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An Ore-type Condition for Cyclability T

YAOJUN CHEN, YUNQING ZHANG AND KEMIN ZHANG

A graphG is said to be cyclable if for each orientati@nhof G, there exists a s&¥(D) € V(G)
such that reversing all the arcs with one endiresults in a Hamiltonian digraph. L& be a simple
graph of even orden > 8. In this paper, we show that if the degree sum of any two nonadjacent
vertices is not less tham+ 1, thenG is cyclable and the lower bound is sharp.

(© 2001 Academic Press

1. INTRODUCTION

Let G = (V(G), E(G)) be a finite simple graph without loops. The neighbourhdlid)
of a vertexv is the set of vertices adjacentdtoThe degreel(v) of v is [N (v)|. The minimum
and maximum degree @ are denoted by (G) and A(G), respectively. For a vertex €
V(G) and a subse§ € V(G), Ns(v) is the set of neighbours af contained inS, i.e.,
Ns(v) = N(v) N S. We letds(v) = |Ns(v)|. For S € V(G), G[S] denotes the subgraph
induced byS. Let H be a subgraph d&. If hthy, € E(G) for anyh1, ho € V(H), then we
say H is acligue A path with one endi is called au-path Letu, v € V(G). A spanning
subgraphH of G is called a(u, v)-path-factor if H contains two components, one of them
is au-path and the other is e-path. LetP be a path. We denote b_?) the pathP with a
given direction, and b)ﬁ the pathP with the reverse direction. I, v € V(P), thenu P v
denotes the consecutive verticesRofrom u to v in the direction specified bﬁ. The same
vertices, in reverse order, are givemb(iy_’u. If a path or cycle includes every vertex\¢{G),
then it is called aHamilton pathor cycle If G contains a Hamilton cycle, then we s@yis
Hamiltonian Furthermore, we define

02(G) = min{d(u) + d(v) |u, v € V(G) and w ¢ E(G)}.
Let D be orientation ofs andC = v; - - - vy, be an even cycle d. We define

N )1, ifvivigr e A(D),
fc(uivipr) = {0, if viy1vi € A(D),

and
fC)= Y fc@,

ecE(C)

wherevny1 = v1 and A(D) is the arc set oD.

If f(C) is even, then we sa@ is goodunder the orientation. Otherwise, we gays bad
Switchat a vertexv of a graphG removes fronG all the edges incident with and adds the
new edges betweanand all the vertices originally nonadjacenttoTl his operation has been

studied by Colbourn and Cornell]f Mallows and Sloan€q], Rubinson and Goldmarip, 13],
Stanley [L4], Taylar [15], and othersPushinga vertexv in a digraph reverses all the orien-
tations of all arcs incident with. We say that a digrap® can be pushed to a digraph

if a digraph isomorphic tdd can be obtained by applying a sequence of pushds. tbhe
push operation has been studied by Pret2elll. In [4], Klostermeyeret al. introduced a
Hamiltonian-like property of graphs, that is, cyclability. A graph is said toyagableif each

TThis project was supported by NSFC.
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of its orientations can be pushed to one that contains a directed Hamilton cycle. The following
is the first result on cyclability due to Klostermeyer.

THEOREM 1 (KLOSTERMEYER[3]). Let G be a graph with order n. If n is odd, then G
is cyclable if and only if G is Hamiltonian. If n is even, then an orientation D of G can
be pushed to one that contains a directed Hamilton cycle if and only if D contains a good
Hamilton cycle.

Clearly, if a graph is cyclable, then it is Hamiltonian. However, the reverse is not true.
Furthermore, as pointed out id][ neither Hamilton connectivity nor cycle extendibility is
stronger than cyclability and vice versa. Hence, for any theorem on hamiltonicity, it is of
interest to give an analogous result for cyclable graphs. The following is a fundamental result
on hamiltonicity due to Dirac.

THEOREM2 (DIRAC [2]). Let G be a simple graph of order»n 3. If §(G) > n/2, then
G is Hamiltonian.

Dirac’s Theorem is important since it has many generalizations and the following well
known one of them is due to Ore.

THEOREM 3 (ORE[8]). Let G be a simple graph of orders 3. If 02(G) > n, then G is
Hamiltonian.

The following is a generalization of Dirac’s Theorem to digraphs.

THEOREM4 (NASH-WILLIAMS [7]). Let D be a strict digraph on r= 3 vertices with
minimum in-degreé— and minimum out-degres". If min{§—, §7} > n/2, then D contains
a directed Hamilton cycle.

A far-reaching generalization of Theore®s3 and4, which was given by Meyniel, is the
following.

THEOREMS5 (MEYNIEL [6]). Let D be a strict strong digraph on n vertices, where-r2.
If o2(D) > 2n — 1, then D contains a directed Hamilton cycle.

In this paper, we give an Ore-type condition for cyclability. The main result of this paper is
the following theorem.

THEOREM®G6. Let G be a graph with even ordersa 8. If 02(G) > n+1, then G is cyclable.

REMARK. The lower bound of the condition is best possible in the following sense.
Let G = Kay12t+41 = (A, B) be a complete bipartite graph ot 4 2 vertices with
bipartition (A, B), wheret > 1. SupposeD is an orientation ofG such that each edge is
oriented fromA to B. It is not difficult to see that>(G) = 4t 4+ 2 andG is not cyclable since

each Hamilton cycle ob is bad.

As a direct consequence of Theoré&nwe have the following Dirac-type condition for
cyclability.

COROLLARY 1. Let G be a graph with even ordern 8. If §(G) > n/2+ 1, then G is
cyclable.

Let §(n) be the smallest positive integérsuch that eaclm-vertex graph with minimum
degree at leastis cyclable (1 > 5). Klostermeyer showed th&t6) = 5 and asked in4] the
precise values of for all positive even integens. By Corollary 1 and the remark, we have
8(n) = n/2+1forn = 2 (mod 4) anch > 10. However, we do not know whether it is true
for n = 0 (mod 4) anch > 8. It is of interest to determine the precise values fona# 0
(mod 4) anch > 8.
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2. SOME LEMMAS

In order to prove Theorei®, we need the following lemmas. The first three lemmas can be
extracted from4].

LEMMA 1 (KLOSTERMEYERet al. [4]). Let G be a simple graph of even order. If for each
orientation D of G, D contains a good 4-cycle with a diagonal, sagpazas with agaz €
E(G), such that there exists a Hamilton path in-&{a;, ag} connecting aand ay, then G is
cyclable.

LEMMA 2 (KLOSTERMEYERet al. [4]). Let Ky 3 = (A, B) be a complete bipartite graph
with bipartition A= {as, ap} and B= {bs, by, b3}. Then for any orientation of K3, at least
one of the cyclesidiaxby, agbiazbz and aboasbs is good.

LEMMA 3 (KLOSTERMEYERet al. [4]). Let G be a graph, x¥ E(G) and{vy, v2, v3} C
N(x) N N(y). If for any two verticesj, vj € {v1, v, v3}, there exists a Hamilton path in
G — {x, y} connectingyj andvj, then G is cyclable.

The following lemma is a consequence of Theo/®rao we omit its proof.

LEMMA 4. Let G be a graph of order n. H2(G) > n — 1, then G has a Hamilton path.

LEMMA 5. Let G be a graph of order n and B vyvz - - - v, @ Hamilton path of G. If G is
not Hamiltonian, then (1) + d(vy) <n —1.

PROOF SinceG is not Hamiltonian, we haveyv, ¢ E(G) and for any; € N(vp), vi4+1 ¢

N (v1). Otherwise,vll_D)vi Un$Ui+1l)1 is a Hamilton cycle. This implies that there are at least
d(vp) vertices amongy, ..., vy that are not adjacent tq and hencel(v1) +d(vy) <n—1.
]

LEMMA 6. Let n be an even integer and G a graph of order nilfG) > n — 1, then for
any two vertices w € V(G), G contains au, v)-path-factor.

PROOFE By Lemma4, G contains a Hamilton path, s& = v1---vy. Supposal = v,
v=vjwithi < j.Ifi =1orj=norj=i+1,thenitis easy to see the conclusion holds.
Hence we may assumed i < j —1 < j < n. If G is Hamiltonian, then the conclusion
holds. Hence we may assur@eis not Hamiltonian.

Suppose to the contrary th@ contains no(u, v)-path-factor. Then{v1, vit1, vn} is an
independent set. Lé¥ = vlﬁvi,l, P, = vi+1_P)vj,1 andP3 = vj11 P vp. Sinceoy(G) >
n — 1, by Lemmab, we have

d(v) +d(vn) =n— 1. 1)

We now show thafu, v} € N(v1) N N(vp). SinceG is not Hamiltonian, by the proof of
Lemmab, we can see that for anyk € N(vp), vk+1 ¢ N(v1). Clearly,vi_1vn ¢ E(G).
Otherwise,G has a(u, v)-path-factor. This implies that there are at ledsf(vn) vertices
amonguy, ..., vj—1 that are not adjacent tg and hencelp, (v1) + dp,(vn) < |P1| — 1. By
symmetry, we havep, (v1) + dp,;(vn) < | P3| — 1. Noting thatvi 11, vj—1 ¢ N(v1) N N(vn),
by a similar argument, we find thap, (v1) + dp,(vn) < |P2| — 1. Thus,d(v1) + d(vn) <
[P1] + |P2| +|P3] —3+4=n-—1.Sinces2(G) > n— 1, we haved(v1) +d(vy) =n —1,
which implies thatfu, v} € N(v1) N N(vp).
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Sinceviv € E(G), Uj_]_(ﬁvlvﬁvn is a Hamilton path ofG. By a similar argument
as above, we havevj_1 € E(G). Thus, noting thativn, € E(G), we can see that both
vlﬁ Uvn(ﬁUH_]_ andvi+1l_3vj_1u(5v1vl_3vn are Hamilton paths db. Sinceo2(G) > n—1,
by Lemmab, we have

d(vy) +d(viz) =n—-1 (2

and
d(vit1) +d(vp) =n—-1 3

By (2), (2) and @), we obtain

2(d(v1) + d(vi+1) +d(vn)) = 3(n - 1).
Noting thatn is even, this is a contradiction. O

LEMMA 7. Let G = K4 with V(G) = {1, 2, 3, 4} and D be an orientation of G such that
the cycle G = 1234is good. Then either £= 13240r Cz = 1243is good.

PROOF Suppose to the contrary that bafla and C3 are bad. It is not difficult to show
that fc,(14) = fc,(23) if and only if fc,(12) # fc,(34). On the other hand, it is easy to
check thatfc,(14) = fc,(23) if and only if fc,(14) # fc,(23) and fc;(12) # fc,(34)
if and only if fc,(12) = fc,(34). Thus, we find thatfc, (14) # fc,(23) if and only if
fc,(12) = fc,(34). Hence we can see th&(Cy) is odd and thel€, is bad, a contradiction.
O

LEMMA 8. Let G be a graph of order i 8. If 02(G) > n + 1, then there exists an edge
xy € E(G) such thaf N(x) N N(y)| > 3.

PrROOFE LetV; = {v|v € V(G) andd(v) > n/2+1} andV, = V (G)—Vs. Clearly,V1 # @.
We first show that for any € V1, N(u) N'Vy # @. If N(u) N V1 = @, thenN (u) C V,, which
implies|Vz| > n/2+ 1. Sinceo2(G) > n+ 1, G[V,] is a clique. Thus, for any € V5, we
haved(v) > n/2 + 1, a contradiction.

Chooseauv € E(G) with u, v € V1 such thad(u) + d(v) is as large as possible.dfu) +
d(v) > n+ 3, thenuv is the edge as required. Thus we may assdme+ d(v) < n+ 2 and
henced(u) +d(v) = n+2. By the choice ofiv, we haved(u) = n/2+1 for anyu € V;. This
impliesA(G) = n/2+ 1. Sinceo2(G) > n+ 1 andn > 8, we haveS(G) > n/2 > 4. Since
d(u)+d() =n+2,we havgNU) NN ()| > 2. If IN(u)NN(v)| > 3, then the result holds.
Hence we may assumbl(u) " N(v)| = 2. LetN(u) NN (@) = {a, b}, N(u) — {a, b, v} = X
andN(v) — {a,b,u} = Y. Sinced(u) + d(v) = n+ 2 and|N(u) N N(v)| = 2, we have
V(G)—{u,v,a, b} = XUY.Ifabe E(G), thensincé(G) > 4, N(@ N(XUY) # @. Thus,
auis an edge as requiredif(a) N X # @ andav is an edge as requiredif(a)NY # @. Now
letab ¢ E(G). Thend(a) + d(b) > n+ 1. Assumeal(a) > d(b), thend(a) > n/2+1 > 5.
This implies|N(@)N X| > 2or|N(a)NY| > 2. Thus,auis an edge as required in the former
case anaw is an edge as required in the latter case. O

3. PROOF OFTHEOREMG

PROOF OFTHEOREM 6. By Lemmas2, 3 and8, for any orientatiorD of G, D contains
a good 4-cycle with a diagonal. Assuragapazas is a good 4-cycle witlajaz € E(G). Let
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G* = G — {a, ag}. If G* contains a Hamilton path connectiag andag, then by Lemma,
G is cyclable. Hence we may assur@econtains no Hamilton path connectimg and ay.
Clearly,|G*| = n — 2 ando2(G*) > n — 3. Thus by Lemm&, G* contains anaz, a4)-path-
factor. Choose aray, a)-path-factorP; = ugus - - - Us, P2 = vgvs - - - v such that

|s — t| is as large as possible (%)

whereay = us andag = v;. Without loss of generality, we assume< t. Write U =
{uo, U, ..., us—1}, V = {vo, v1,...,v—1}, S= {ar, @z, a3, a4} and letUg = U U S, Vg =
VUS.

CLAaIM 1. Foranyv; € V, if vj € N(up), thenvi 11 ¢ N(vp).

PrROOF Otherwise,azﬁuovi <P_21)0Ui+132a4 is a Hamilton path connectingy anda4 in
G*, a contradiction. ]

CLAIM 2. If N(ug)NV # @, then d; (up) +dy (vg) < t—s andifd,(ug)+dy(vg) =t—s,
thenvi_s_1 € N(up).

PROOF By the choice ok andt, we havev;_1, ..., vi_s ¢ N(Ug). SinceN(ug) NV # @,
we haveN (ug) N Ulﬁzvtfsfl # (¢, which impliesv;_1, ..., vi—s ¢ N(vg) by the choice of
s andt. Supposalg hask neighbours amongy, ..., vi—s—1. If vi_s—1 ¢ N(ug), then by
Claim 1, there are at leagtvertices amongs, .. ., vi—s—1 that are not adjacent tg. Thus,

dy (Uo) + dy (o) < [v1Povy_s 1] =t —s—1.

That is to saydy (Up) + dy (vo) <t — sand ifdy (ug) + dv (vo) =t — s, then we must have
vi—s—1 € N(Up). O

If s = 0, then we havely (a2) + dv (vp) <t by Claim2. If vi_1 ¢ N(ap), thendy (a2) +
dv (vo) <t—1, whichimpliesd(az) +d(vg) < (t —1)+ds(az) +ds(vg) < (t—1)+3+3 =
t+5=n+1. Sinceo2(G) > n+ 1, we havel(ap) + d(vg) = n+ 1, which impliesds(ap) =
ds(vo) = 3 and henc@pay, voa, voaz € E(G). If vi_1 € N(ap), thenag = vt ¢ N(vg) by
Claim 1. This impliesds(vg) < 2. Thus we havel(az) + d(vg) <t + ds(az) + ds(vg) <
t+34+2=t+5=n+ 1. By a similar argument, we find thatas, voai, voaz € E(G).
On the other hand, by Lemmawe know eitherajazazas or ajarasas is good. Thus, if in
the former casegjazazaq is a good 4-cycle with a diagonal az anda3v0ﬁ§a4 is a Hamilton
path inG — {az, a2} and if in the latter caseyaragas is a good 4-cycle with a diagonapag
andajvgPra4 is a Hamilton path irG — {aj, a4}, then, by Lemmd, G is cyclable. Hence in
the following we may assunge> 1.

CLAIM 3. ds(up) + ds(vg) = 7.
PrROOF By the choice ofs andt, we havedy (vg) = 0. If dy(ug) = 0, then it is easy to

see that Clain8 holds. Ifdy (ug) # 0, then, by Clain2, we havedy (ug) + dv (vg) <t — 1.
Clearly,dy (ug) < s — 1. Thus we have

n+ 1 < d(ug) + d(vg)
= dy (up) + ds(ug) + dv (up) + dyv (vo) + ds(vo) + duy (vo)
<(s—1) 4+ (t —1) + (ds(up) + ds(vo)).

Sinces +t = n — 4, we find thatds(ug) + ds(vg) > 7. |
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CLAIM 4.,

(1) Suppose s= 1 and ds(ug) = 4. If G[V (P)] contains a Hamilton path P= aqw;_1
-+ wiwp such thatf{az, az} € N(wg), then G is cyclable.

(2) Ifs>2and W — {uj} € N(u;) forany y € U, then G is cyclable.
Similarly, if Vo — {vi} € N(vj) for anyv; € V, then G is cyclable.

PrROOFE (1) In this case, it is easy to see thatu()3 a3, a3a2w03a4 anda2a3w03a4
are Hamilton paths i — {az, ug}. By Lemma3, G is cyclable.

(2) By Claim 3, {a1, az} N N(vp) # . By the symmetry of; andag, we may assume
a1 € N(vg). Now, consider the edgayui and the verticesy, az, a4 € N(ug) N N(uq). Itis
not difficult to see thaBQ(P_]_UZalvoﬁzma;g, agazﬁuzalvoﬁzaz; and a2(|:’_1U2a3a1U()$2a4 are
Hamilton paths inG — {uo, u1}. By Lemma3, G is cyclable. For the remainder part, noting
thatn > 8 ands < t impliest > 2, we can obtain the conclusion by a similar argument
as above. O

We now consider the following two cases.

Casel. N(ug)NnV =4a.
In this case, we hav(ug) < (s—1)+4 =s+3andd(vg) < (t —1)+4 =1t + 3. Subject
to (%), we chooselg andvg such that

d(up) + d(vp) is as small as possible. (k%)

CLAIM 5.
(1) 1f Vo — {vo} € N(vo), then \§ — {vi} € N(vj) for anyvj € V.
(2) If Ug — {ug} € N(up), then h — {uj} € N(uj) foranyuy € U.

ProoE (1) If Vo — {vo} € N(vp), then for anyv; € V, a4(P_2vi+1voﬁzvi and Py is an
(ap, a4)-path-factor ofG* satisfying(x). By (x*), we haved (vi) > d(vg), which implies that
Vo — {vi} € N(vj).

(2) If Ug — {up} S N(up), then for anyu; € U, az‘P_luiJrluoﬁlui and P, is an(ap, ay)-
path-factor ofG* satisfying(x). If s = 1, then there is nothing to prove. Hence we may
assumes > 2. If N(uj) NV £ @, then we havely (vg) <t — 3 by Claim2. This implies that
d(ug) +d(vg) < (s+3) +4+ (t —3) = n, which contradicte»(G) > n+ 1. Thus we have
N(uj) NV = @. By (x*), we haved(u;) > d(ug), which implies thatJg — {uj} € N(u;). O

If d(vg) =t + 3, thenVy — {vg} € N(vg). By Claim5(1), we haveVp — {vi} € N(v;) for
anyv; € V. ThusG is cyclable by Claim#(2). Hence we may assundévp) < t + 2. Noting
thatoo(G) > n+ 1lands+t =n — 4, we haved(vg) =t + 2 andd(ug) = s+ 3.

Sinced(ug) = s+ 3, we havelg — {ug} € N(ug). By Claim5(2), we havelg — {uj} C
N(uj) for anyu; € U. If s > 2, then by Claim4(2), G is cyclable. Thus, we may as-
sumes = 1. If ap, a3 € N(vp), then by Claim4(1), G is cyclable. Hence we may assume
{ap, a3} € N(v1). This implies{ai,as} U V — {vo} € N(vg). Thus, for anyy; € V,

P1 and asPovi 1100 Pou; is an (ap, ag)-path-factor ofG* satisfying (x). By (xx), we have
d(vj) =t + 2. If ap, a3 € N(vj), then by Claim4(1), G is cyclable. Hence we may assume
{ag, a3} € N(v) for anyvj € V. This implies{as, a4} UV — {vj} € N(vj). Sincen > 8,
s=1ands+t =n—4,we hava > 3. By Claim3, we have{ap, az} N N(vt_1) # ¥. Now,
consider the edgegvy andvg, a3, a4 € N(vg) N N(v1). We can see thEH]_anzaga4(P_2v2,
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v2Pour_181Upar8384 anday vaPav_18agUoay (if agui_1 € E(G)) or ajvzPouy_1agasUiay
(if agvi—1 € E(G)) are Hamilton paths i — {vg, v1}. By Lemma3, G is cyclable.

Case 2. N(up) NV # 0.

By the choice of andt, we havedy (vg) = 0. By Claim2, we havedy (Ug)+dy (vp) < t—s.
Thus, we havel(uo) + d(vo) = dy (Ug) + ds(Uo) + dv (Uo) + dv (vo) + ds(vo) + du (vo) <
(s—1)+4+(t—s)+4+0 = t+7. Noting thas+t = n—4, we haveld (ug)+d(vg) < n—s+3.
If s > 3, then we havel(ug) + d(vg) < n, which contradicte»(G) > n + 1. Therefore we
haves < 2.

If s =2, thendy (ug) +dy (vg) < t—2 by Claim2. Thus we havel(ug) +d(vg) < (s—1)+
44 (t—2)+4=n+1and hencé(ug) +d(vg) = n+ 1. This impliesds(ug) = ds(vg) = 4.
Clearly, augu; and Py is an (ap, ag)-path-factor ofG* satisfying(x). If N(uy)) NV = ¢,
then we havel(u1) + d(vg) < (s+ 3) + (t — 3) + 4 = n sincedy (Ug) + dy(vg) <t —2
andN(up) NV # @. This is a contradiction. Hence we haigu1) NV # @. By a similar
argument, we haves(ui;) = 4. Thus, we havéJyg — {u;} € N(uj) for anyu; € U. By
Claim4(2), G is cyclable.

If s = 1, then subject t@x), we chooseug such thatds(up) is as large as possible. By
Claim 3, we haveds(ug) > 3. If ds(up) = 3, then we havels(vg) = 4 by Claim3. Thus,
if we replaceP, with ayvgPovi—1, we can obtairds(vi—1) = 4. B%the choice olug, we
havevi_» ¢ N(up), otherwise we can choosg_ias andasugui_2 Povg instead ofP; and
P. Thus, by Claim2, we havedy (up) + dv(vg) < t — 2. This impliesd(ug) + d(vg) <
(s—1)+ 3+ (t —2)+4 = n, which contradicts>(G) > n+ 1. Hence we havds(ug) = 4.
On the other hand, sincl(ug) NV # @ ands = 1, by (x), G[V] is not Hamiltonian
and hencaly (vg) + dy(vi—1) < |[V| —1 =t — 1 by Lemmab. This impliesn + 1 <
d(vg) + d(vi_1) < (t — 1) + ds(vg) + ds(vi_1). Noting thats +t = n — 4 ands = 1, we
haveds(vg) + ds(vi—1) > 7. If {ap, a3z} € N(vg), then by Claim4(1), G is cyclable. Hence
we may assuméay, az} € N(vg) and hencey € N(vg) by Claim3. Now, replacingP, with
a4vo(P_2vt,1, we haveds(vi_1) = 4 sinceds(vo) + ds(vi—1) > 7. Thus,G is cyclable by
Claim4(1).

The proof of Theorend is completed. ]
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