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An Ore-type Condition for Cyclability †

YAOJUN CHEN, YUNQING ZHANG AND KEMIN ZHANG

A graphG is said to be cyclable if for each orientationD of G, there exists a setS(D) ⊆ V(G)
such that reversing all the arcs with one end inS results in a Hamiltonian digraph. LetG be a simple
graph of even ordern ≥ 8. In this paper, we show that if the degree sum of any two nonadjacent
vertices is not less thann+ 1, thenG is cyclable and the lower bound is sharp.

c© 2001 Academic Press

1. INTRODUCTION

Let G = (V(G), E(G)) be a finite simple graph without loops. The neighbourhoodN(v)
of a vertexv is the set of vertices adjacent tov. The degreed(v) of v is |N(v)|. The minimum
and maximum degree ofG are denoted byδ(G) and1(G), respectively. For a vertexv ∈
V(G) and a subsetS ⊆ V(G), NS(v) is the set of neighbours ofv contained inS, i.e.,
NS(v) = N(v) ∩ S. We letdS(v) = |NS(v)|. For S ⊆ V(G), G[S] denotes the subgraph
induced byS. Let H be a subgraph ofG. If h1h2 ∈ E(G) for anyh1, h2 ∈ V(H), then we
say H is a clique. A path with one endu is called au-path. Let u, v ∈ V(G). A spanning
subgraphH of G is called a(u, v)-path-factor if H contains two components, one of them
is a u-path and the other is av-path. LetP be a path. We denote by

−→
P the pathP with a

given direction, and by
←−
P the pathP with the reverse direction. Ifu, v ∈ V(P), thenu

−→
P v

denotes the consecutive vertices ofP from u to v in the direction specified by
−→
P . The same

vertices, in reverse order, are given byv
←−
P u. If a path or cycle includes every vertex ofV(G),

then it is called aHamilton pathor cycle. If G contains a Hamilton cycle, then we sayG is
Hamiltonian. Furthermore, we define

σ2(G) = min{d(u)+ d(v) | u, v ∈ V(G) and uv /∈ E(G)}.

Let D be orientation ofG andC = v1 · · · vm be an even cycle ofG. We define

fC(vi vi+1) =

{
1, if vi vi+1 ∈ A(D),
0, if vi+1vi ∈ A(D),

and
f (C) =

∑
e∈E(C)

fC(e),

wherevm+1 = v1 andA(D) is the arc set ofD.
If f (C) is even, then we sayC is goodunder the orientation. Otherwise, we sayC is bad.
Switchat a vertexv of a graphG removes fromG all the edges incident withv and adds the

new edges betweenv and all the vertices originally nonadjacent tov. This operation has been
studied by Colbourn and Corneil [1], Mallows and Sloane [5], Rubinson and Goldman [12, 13],
Stanley [14], Taylar [15], and others.Pushinga vertexv in a digraph reverses all the orien-
tations of all arcs incident withv. We say that a digraphD can be pushed to a digraphH
if a digraph isomorphic toH can be obtained by applying a sequence of pushes toD. The
push operation has been studied by Pretzel [9–11]. In [4], Klostermeyeret al. introduced a
Hamiltonian-like property of graphs, that is, cyclability. A graph is said to becyclableif each
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of its orientations can be pushed to one that contains a directed Hamilton cycle. The following
is the first result on cyclability due to Klostermeyer.

THEOREM 1 (KLOSTERMEYER[3]). Let G be a graph with order n. If n is odd, then G
is cyclable if and only if G is Hamiltonian. If n is even, then an orientation D of G can
be pushed to one that contains a directed Hamilton cycle if and only if D contains a good
Hamilton cycle.

Clearly, if a graph is cyclable, then it is Hamiltonian. However, the reverse is not true.
Furthermore, as pointed out in [4], neither Hamilton connectivity nor cycle extendibility is
stronger than cyclability and vice versa. Hence, for any theorem on hamiltonicity, it is of
interest to give an analogous result for cyclable graphs. The following is a fundamental result
on hamiltonicity due to Dirac.

THEOREM 2 (DIRAC [2]). Let G be a simple graph of order n≥ 3. If δ(G) ≥ n/2, then
G is Hamiltonian.

Dirac’s Theorem is important since it has many generalizations and the following well
known one of them is due to Ore.

THEOREM 3 (ORE [8]). Let G be a simple graph of order n≥ 3. If σ2(G) ≥ n, then G is
Hamiltonian.

The following is a generalization of Dirac’s Theorem to digraphs.

THEOREM 4 (NASH-WILLIAMS [7]). Let D be a strict digraph on n≥ 3 vertices with
minimum in-degreeδ− and minimum out-degreeδ+. If min{δ−, δ+} ≥ n/2, then D contains
a directed Hamilton cycle.

A far-reaching generalization of Theorems2, 3 and4, which was given by Meyniel, is the
following.

THEOREM 5 (MEYNIEL [6]). Let D be a strict strong digraph on n vertices, where n≥ 2.
If σ2(D) ≥ 2n− 1, then D contains a directed Hamilton cycle.

In this paper, we give an Ore-type condition for cyclability. The main result of this paper is
the following theorem.

THEOREM 6. Let G be a graph with even order n≥ 8. If σ2(G) ≥ n+1, then G is cyclable.

REMARK . The lower bound of the condition is best possible in the following sense.
Let G = K2t+1,2t+1 = (A, B) be a complete bipartite graph on 4t + 2 vertices with

bipartition (A, B), wheret ≥ 1. SupposeD is an orientation ofG such that each edge is
oriented fromA to B. It is not difficult to see thatσ2(G) = 4t + 2 andG is not cyclable since
each Hamilton cycle ofD is bad.

As a direct consequence of Theorem6, we have the following Dirac-type condition for
cyclability.

COROLLARY 1. Let G be a graph with even order n≥ 8. If δ(G) ≥ n/2+ 1, then G is
cyclable.

Let δ(n) be the smallest positive integerδ such that eachn-vertex graph with minimum
degree at leastδ is cyclable (n ≥ 5). Klostermeyer showed thatδ(6) = 5 and asked in [4] the
precise values ofn for all positive even integersn. By Corollary1 and the remark, we have
δ(n) = n/2+ 1 for n ≡ 2 (mod 4) andn ≥ 10. However, we do not know whether it is true
for n ≡ 0 (mod 4) andn ≥ 8. It is of interest to determine the precise values for alln ≡ 0
(mod 4) andn ≥ 8.
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2. SOME LEMMAS

In order to prove Theorem6, we need the following lemmas. The first three lemmas can be
extracted from [4].

LEMMA 1 (KLOSTERMEYERet al. [4]). Let G be a simple graph of even order. If for each
orientation D of G, D contains a good 4-cycle with a diagonal, say a1a2a3a4 with a1a3 ∈

E(G), such that there exists a Hamilton path in G− {a1,a3} connecting a2 and a4, then G is
cyclable.

LEMMA 2 (KLOSTERMEYERet al. [4]). Let K2,3 = (A, B) be a complete bipartite graph
with bipartition A= {a1,a2} and B= {b1,b2,b3}. Then for any orientation of K2,3, at least
one of the cycles a1b1a2b2, a1b1a2b3 and a1b2a2b3 is good.

LEMMA 3 (KLOSTERMEYERet al. [4]). Let G be a graph, xy∈ E(G) and{v1, v2, v3} ⊆

N(x) ∩ N(y). If for any two verticesvi , v j ∈ {v1, v2, v3}, there exists a Hamilton path in
G− {x, y} connectingvi andv j , then G is cyclable.

The following lemma is a consequence of Theorem3, so we omit its proof.

LEMMA 4. Let G be a graph of order n. Ifσ2(G) ≥ n− 1, then G has a Hamilton path.

LEMMA 5. Let G be a graph of order n and P= v1v2 · · · vn a Hamilton path of G. If G is
not Hamiltonian, then d(v1)+ d(vn) ≤ n− 1.

PROOF. SinceG is not Hamiltonian, we havev1vn /∈ E(G) and for anyvi ∈ N(vn), vi+1 /∈

N(v1). Otherwise,v1
−→
P vi vn

←−
P vi+1v1 is a Hamilton cycle. This implies that there are at least

d(vn) vertices amongv2, . . . , vn that are not adjacent tov1 and henced(v1)+d(vn) ≤ n−1.
2

LEMMA 6. Let n be an even integer and G a graph of order n. Ifσ2(G) ≥ n− 1, then for
any two vertices u, v ∈ V(G), G contains a(u, v)-path-factor.

PROOF. By Lemma4, G contains a Hamilton path, sayP = v1 · · · vn. Supposeu = vi ,
v = v j with i < j . If i = 1 or j = n or j = i + 1, then it is easy to see the conclusion holds.
Hence we may assume 1< i < j − 1 < j < n. If G is Hamiltonian, then the conclusion
holds. Hence we may assumeG is not Hamiltonian.

Suppose to the contrary thatG contains no(u, v)-path-factor. Then{v1, vi+1, vn} is an
independent set. LetP1 = v1

−→
P vi−1, P2 = vi+1

−→
P v j−1 andP3 = v j+1

−→
P vn. Sinceσ2(G) ≥

n− 1, by Lemma5, we have
d(v1)+ d(vn) = n− 1. (1)

We now show that{u, v} ⊆ N(v1) ∩ N(vn). SinceG is not Hamiltonian, by the proof of
Lemma5, we can see that for anyvk ∈ N(vn), vk+1 /∈ N(v1). Clearly,vi−1vn /∈ E(G).
Otherwise,G has a(u, v)-path-factor. This implies that there are at leastdP1(vn) vertices
amongv2, . . . , vi−1 that are not adjacent tov1 and hencedP1(v1) + dP1(vn) ≤ |P1| − 1. By
symmetry, we havedP3(v1)+ dP3(vn) ≤ |P3| − 1. Noting thatvi+1, v j−1 /∈ N(v1) ∩ N(vn),
by a similar argument, we find thatdP2(v1) + dP2(vn) ≤ |P2| − 1. Thus,d(v1) + d(vn) ≤

|P1| + |P2| + |P3| − 3+ 4= n− 1. Sinceσ2(G) ≥ n− 1, we haved(v1)+ d(vn) = n− 1,
which implies that{u, v} ⊆ N(v1) ∩ N(vn).
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Sincev1v ∈ E(G), v j−1
←−
P v1v

−→
P vn is a Hamilton path ofG. By a similar argument

as above, we haveuv j−1 ∈ E(G). Thus, noting thatuvn ∈ E(G), we can see that both
v1
−→
P uvn

←−
P vi+1 andvi+1

−→
P v j−1u

←−
P v1v

−→
P vn are Hamilton paths ofG. Sinceσ2(G) ≥ n−1,

by Lemma5, we have
d(v1)+ d(vi+1) = n− 1 (2)

and
d(vi+1)+ d(vn) = n− 1. (3)

By (1), (2) and (3), we obtain

2(d(v1)+ d(vi+1)+ d(vn)) = 3(n− 1).

Noting thatn is even, this is a contradiction. 2

LEMMA 7. Let G= K4 with V(G) = {1,2,3,4} and D be an orientation of G such that
the cycle C1 = 1234is good. Then either C2 = 1324or C3 = 1243is good.

PROOF. Suppose to the contrary that bothC2 andC3 are bad. It is not difficult to show
that fC2(14) = fC2(23) if and only if fC3(12) 6= fC3(34). On the other hand, it is easy to
check that fC2(14) = fC2(23) if and only if fC1(14) 6= fC1(23) and fC3(12) 6= fC3(34)
if and only if fC1(12) = fC1(34). Thus, we find thatfC1(14) 6= fC1(23) if and only if
fC1(12) = fC1(34). Hence we can see thatf (C1) is odd and thenC1 is bad, a contradiction.
2

LEMMA 8. Let G be a graph of order n≥ 8. If σ2(G) ≥ n+ 1, then there exists an edge
xy ∈ E(G) such that|N(x) ∩ N(y)| ≥ 3.

PROOF. Let V1 = {v|v ∈ V(G) andd(v) ≥ n/2+1} andV2 = V(G)−V1. Clearly,V1 6= ∅.
We first show that for anyu ∈ V1, N(u)∩V1 6= ∅. If N(u)∩V1 = ∅, thenN(u) ⊆ V2, which
implies |V2| ≥ n/2+ 1. Sinceσ2(G) ≥ n + 1, G[V2] is a clique. Thus, for anyv ∈ V2, we
haved(v) ≥ n/2+ 1, a contradiction.

Chooseuv ∈ E(G) with u, v ∈ V1 such thatd(u)+ d(v) is as large as possible. Ifd(u)+
d(v) ≥ n+ 3, thenuv is the edge as required. Thus we may assumed(u)+ d(v) ≤ n+ 2 and
henced(u)+d(v) = n+2. By the choice ofuv, we haved(u) = n/2+1 for anyu ∈ V1. This
implies1(G) = n/2+ 1. Sinceσ2(G) ≥ n+ 1 andn ≥ 8, we haveδ(G) ≥ n/2 ≥ 4. Since
d(u)+d(v) = n+2, we have|N(u)∩N(v)| ≥ 2. If |N(u)∩N(v)| ≥ 3, then the result holds.
Hence we may assume|N(u)∩ N(v)| = 2. Let N(u)∩ N(v) = {a,b}, N(u)−{a,b, v} = X
and N(v) − {a,b,u} = Y. Sinced(u) + d(v) = n + 2 and|N(u) ∩ N(v)| = 2, we have
V(G)−{u, v,a,b} = X∪Y. If ab∈ E(G), then sinceδ(G) ≥ 4, N(a)∩ (X∪Y) 6= ∅. Thus,
au is an edge as required ifN(a)∩X 6= ∅ andav is an edge as required ifN(a)∩Y 6= ∅. Now
let ab /∈ E(G). Thend(a)+ d(b) ≥ n+ 1. Assumed(a) ≥ d(b), thend(a) ≥ n/2+ 1 ≥ 5.
This implies|N(a)∩ X| ≥ 2 or |N(a)∩Y| ≥ 2. Thus,au is an edge as required in the former
case andav is an edge as required in the latter case. 2

3. PROOF OFTHEOREM 6

PROOF OFTHEOREM 6. By Lemmas2, 3 and8, for any orientationD of G, D contains
a good 4-cycle with a diagonal. Assumea1a2a3a4 is a good 4-cycle witha1a3 ∈ E(G). Let
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G∗ = G − {a1,a3}. If G∗ contains a Hamilton path connectinga2 anda4, then by Lemma3,
G is cyclable. Hence we may assumeG contains no Hamilton path connectinga2 anda4.
Clearly,|G∗| = n− 2 andσ2(G∗) ≥ n− 3. Thus by Lemma6, G∗ contains an(a2,a4)-path-
factor. Choose an(a2,a4)-path-factorP1 = u0u1 · · · us, P2 = v0v1 · · · vt such that

|s− t | is as large as possible, (∗)

wherea2 = us and a4 = vt . Without loss of generality, we assumes ≤ t . Write U =
{u0,u1, . . . ,us−1}, V = {v0, v1, . . . , vt−1}, S= {a1,a2,a3,a4} and letU0 = U ∪ S, V0 =

V ∪ S.

CLAIM 1. For anyvi ∈ V , if vi ∈ N(u0), thenvi+1 /∈ N(v0).

PROOF. Otherwise,a2
←−
P1u0vi

←−
P2v0vi+1

−→
P2a4 is a Hamilton path connectinga2 anda4 in

G∗, a contradiction. 2

CLAIM 2. If N (u0)∩V 6= ∅, then dV (u0)+dV (v0) ≤ t−s and if dV (u0)+dV (v0) = t−s,
thenvt−s−1 ∈ N(u0).

PROOF. By the choice ofs andt , we havevt−1, . . . , vt−s /∈ N(u0). SinceN(u0)∩ V 6= ∅,
we haveN(u0) ∩ v1

−→
P2vt−s−1 6= ∅, which impliesvt−1, . . . , vt−s /∈ N(v0) by the choice of

s and t . Supposeu0 hask neighbours amongv1, . . . , vt−s−1. If vt−s−1 /∈ N(u0), then by
Claim 1, there are at leastk vertices amongv1, . . . , vt−s−1 that are not adjacent tov0. Thus,

dV (u0)+ dV (v0) ≤ |v1
−→
P2vt−s−1| = t − s− 1.

That is to say,dV (u0)+ dV (v0) ≤ t − s and if dV (u0)+ dV (v0) = t − s, then we must have
vt−s−1 ∈ N(u0). 2

If s = 0, then we havedV (a2) + dV (v0) ≤ t by Claim2. If vt−1 /∈ N(a2), thendV (a2) +

dV (v0) ≤ t−1, which impliesd(a2)+d(v0) ≤ (t−1)+dS(a2)+dS(v0) ≤ (t−1)+3+3=
t+5= n+1. Sinceσ2(G) ≥ n+1, we haved(a2)+d(v0) = n+1, which impliesdS(a2) =

dS(v0) = 3 and hencea2a4, v0a1, v0a3 ∈ E(G). If vt−1 ∈ N(a2), thena4 = vt /∈ N(v0) by
Claim 1. This impliesdS(v0) ≤ 2. Thus we haved(a2) + d(v0) ≤ t + dS(a2) + dS(v0) ≤

t + 3+ 2 = t + 5 = n + 1. By a similar argument, we find thata2a4, v0a1, v0a3 ∈ E(G).
On the other hand, by Lemma7 we know eithera1a3a2a4 or a1a2a4a3 is good. Thus, if in
the former case,a1a3a2a4 is a good 4-cycle with a diagonala1a2 anda3v0

−→
P2a4 is a Hamilton

path inG− {a1,a2} and if in the latter case,a1a2a4a3 is a good 4-cycle with a diagonala2a3
anda1v0

−→
P2a4 is a Hamilton path inG− {a1,a4}, then, by Lemma1, G is cyclable. Hence in

the following we may assumes ≥ 1.

CLAIM 3. dS(u0)+ dS(v0) ≥ 7.

PROOF. By the choice ofs andt , we havedU (v0) = 0. If dV (u0) = 0, then it is easy to
see that Claim3 holds. IfdV (u0) 6= 0, then, by Claim2, we havedV (u0) + dV (v0) ≤ t − 1.
Clearly,dU (u0) ≤ s− 1. Thus we have

n+ 1≤ d(u0)+ d(v0)

= dU (u0)+ dS(u0)+ dV (u0)+ dV (v0)+ dS(v0)+ dU (v0)

≤ (s− 1)+ (t − 1)+ (dS(u0)+ dS(v0)).

Sinces+ t = n− 4, we find thatdS(u0)+ dS(v0) ≥ 7. 2
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CLAIM 4.

(1) Suppose s= 1 and dS(u0) = 4. If G[V(P2)] contains a Hamilton path P= a4wt−1
· · · w1w0 such that{a2,a3} ⊆ N(w0), then G is cyclable.

(2) If s ≥ 2 and U0− {ui } ⊆ N(ui ) for any ui ∈ U, then G is cyclable.
Similarly, if V0− {vi } ⊆ N(vi ) for anyvi ∈ V , then G is cyclable.

PROOF. (1) In this case, it is easy to see thata2w0
−→
P a4a3, a3a2w0

−→
P a4 anda2a3w0

−→
P a4

are Hamilton paths inG− {a1,u0}. By Lemma3, G is cyclable.
(2) By Claim 3, {a1,a3} ∩ N(v0) 6= ∅. By the symmetry ofa1 anda3, we may assume

a1 ∈ N(v0). Now, consider the edgeu0u1 and the verticesa2,a3,a4 ∈ N(u0) ∩ N(u1). It is
not difficult to see thata2

←−
P1u2a1v0

−→
P2a4a3, a3a2

←−
P1u2a1v0

−→
P2a4 anda2

←−
P1u2a3a1v0

−→
P2a4 are

Hamilton paths inG − {u0,u1}. By Lemma3, G is cyclable. For the remainder part, noting
that n ≥ 8 ands ≤ t implies t ≥ 2, we can obtain the conclusion by a similar argument
as above. 2

We now consider the following two cases.

Case 1. N(u0) ∩ V = ∅.
In this case, we haved(u0) ≤ (s−1)+4= s+3 andd(v0) ≤ (t −1)+4= t +3. Subject

to (∗), we chooseu0 andv0 such that

d(u0)+ d(v0) is as small as possible. (∗∗)

CLAIM 5.

(1) If V0− {v0} ⊆ N(v0), then V0− {vi } ⊆ N(vi ) for anyvi ∈ V .
(2) If U0− {u0} ⊆ N(u0), then U0− {ui } ⊆ N(ui ) for any ui ∈ U.

PROOF. (1) If V0 − {v0} ⊆ N(v0), then for anyvi ∈ V , a4
←−
P2vi+1v0

−→
P2vi and P1 is an

(a2,a4)-path-factor ofG∗ satisfying(∗). By (∗∗), we haved(vi ) ≥ d(v0), which implies that
V0− {vi } ⊆ N(vi ).

(2) If U0 − {u0} ⊆ N(u0), then for anyui ∈ U , a2
←−
P1ui+1u0

−→
P1ui and P2 is an(a2,a4)-

path-factor ofG∗ satisfying(∗). If s = 1, then there is nothing to prove. Hence we may
assumes ≥ 2. If N(ui ) ∩ V 6= ∅, then we havedV (v0) ≤ t − 3 by Claim2. This implies that
d(u0)+ d(v0) ≤ (s+ 3)+ 4+ (t − 3) = n, which contradictsσ2(G) ≥ n+ 1. Thus we have
N(ui ) ∩ V = ∅. By (∗∗), we haved(ui ) ≥ d(u0), which implies thatU0− {ui } ⊆ N(ui ). 2

If d(v0) = t + 3, thenV0 − {v0} ⊆ N(v0). By Claim5(1), we haveV0 − {vi } ⊆ N(vi ) for
anyvi ∈ V . ThusG is cyclable by Claim4(2). Hence we may assumed(v0) ≤ t + 2. Noting
thatσ2(G) ≥ n+ 1 ands+ t = n− 4, we haved(v0) = t + 2 andd(u0) = s+ 3.

Sinced(u0) = s+ 3, we haveU0 − {u0} ⊆ N(u0). By Claim 5(2), we haveU0 − {ui } ⊆

N(ui ) for any ui ∈ U . If s ≥ 2, then by Claim4(2), G is cyclable. Thus, we may as-
sumes = 1. If a2,a3 ∈ N(v0), then by Claim4(1), G is cyclable. Hence we may assume
{a2,a3} 6⊆ N(v1). This implies {a1,a4} ∪ V − {v0} ⊆ N(v0). Thus, for anyvi ∈ V ,
P1 and a4

←−
P2vi+1v0

−→
P2vi is an (a2,a4)-path-factor ofG∗ satisfying(∗). By (∗∗), we have

d(vi ) = t + 2. If a2,a3 ∈ N(vi ), then by Claim4(1), G is cyclable. Hence we may assume
{a2,a3} 6⊆ N(vi ) for anyvi ∈ V . This implies{a1,a4} ∪ V − {vi } ⊆ N(vi ). Sincen ≥ 8,
s= 1 ands+ t = n− 4, we havet ≥ 3. By Claim3, we have{a2,a3} ∩ N(vt−1) 6= ∅. Now,
consider the edgev0v1 andv2,a1,a4 ∈ N(v0) ∩ N(v1). We can see thata1u0a2a3a4

←−
P2v2,
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v2
−→
P2vt−1a1u0a2a3a4 anda1v2

−→
P2vt−1a2a3u0a4 (if a2vt−1 ∈ E(G)) or a1v3

−→
P2vt−1a3a2u1a4

(if a3vt−1 ∈ E(G)) are Hamilton paths inG− {v0, v1}. By Lemma3, G is cyclable.

Case 2. N(u0) ∩ V 6= ∅.
By the choice ofs andt , we havedU (v0) = 0. By Claim2, we havedV (u0)+dV (v0) ≤ t−s.

Thus, we haved(u0)+ d(v0) = dU (u0)+ dS(u0)+ dV (u0)+ dV (v0)+ dS(v0)+ dU (v0) ≤

(s−1)+4+(t−s)+4+0= t+7. Noting thats+t = n−4, we haved(u0)+d(v0) ≤ n−s+3.
If s ≥ 3, then we haved(u0) + d(v0) ≤ n, which contradictsσ2(G) ≥ n+ 1. Therefore we
haves ≤ 2.

If s= 2, thendV (u0)+dV (v0) ≤ t−2 by Claim2. Thus we haved(u0)+d(v0) ≤ (s−1)+
4+ (t−2)+4= n+1 and henced(u0)+d(v0) = n+1. This impliesdS(u0) = dS(v0) = 4.
Clearly,a2u0u1 and P2 is an(a2,a4)-path-factor ofG∗ satisfying(∗). If N(u1) ∩ V = ∅,
then we haved(u1) + d(v0) ≤ (s+ 3) + (t − 3) + 4 = n sincedV (u0) + dV (v0) ≤ t − 2
and N(u0) ∩ V 6= ∅. This is a contradiction. Hence we haveN(u1) ∩ V 6= ∅. By a similar
argument, we havedS(u1) = 4. Thus, we haveU0 − {ui } ⊆ N(ui ) for any ui ∈ U . By
Claim 4(2), G is cyclable.

If s = 1, then subject to(∗), we chooseu0 such thatdS(u0) is as large as possible. By
Claim 3, we havedS(u0) ≥ 3. If dS(u0) = 3, then we havedS(v0) = 4 by Claim3. Thus,
if we replaceP2 with a4v0

−→
P2vt−1, we can obtaindS(vt−1) = 4. By the choice ofu0, we

havevt−2 /∈ N(u0), otherwise we can choosevt−1a4 anda2u0vt−2
←−
P2v0 instead ofP1 and

P2. Thus, by Claim2, we havedV (u0) + dV (v0) ≤ t − 2. This impliesd(u0) + d(v0) ≤

(s− 1)+ 3+ (t − 2)+ 4= n, which contradictsσ2(G) ≥ n+ 1. Hence we havedS(u0) = 4.
On the other hand, sinceN(u0) ∩ V 6= ∅ and s = 1, by (∗), G[V] is not Hamiltonian
and hencedV (v0) + dV (vt−1) ≤ |V | − 1 = t − 1 by Lemma5. This impliesn + 1 ≤
d(v0) + d(vt−1) ≤ (t − 1) + dS(v0) + dS(vt−1). Noting thats+ t = n − 4 ands = 1, we
havedS(v0) + dS(vt−1) ≥ 7. If {a2,a3} ⊆ N(v0), then by Claim4(1), G is cyclable. Hence
we may assume{a2,a3} 6⊆ N(v0) and hencea4 ∈ N(v0) by Claim3. Now, replacingP2 with
a4v0
←−
P2vt−1, we havedS(vt−1) = 4 sincedS(v0) + dS(vt−1) ≥ 7. Thus,G is cyclable by

Claim 4(1).
The proof of Theorem6 is completed. 2
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