s, = s(w,) = max{s(w)|w € W}

LEMMA 2. If s, <s,, then there are not n,m,u, and v in T such that
u<n<s,—1<s,<v<mand (n,m), (u,v) € A.

Proof. Otherwise, it will contradict (x).

Now, (n, m), (u,v) € A are called cis-crosswise arcs with respect to the
Pi(a, b) (briefly cis-crosswise arcs) if n, m, u, and v are on P;(a, b) such that
u<n<v<m

LEMMA 3. Ifs, <s,,(s,—1,5,)EA and (s,—1,s5,)# (a,b), then there
exists an arc (u,v) such that (u,v) and (s, — 1, s,) are cis-crosswise arcs.
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Proof. First, we have that:
(i) For each i€ {3,4,..,s,— 1}, we have (i, 1) € 4.

Otherwise, there exists i,, (1,i) €4. By assumption, there is a
Py(wy, iy — 1)t |iy— 1, u, w,], according to the definition of s,, w,, u e W,
u € O'(w,), hence we must have u € I'(w,). Thus there is a P;(a,b) in
T: |1, ipsert — 1, W, 25y iy — 1, U,..., k] This contradicts (). Similarly, we
have:

(ii) For each j € {s,, s, + l,..., k — 2}, we have (k, j) € 4.
Now, if the Lemma were not true, we would have:

(a) Ifs,—1=1, we have s, # k and I(k)= {1,k — 1} by (ii).

(b) Ifs,=k, we have s, — 1 = 1 and O(1) = {2, k} by (i).

() If 1<s,—1<s,<k when (j,1)eAd for each j€&
{85,8, + l,..., k — 1}, then, by (i), O(1) = {2, k}. When there is j, such that
(1, j,) € 4, then, by Lemma 2, (k,i) € 4 for each i € {2, 3,...,s, — 1}. Thus,
by (ii), I(k)= {1,k — 1}.

These conclusions of (a)-(c) contradict Lemma 1. 1

(II) Suppose s, < s,.

There is a P,(s,, w,): [w,,u,s,], u € W, u € I'(w,) by assumption, hence
we have u € O'(w,), that is, there exists w such that 1<{u<s, 1,
(u, s,) € A. Similarly, by means of a P,(w,, s, — 1), there exists m such that
s, <m<k, (s,—1,m)EA. Since u <s,—1, m>s, contradict Lemma 2,
(s,— 1,5,) € 4.

Case 1:s5,—s, >4

There exists a Pj(a,b) in T: [l.,s,, Wi, Wy, S;+ 2,00 835y k|, (reESp.
[Loees S15 Wiy Wy Wos 8 + 34y S0 k) fOr (w, w,) €4 (resp. (w,, w)) € 4).

Case2: s,—5,<3

Since k> 7, (s, — 1, 5,) # (a, b). There exists an arc (u, v) such that (u, v)
and (s, — 1, s,) are cis-crosswise arcs by Lemma 3.

We may assume, without loss of generality, that u <s, —1<v <s,
(otherwise, we ‘consider the converse of T). For v =s,,5,+ 1, and 5, + 2,
there exist Pi(a, b) in T, respectively, e.g., v =s, + 2, there exists a P;(a, b):
Ly tty 8, + 2 =04 S, — L, wi, wy, Wy, tt 4+ Ly §; — 1, 55,00, k.

Summing up Cases 1 and 2, there always exist Pi(a, b) in T when s, <s,.
Thus (III) contradicts (x). So, it follows that

av) s,=s,=s,ie, s(wy=son W.
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In order to deduce that (IV) is in contradiction with (x), we need a
Lemma as follows:

LEMMA 4. If u<n<wv<m, and (u,v), (n,m) are cis-crosswise arcs,
then (a) v#n+1 when n<s<m, (b) n=s5—1, v=s can not hold
simultaneously, (c) n=s— 2, v=s+ 1 can not hold simultaneousliy.

Proof. Conditions (a) and (b) are obvious.

(¢) Let n=s5s—2, v=s+1 Casel: If (s—1,m—1)E A, we have
(s,u+1)€A4 by (b), hence there is a Py(a,b) in T: [l,..,u,s+1=
Voo im—1, w, s—1, s, u+1l., s—2=nm,..k|. Case2: If
(m—1,5s—1)EA, there is a Pia,b): [ly,ttys+1=v,.,m—1, 51,
s,w,u+ 1,...,8s —2=n,m,., k|. They are in contradiction with (x). So, (c)
is valid. 1

Now, by (IV), we have:

(1) 3<s<k—1.
Note that 1 < sk, T is a T-type graph when s = 2 or &, this contradicts
the assumption. Therefore (1) is valid.

(2) There exists an arc (n’,m’) € 4 such that n’ <s— 1 <s <m’ and
(n',m')+ (a, b).

Case 1

If s=k—1, we have (k,s — 1) €4 by Lemma 4(b) and Lemma 1. Hence
from jI(k)| > 3, there always exists iy € {2,..., s — 2} such that (i,, k) € 4. Set
ip=n', k=m’. Since k > 7, (n',m') + (a, b). Similarly, we can also verify
conclusion (2) in the case s = 3.

Case 2

If 3 <s <k—1, there are u’ € O'(w) and v’ € I'(w) such that (2,0'), (u’,
k—1)e 4 by P,(w,2) and P,(k — 1, w), respectively. When v’ > s, we may
set n’ =2, m' =v'; When v’ =5, we have u’ < s — 1 by Lemma 4(b). Hence
we may set n' =u',m’' =k — 1.

Thus Cases 1 and 2 imply that (2) is valid.

Let A’ denote the totality of (n’,m’)E A mentioned above, and let
H=max{n'|(n',m')e A}, Wi =min{m’ | (A,m')EA'}. Obviously,
(A, mye A’ <A, (n,m)+ (a,b) and i < s — | <s < . Furthermore, if #i, =
min{m'|(n',m')E A’} and A, = max{n’|(n', M) E A'}, we have A=#, and
m=m,. In fact, AxnA, m>m, @#,M)EA'cA4 and #A <
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s—1<s <. When i, <A, i, <m, we need only consider two subcases
by Lemma 4(c): (i) A< s—2 and (ii) #, > s + 1. There exist the following
Pla,b)in T: [l A, ey i — LA+ Ly ity — Lw, Ay + 1,0, A, A, K
and [1,.., Ay, Wi Bt — 1, w, A+ L., i, — 1, A, + 1,.., A, .., k|, respec-
tively. These contradict (x). Hence we must have either A=A, or ni =,
which give i = i, or i = A, respectively. Therefore 7, i are independent of
the order of selection.

(3) There always exists an arc (u’,v’) in A such that (u',v’) and
(71, m) are cis-crosswise arcs.
First, we assume that there does not exist any (u’, v’) as mentioned above.
Then T has the following three properties:

(3i) For each i € {3, 4,..., 11}, we have (i, 1) € 4.
In fact, if there is an i, such that (1,i;) € A4, there does not exist, by
Lemma 4(a), any P,(w,i,— 1) in T. This contradicts the assumption.
Similarly, we can prove:

(3ii) For each j€ {m L... k — 2}, we have (k, j) € 4.

, 1+
Biii) If u,<n <A<m<Lv, <m;, {u,,v;) and (n,,m;) can not
belong to A simultaneously.

In fact, if (u,,v,), (n,,m;)€ A4, we shall consider four subcases
separately: (i) u,<A—2, m,>n+2. Then there is a Pya,bd):
[Tttty Uty — LSy, — Lwon + Ly s — Luy + Ly ny, my e, ke
(i) u, <A—2, m =ni+ 1. Then there is a Pi(a,b): [l,..,u,, mi=v,, w,
n+ e, m—1, wu +l.,n, #d+l=m,. k. (i) u=n-1,
m,>nm+2. Then there is a Pi(a,b): [l,..,Ai—1=u;, vy, m—1,
At Lo, — 1, w, Ai=n,,m ... k]. (iv) u,=A—1, m,=m + 1. We have
that: 7 <s—2 or ni >s+ 1 by Lemma4(c). Hence there exist P;(a, b):
[l Ai—l=u,, Wi=v,, A+l Wi—1, w, i=n, #vi+1=m,.. k| or
[l A—1=u,, Ai=v,, w, A+ L., di—1, A=n,, Ai+l=m,.. k|
respectively. Since (i)—(iv) contradict (), (3iii) is valid.

Now, we begin proving (3) by contradiction as follows:

Case 1: s=k—1

By (3i), we have O(1)= {2, k}.
Case2: s=3

By (3ii), we have I(k)= {1,k — 1}.
Case3: 3<s<k—1

If for each je& {m,.,k—1}, we have (j,1)&€A4. Then, by (3i),
O(1) = {2, k}. Otherwise, by (3ii) and (3iii), we have I(k)= {1,k — 1}.
Cases 1-3 contradict Lemma 1. Therefore, (3) is valid.
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We may assume, without loss of generality, that (u’,v')€ A4, u’' <A<
v’ < M, A > 2 (otherwise, we consider the converse of T). Let A" denote the
totality of (u’,v’)E A mentioned above. Set ¢ =min{v’|(u',v')E A"},
i@ =max{u’|(u',0)E A"}. Obviously, (I,7)EA" A and U <A<V < m.
Then we have:

@) (@i)EAforany i€ {1,2,.,A— 1} t€{Ai+ 1,..,0—1}.

(5) d@=#A—1. Furthermore, (i—1, 7)€ A. Otherwise, it will
contradict (x).

(6) #i=s+ 1. Furthermore, (4,5 + 1) € 4.

If #7i > s + 1, we have (s — 1, s + 1) € 4 by P,(s + 1, w) and the definition
of mi, (=m).

Casel: n<s—2

By P,(w,s—2) and the definition of A, we have (f,s —2)€ 4, where
t€ {s+ 1., k}. Hence (s — 2,s) € A. This contradicts Lemma 4(b).

Case?2: n=s—12

Note that (s — 1, s + 1) € 4 and by Lemma 4, we have 0 #s — 1,5, s + 1,
ie, 0>s+ 1. Thus, there is a Pl(a,b): |1,..d Oyt —1, w, §— L.,
F—1, i+ 1=A=s—2, fi,.,k|. This contradicts (x). Therefore (6) is
valid.

(7) For each i€ {A+ L..,s}. jE {s+ 1.k} and (j.i)# (s + L, 5),

we have (j, i) € 4.

Otherwise, we assume that there exists (i, j) € 4.

Casel: j>s+1

If we consider the converse T’ of T, then Ai=s—2 by (6), i.e., (s —2,
s+ 1)EA. Also for T, T', we have (s —3,5), (s — 1, s + 2) €4 by (5) and
Lemma 4(a). This contradicts Lemma 4(b).

Case2: j=s+ 1=ni

By definition of #,(=A), we have (s+1,i)€4, for all
i€ {A+ 1l,.,s —2}. It remains to prove that (s + 1,5 —1)E 4. In fact, if
(s—1,s+1)E A, we have (s,i{)E A for each i€ {1,2,.,5 —2}. And by
Case 1, there does not exist any Pi(s — 1,s) in 7. Which leeds to a con-
tradiction.

Therefore (7) is valid.

(8) (t,s)€ A for any t€ {A+ 1,.., 5 — 1}.
By P,(w, t) and (7), (8) is valid.

(9) vE A+ L,A+ 2,52}
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Assume that v € {iH+1, A+ 2,..,5—1}. Let T, denote the induced
subgraph T[{Ai + 1,...,s — 1}]. The condensation T', of T, is a transitive tour-
nament (See [2, 10.1.9]. Let ¢ denote the dicomponent including ¢ in T, and
denote it in T, too. Let L (resp. R) be the set of vertices corresponding to
17 (0) (resp. O (¥)) in T. Clearly, we have:

(91) For any i € L, we have { < 0. Also for any j € R, we have § < .
Obviously, L, R, and ¢ have Hamilton paths, denoted by u,,u,, and g,
respectively.

%)) L=+g@.

Otherwise, if L # @, there is a Pi(a,b)in T: [1,...,d=H— L, u,u,, s, w, A,
s+ 1 =mi,..., k] by (8). This contradicts ().

(%9iii)) R=g2.

In fact, if R #+ @, we have (L,R)c< 4. By (4) and (7), P,(L, R) must be
|R, A, L|. Hence, there is a Pi(a,b) in T: [l, A— 1=, u,s, w,u,, tty, 1,
s+ 1 =i,..., k| by (8). This contradicts (x).

(9iv) 0= {0}

Otherwise, if § # {§}, P,(L,7) must be |0, i, L] by (4) and (7). Hence, by
(9iii)) and (8), there is a Pia,b) in T:|l,...A—1=4,0,s,w,
' A, s + 1 =m,.., k|, where p’ is a Hamilton path in &\{#}. This
contradicts ().

Finally, by (9i), (9iii), and (9iv), we have & =5 — 1. So, (9) is valid.

(10) 7€ {s—1,s}.

We prove (10) by contradiction. Assume that d=s—1 or s. By
Lemma 4(a), & > 1+ 1. In this case, T has the following properties:

(10i) For each i€{l,2,.,0—1=n—2}, we have (7,i)€A.
Furthermore, for each j € {1, 2,...,4 — 2 =1 — 3}, we have (s, j) € 4.

In fact, if (i, 0) € 4, there is a Pi(a,b): [ls iy Uperry S, W, A+ Ly 0— 1,
i+l A, s+ 1=m,..klby 4).Ifd=5—1, (J,s) € 4, there is a P;(a, b):
s oSy Wo A+ Lws — 1=0, j+ 1,4, s+ 1=m,..,k| by (4). These
contradict (x).

(10ii) For each i, j€ {1,2,...,i— 1} and i > j+ 1, we have (i, j) € 4,
except the case of 6 =s— 1, (1 —2,5)€ A, and (i, j)=(H — 1,7 — 3).

In fact, except for the case of i=s—1,i=#a— 1, and (H—2,5)E A, by
(10i) and the same reasoning as in the proof of (3i), we have (i, j) € 4. As
for the case of 0=s—1, i=An—1, (W—2,5)€A4, and j<A-3, if
(/,i—1)E A, we have, by (10i) and P,(w, A —3), that r € {s+ 1,..., k}
such that (7 — 3, r,) € A. Hence there is a Pi(a, b): [ly, jy A— Ly s — 1 =
U, A—=2, Sps rg— 1, w, j+ 1., A= 3, ry,..., k]. This contradicts (x).

(10iii) For each i, j€ {s+ l,...,k} and i > j + 1, we have (i, j) € 4.
By (7) and the same reasoning as in (3i), (10iii) follows immediately.
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(10iv) There always exists i, € {2, 3...., A} such that (i,, k) € 4.
When k =s + 1, the conclusion is trivial. When k& > s + 1, if (k, i) € 4 for
each i€ {2,3,..,7}, we have I(k)={l,k— 1} by (10iii) and (7). This
contradicts Lemma 1.
(10v) There do not exist (u,,v,), (u,,0,)EA such that
U, <u, <s—1<s<v, <v,.
If (u,,v,), (uy,v,)€A4 and u, <u,<s—1<s<v <v,, we have
U, SKALs—2,v, 25+ 1.

Case 1

If u,=A—1, we have u,=#A. There is a Pila,b): [l,...,A—1=
Uy Vyses Uy — 1, A+ Ly v, — 1, wy A=u,, 0,,..., k] by (7). This contradicts

(*).

Case 2

If uy<ni—1, A<s—2 or u;<A—1, v,>s+2, there is a Pi(a, b):
[Ty gy Vi 03— 1, A+ 20,0, —1, w, uy+ LA+ 1 u + 1, u,,
Uy k] by (4) and (7). This contradicts ().

Case 3
Ifu, <Ai—1,A=s—2,and v,=5+2, we have v, =5+ 1, i =s.

Subcase 3.1. If u, <s—4=#H—2, there is a Piab) [l,..,u,,
s+l=v,wu,+ Le,u + 1, u,,s+2=0,,., k| by (10i). This contra-
dicts (x).

Subcase 3.2. If u;=s—4=#A—2, we have u,=s— 3 by Lemma 4(c).
Thus (s — 3,5 +2), (s —4,5s + 1) € 4. By (10ii) and Lemma 4(a), we have
(i,1)€ A for each i€ {3,4,..,5—2}. When k=542 and s —4 =1, thus
k=17 and there exists no Pj(1,2) nor Pj(1,6) in T. This leads to a
contradiction. When k=s+2 and s—4> 1, if (1,s+ 1)E 4, there is a
Pi(a,b): [I,s+1,s—1,s, w,s—2, 2,..,5 — 3, k| by (7). This contradicts
(*). Hence we have (s + 1, 1) €4 and O(1) = {2, k} by (10i) and (4). When
k>s+2, by (10iv) and Case 2, we have (j,1)€A4 for each
JE s+ 1.,k —1}. Hence, in this case, we always have s —4 > 1 and
O(1)=1{2,k} by (10i) and (4). These contradict Lemma 1.

(10vi) If s <k—1, we have (k,A) € A.
In fact, if (A, k)€A4, we have (k—1,i))€EA by (10v), where
i€{l1,2,..,A—1}. Hence, by (10iii) and (7), I(k — 1)< {4, k —2}. This
contradicts Lemma 1.

(10vii) A>4.
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Case 1

If =2, (10iv) and (10vi) can not be satisfied simultaneously for
s < k— 1. Hence, we only consider the following subcases:

Subcase 1.1. If s=k—1 and §=s5— 1, we have L = {3,..,k — 3} and
(L,5)cA by (9iv). Thus O(@) < {2,k—1} by (7). This contradicts
Lemma 1.

Subcase 1.2. If s=k—1 and ¥=s, there exists no P;(1,2) nor
Pi(1,k— 1) in T by (4), which is a contradiction.

Case 2
If 7=3.

Subcase 2.1. If §=s— 1, we have L = {4,...,s — 2} =@ and (L,0)cA
by (9). And we have O(%) = {1, 3,s} by (7) and Lemma 1, thus (7, 3) € 4.
Hence (s, 1) € 4, for otherwise, there is a Pi(a,b): [L,s,w, 4,5 — 2,2=1,
s—1=0, 3=#, s+ 1=ri,..,k]. This contradicts (x). Furthermore, by
(10i), (10iv), (10v), (4), and Lemma 1, we have 0(1)={2,3,k} and (k, 2),
(3, k) € A. Hence, when s = k — 1, there does not exist any Pj(2,s —1)in T.
This contradicts the assumption. When s<k—1, (3,k)=(1k)€A
contradicts (10vi).

Subcase 2.2. If 5 =s, we have, by (10i), (4), and Lemma 1, that O(1) =
{2,3,k}, (k,2)€EA and O(2)= {3,k — 1} when s =k — 1; and we have, by
(10iv), (10vi), that (2, k), (3, 1) EA when s <k — 1. Furthermore, by (10v),
we have (j, 1) € 4 for each j € {s + 1,.., k — 1}. Thus we have O(1) = {2, k}
by (10i) and (4). These contradict Lemma 1.

Thus Cases 1 and 2 imply that (10vii) is valid.

(1oviii) (1,A) € 4.

If (77, 1) € 4, we have, by (10i), (10ii), (10iv), (10v), and (4), that O(1) =
{2, k} when 7 > 4; and we have, by (10i), (10iv), (10v), (4), and Lemma 1,
that O(1)={2,3,k} and (1,3),(k,2), (3,k)€A when fi=4. Thus,
0(2) = {3, s}. These contradict Lemma 1. So, (1,7) e A.

(10ix) (k, 2) € 4. In particular, when 7 = 4, we have (k, 3) € A4, too.

If (2,k)EA, there is a Pi(a,b) in T: (1, Ay 0 — 1, 3y A= 1 =1,
Bk — 1, w,2, k] by (10vii), (10viii) and (4). This contradicts (x). When
ji =4, we have (k, 3) € 4, by (10viii). So, (10ix) is valid.

(10x) s#k—1L
Otherwise, if s = k — 1, we need only consider the following two cases by
(10vii):
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Case 1

If /=5 or 6=s—1, A>4, we have, by (10ix) and P,(w,2), that
(2,k—1)=(2,s) € A. Thus, there is a Pi(a,b) in T:[1,2,k—1=s, w,
A+ 1,.,s— 1, 3..., A, k]. This contradicts ().

Case 2

If =s—1, Ai=4, we have 0(2)={3,4,s}, (2,4), (s,3)€4, and
(3,k)€ A by (10i), (10ix), (4), Lemma 1, and P,(w, 3). This contradicts
Lemma 4(a).

Thus Cases 1 and 2 imply that (10x) is valid.

(10xi) k—1«s.

In fact, if Kk — 1 > s, we have, by (10i), (10ii), (10iv), (10v), and (4), that
O(1) < {2, A, k} when 7 > 4 and we have O(1)c {2,3,4 =1, k} when 7=4.
By virtue of (10vi) and (10ix), there exists no Pj(1,k) in T. This
contradiction implies that (10xi) is valid.

Since (10x), (10xi) contradict (1), (10) is established.

Finally, we have & € {Ai + l,..., s — 1, s} by (9) and (10). But it contradicts
the assumption of the existence of an arc (&, §) € 4 such that 4 < /i < 7 < m.
Hence, under the condition of (IV) s, =s, =y, there always exists a P;(a, b)
in T.

Up to now, under the conditions of Theorem 1, we have exhausted all
possible cases of T and deduced that there always exists a Pj(a,b) in T.
Therefore the proof of Theorem 1 is complete. §
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