DISCRETE
APPLIED
MATHEMATICS

Note

Edge-pancyclicity of coupled graphs

Ko-Wei Lih ${ }^{\text {a }, *}$, Song Zengmin ${ }^{\text {b }}$, Wang Weifan ${ }^{\text {c }}$, Zhang Kemin ${ }^{\text {d }}$
${ }^{\text {a }}$ Institute of Mathematics, Academia Sinica, 128, Section 2, Academy Road, Nankang, Taipei 11529, Taiwan
${ }^{\mathrm{b}}$ Department of Applied Mathematics, Southeast University, Nanjing 210096, People's Republic of China
${ }^{\text {c }}$ Department of Mathematics, Liaoning University, Shenyang 110036, People's Republic of China
${ }^{\mathrm{d}}$ Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

Received 6 March 2000; received in revised form 29 November 2000; accepted 19 March 2001

Abstract

The coupled graph $c(G)$ of a plane graph G is the graph defined on the vertex set $V(G) \cup F(G)$ so that two vertices in $c(G)$ are joined by an edge if and only if they are adjacent or incident in G. We prove that the coupled graph of a 2-connected plane graph is edge-pancyclic. However, there exists a 2-edge-connected plane graph G such that $c(G)$ is not Hamiltonian. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Coupled graph; Edge-panciclicity; Ear decomposition

1. Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges unless stated otherwise. A plane graph G is a particular drawing in the Euclidean plane of a certain planar graph. For a plane graph G, we denote its vertex set, edge set, face set, and order by $V(G), E(G), F(G)$, and $|G|$, respectively. The total graph of a graph G is defined on the vertex set $V(G) \cup E(G)$ such that two vertices are joined by an edge if and only if they are adjacent or incident in G. For a plane graph G, its coupled graph $c(G)$ (or entire graph $e(G)$) is defined on the vertex set $V(G) \cup F(G)$ (or $V(G) \cup E(G) \cup F(G)$) such that two vertices in $c(G)$ (or $e(G)$) are joined by an edge if and only if they are adjacent or incident in G. A graph G is pancyclic if it possesses cycles of all lengths ranging from 3 to the order of G. We call G vertex-pancyclic (or edge-pancyclic) if, for every vertex v (or every edge e), there

[^0]exist cycles of all lengths ranging from 3 to the order of G each of which contains v (or e). We call G panconnected if, for every pair of distinct vertices, there exist paths joining them of all possible lengths greater than or equal to the distance between the vertices.

Fleischner [5] proved that the total graph of every 2-edge-connected graph with at least three vertices is Hamiltonian. Fleischner and Hobbs [6] further showed that the total graph of a graph G of order at least two is Hamiltonian if and only if G contains an EPS-subgraph. An EPS-subgraph of a graph G is a connected spanning subgraph S of G such that S is the edge-disjoint union of an Euler graph (not necessarily connected) and a (possibly empty) forest F such that each of the components of F is a path.

Mitchem [8] first investigated Hamiltonian and Eulerian properties of entire graphs. Hobbs and Mitchem [7] proved that the entire graph of a 2 -edge-connected plane graph is Hamiltonian and the entire graph of a 2-connected plane graph is Hamiltonian connected and pancyclic. Faudree and Schelp [4] strengthened this result to show that the entire graph of a 2 -edge-connected plane graph is panconnected.

A k-coupled coloring of a plane graph G is a k-coloring of the vertices and the faces of G so that any two distinct adjacent or incident elements in $V(G) \cup F(G)$ receive different colors. Obviously, G is k-coupled colorable if and only if $c(G)$ is k-colorable. Ringel [9] conjectured that every plane graph is 6 -coupled colorable. Finally, Borodin [3] established the truth of Ringel's conjecture. The reader is referred to [$1,2,10$] for further properties of coupled graphs. The purpose of this paper is to study Hamiltonian properties of coupled graphs.

2. Results

Let G be a plane graph. The unique unbounded face of G is called the outer face and is denoted by $f_{\text {out }}(G)$ (or simply $f_{\text {out }}$). The other faces of G are called inner faces. Let $\tau(G)$ (or simply τ) denote the number of inner faces of G. Thus $\tau(G)=|F(G)|-1$. Given a cycle C in G, let $\operatorname{IN}(C)$ denote the subgraph of G induced by the vertices on and inside C and let in (C) denote the number of edges in $E(\operatorname{IN}(C)) \backslash E(C)$. For $f \in F(G)$, we use $b(f)$ to denote the boundary of f.

The following is a refined version of the well-known ear decomposition of Whitney [11] applied to 2-connected plane graphs.

Lemma 1. Let G be a 2-connected plane graph and P_{0} be an edge of G. Then G can be decomposed into an edge-disjoint union of paths $G=P_{0} \cup P_{1} \cup \cdots \cup P_{\tau(G)}$ such that the following properties hold.
(1) Let $H_{i}=P_{0} \cup P_{1} \cup \cdots \cup P_{i}$ for $0 \leqslant i \leqslant \tau=\tau(G)$. Then the path $P_{i+1}, 0 \leqslant i<\tau$ $=\tau(G)$, with end vertices x_{i+1} and y_{i+1} passes through the outer face of the subgraph H_{i} and it moves from x_{i+1} to y_{i+1} in the clockwise direction along the outer face of H_{i+1}.
(2) $P_{i+1} \cap H_{i}=\left\{x_{i+1}, y_{i+1}\right\}$.
(3) There is a path Q_{i+1} moving from x_{i+1} to y_{i+1} in the clockwise direction along the boundary of the outer face of H_{i} such that $P_{i+1} \cup Q_{i+1}$ forms an inner face of G.

Proof. Since G is 2 -connected, P_{0} forms an inner face with a certain path P_{1}. Suppose that $P_{0}, P_{1}, \ldots, P_{i}, 1 \leqslant i<\tau$, have been determined. If $G=H_{i}$, then we are done. If $E(G) \backslash E\left(H_{i}\right) \neq \emptyset$, we choose an H_{i}-bridge B, i.e., B is a component of the subgraph induced by $E(G) \backslash E\left(H_{i}\right)$. Since G is 2-connected, $\left|V(B) \cap V\left(H_{i}\right)\right| \geqslant 2$. Note that every inner face of H_{i} is an inner face of G. It follows that all vertices of $V(B) \cap V\left(H_{i}\right)$ belong to the boundary of the outer face of H_{i}. There exists a path $P=u_{1} u_{2} \cdots u_{s}$ in B such that $s \geqslant 2, u_{1}, u_{s} \in V(B) \cap V\left(H_{i}\right)$, and $u_{2}, \ldots, u_{s-1} \in V(B) \backslash V\left(H_{i}\right)$. We may also assume that moving clockwise from u_{1} to u_{s} along the boundary of the outer face of H_{i} forms a path Q. Thus $C_{0}=P \cup Q$ becomes a cycle of G. Now consider the set $\Gamma=\left\{C \mid C\right.$ is a cycle in $\operatorname{IN}\left(C_{0}\right)$ and C contains at least one edge of the boundary of the outer face of H_{i}.\} The set Γ is non-empty since it contains C_{0}. Note that $\operatorname{IN}(C)$ is 2 -connected for every $C \in \Gamma$. Among the elements $C \in \Gamma$, we choose a certain C^{\prime} having the smallest value of $\operatorname{in}(C)$. If some $e \in E\left(\operatorname{IN}\left(C^{\prime}\right)\right) \backslash E\left(C^{\prime}\right)$, then the 2 -connectedness of $\operatorname{IN}\left(C^{\prime}\right)$ implies that there is a cycle C^{*} in $\operatorname{IN}\left(C^{\prime}\right)$ through both e and an edge of Q. Since $E\left(\operatorname{IN}\left(C^{*}\right)\right) \backslash E\left(C^{*}\right) \subseteq E\left(\operatorname{IN}\left(C^{\prime}\right)\right) \backslash E\left(C^{\prime}\right)$ and $e \notin E\left(\operatorname{IN}\left(C^{*}\right)\right) \backslash E\left(C^{*}\right)$, we have in $\left(C^{*}\right)<\operatorname{in}\left(C^{\prime}\right)$. This contradicts the choice of C^{\prime}. It follows that $\operatorname{in}\left(C^{\prime}\right)=0$ and C^{\prime} forms the boundary of an inner face of G. It is straightforward to define P_{i+1}, Q_{i+1}, x_{i+1}, and y_{i+1} from C^{\prime}. Since we add one more inner face in each stage, the construction is finished in τ stages.

We note that every $H_{i}, 1 \leqslant i \leqslant \tau$, is a 2 -connected plane graph in the proof of Lemma 1 .
Theorem 2. Let G be a 2-connected plane graph. Then $c(G)$ is edge-pancyclic.
Proof. Let $e=u v$ be an arbitrary edge of $c(G)$.
Case 1: Both vertices $u, v \in V(G)$.
Without loss of generality, we may assume that $u v$ lies on the common boundary of f_{1} and $f_{\text {out }}(G)$. We first decompose G into the form $P_{0} \cup P_{1} \cup \cdots \cup P_{\tau}$ guaranteed by Lemma 1 so that P_{0} is the edge $u v$. As we add the P_{i} 's, the inner faces of G can be simultaneously numbered as $f_{1}, f_{2}, \ldots, f_{\tau}$. Again let $H_{i}=P_{0} \cup P_{1} \cup \cdots \cup P_{i}$ for $0 \leqslant i \leqslant \tau$.

We proceed by induction on τ. Actually, in each induction stage we construct the cycles in a systematic way such that, when the next path P_{i} is added, a certain property (\star) is preserved.

When $\tau=1, G$ is the cycle $u_{1} u_{2} \cdots u_{s} u_{1}$, where $u=u_{1}$ and $v=u_{s}$, moving along the clockwise direction. Since G is the common boundary of f_{1} and $f_{\text {out }}$, we have $V(c(G))=V(G) \cup\left\{f_{1}, f_{\text {out }}\right\} \quad$ and $\quad E(c(G))=E(C) \cup\left\{f_{1} f_{\text {out }}\right\} \cup\left\{u_{i} f_{1}, u_{i} f_{\text {out }}\right.$ $\mid i=1,2, \ldots, s\}$. In $c(G)$, we construct a particular sequence of cycles C_{n} of length $n, 3 \leqslant n \leqslant s+2$, each of which contains the edge $u v$. Let $C_{3}=u f_{\text {out }} v u, C_{4}=u f_{1} f_{\text {out }} v u$, $C_{5}=u u_{2} f_{1} f_{\text {out }} v u, \ldots, C_{s+2}=u u_{2} \cdots u_{s-1} f_{1} f_{\text {out }} v u$. Note that each $C_{i+1}, i \geqslant 4$, is
obtained from C_{i} by inserting a new vertex of $c(G)$ prior to a fixed vertex of C_{i}. We call this type of construction a monotone expansion of cycles.

Now rename C_{s+2} temporarily as $z_{1} z_{2} \cdots z_{s+2} z_{1}$, where $z_{1}=u$ and $z_{s+2}=v$. When the path $P_{2}=p_{1} p_{2} \cdots p_{q}$ is added along the clockwise direction to H_{1}, we may assume that $p_{1}=z_{i}$ and $p_{q}=z_{j}$ for some $i<j$. Then the following property (\star) holds: z_{i+1} is either a vertex of H_{1} that is incident to f_{2} in H_{2} or a face of H_{1} that is adjacent to f_{2} in H_{2}.

Assume that the theorem holds for $\tau=k \geqslant 1$. Let G be a 2 -connected plane graph with $k+1$ inner faces. We decompose G into the form $P_{0} \cup \cdots \cup P_{k} \cup P_{k+1}$ as in Lemma 1. By the induction hypothesis, $c\left(H_{k}\right)=c\left(P_{0} \cup P_{1} \cup \cdots \cup P_{k}\right)$ is edge-pancyclic through $u v$. We further assume that all the cycles in $c\left(H_{k}\right)$ through $u v$ are constructed by inductive stages and, within each stage, by a monotone expansion of cycles. For $m=\left|H_{k}\right|+\left|F\left(H_{k}\right)\right|=\left|H_{k}\right|+k+1$, let $C_{m}=z_{1} z_{2} \cdots z_{m} z_{1}$, where $z_{1}=u$ and $z_{m}=v$, be the Hamiltonian cycle so constructed. Suppose that $P_{k+1}=v_{1} v_{2} \cdots v_{t}$, where $v_{1}=z_{i}$ and $v_{t}=z_{j}$ for some $i<j$. Assume that P_{k+1} moves from v_{1} to v_{t} in the clockwise direction along the boundary of the outer face of H_{k+1}. By our assumption, f_{k+1} is the inner face of G formed by H_{k} and P_{k+1}. Now the property (\star) holds by the induction hypothesis, i.e., z_{i+1} is either a vertex of H_{k} that is incident to f_{k+1} in H_{k+1} or a face of H_{k} that is adjacent to f_{k+1} in H_{k+1}.

In $c(G)$, a monotone expansion of cycles C_{l} of length $l, m+1 \leqslant l \leqslant|c(G)|$, each of which contains $u v$ can be constructed as follows:

$$
\begin{aligned}
& C_{m+1}=z_{1} \cdots z_{i} f_{k+1} z_{i+1} \cdots z_{m} z_{1}, \\
& C_{m+2}=z_{1} \cdots z_{i} v_{2} f_{k+1} z_{i+1} \cdots z_{m} z_{1}, \\
& \cdots \\
& C_{|c(G)|}=z_{1} \cdots z_{i} v_{2} \cdots v_{t-1} f_{k+1} z_{i+1} \cdots z_{m} z_{1} .
\end{aligned}
$$

Note that the path P_{k+2} will be added in the clockwise direction along the boundary of the outer face of H_{k+1}, and $C_{|c(G)|}$ is obtained from C_{m} by inserting a consecutive segment $v_{2} \cdots v_{t-1} f_{k+1}$. If the initial end of P_{k+2} does not belong to $\left\{z_{i}, v_{2}, \ldots, v_{t-1}\right\}$, then the property (\star) holds by induction. However, it is easy to see that the property (\star) is preserved if the initial end of P_{k+2} belongs to $\left\{z_{i}, v_{2}, \ldots, v_{t-1}\right\}$.

Case 2: At least one vertex $u \in F(G)$.
If $v \in F(G)$, we suppose that $u=f_{1}$ and $v=f_{\text {out }}$. If $v \in V(G)$, we let $u=f_{\text {out }}$ and $v=u_{s}$, where $u_{s} \in b\left(f_{1}\right) \cap b\left(f_{\text {out }}(G)\right)$, as defined in Case 1. We let $C_{3}=u_{s} f_{1} f_{\text {out }} u_{s}$. For $4 \leqslant n \leqslant|c(G)|$, we may take the same cycles C_{n} as in Case 1 since each C_{n} always contains both the edge $f_{1} f_{\text {out }}$ and the edge $f_{\text {out }} u_{s}$.

Once the edge-disjoint decomposition into paths is given, the inductive proof of Theorem 2 actually supplies a polynomial-time algorithm for finding a Hamiltonian cycle in the coupled graph of a 2 -connected plane graph. The next theorem provides examples to show that Theorem 2 is best possible in the sense that there exists a 2-edge-connected plane graph G such that $c(G)$ is not Hamiltonian.

The block graph $B(G)$ of a graph G is the graph whose vertices are the blocks of G and two vertices in $B(G)$ are adjacent if and only if the corresponding blocks of G share a common vertex. Note that two blocks of G can share at most one vertex. Suppose that x is a cut vertex of G. Let the components of $G-x$ have vertex sets $V_{1}, V_{2}, \ldots, V_{n}$. Then the induced subgraphs $G\left[V_{i} \cup\{x\}\right], i=1,2, \ldots, n$, are called the x-components of G. For $S \subseteq V(G)$, let $\omega(G-S)$ denote the number of components of the graph $G-S$.

Theorem 3. Let G be a plane graph. If $B(G)$ contains a vertex of degree at least 3, then $c(G)$ is not Hamiltonian.

Proof. Let B_{0} be a block of G having degree $m \geqslant 3$ in $B(G)$. Let $B_{1}, B_{2}, \ldots, B_{m}$ be the blocks of G that are neighbors of B_{0} in $B(G)$. There are vertices x_{i} in G for all $i \in[m]=\{1,2, \ldots, m\}$ such that $V\left(B_{0}\right) \cap V\left(B_{i}\right)=\left\{x_{i}\right\}$. Each x_{i} is a cut vertex of G as well as a cut vertex of $c(G)-f_{\text {out }}$. Moreover, $\left(V\left(B_{i}\right) \cap V\left(B_{j}\right)\right) \backslash V\left(B_{0}\right)=\emptyset$ for all $i, j \in[m]$ and $i \neq j$. We have the following two cases.

Case 1: There exist $i, j \in[m]$ such that $i \neq j$ and $x_{i}=x_{j}$.
Let $S=\left\{x_{i}, f_{\text {out }}\right\}$. Clearly S is a cut set of $c(G)$. Since $m \geqslant 3$, the number of x_{i}-components of G is at least 3. It follows that $\omega(c(G)-S) \geqslant 3>2=|S|$. Hence $c(G)$ violates the necessary condition to be Hamiltonian.

Case 2: The vertices $x_{1}, x_{2}, \ldots, x_{m}$ are all distinct.
Note that G has exactly two x_{i}-components for each $i \in[m]$. One of the x_{i} components, called G_{i}, is a supergraph of B_{i}. The plane drawing of G induces a natural plane embedding of G_{i} and we may assume $f_{\text {out }}\left(G_{i}\right)=f_{\text {out }}(G)=f_{\text {out }}$. Since $\left|G_{i}\right| \geqslant 2$, the vertex set of $c\left(G_{i}\right)-\left\{x_{i}, f_{\text {out }}\right\}$ is nonempty.
Suppose that $c(G)$ has a Hamiltonian cycle. Then $c(G)-f_{\text {out }}$ has a Hamiltonian path $P=z_{1} z_{2} \cdots z_{t}$, where $t=|c(G)|-1$. Since $m \geqslant 3$, we may pick three vertices z_{i}, z_{j}, and z_{k} such that $1 \leqslant i<j<k \leqslant t$ and $z_{i} \in c\left(G_{p}\right)-\left\{x_{p}, f_{\text {out }}\right\}, z_{j} \in c\left(G_{q}\right)-\left\{x_{q}, f_{\text {out }}\right\}$, and $z_{k} \in c\left(G_{r}\right)-\left\{x_{r}, f_{\text {out }}\right\}$ for distinct p, q, and r in [m]. Since x_{q} is a cut vertex of $c(G)-f_{\text {out }}$, the path P has to traverse x_{q} twice to include z_{j}. This contradicts the definition of P. It follows that $c(G)$ is not Hamiltonian.

It is easy to construct infinitely many 2 -edge-connected plane graphs that satisfy the assumption of Theorem 3. We conclude this paper by posing the following problem.

Problem 4. Let G be a 2-edge-connected plane graph. Is its coupled graph $c(G)$ edge-pancyclic when its block graph $B(G)$ is a path?

Acknowledgements

This work was done while the last three authors were visiting Institute of Mathematics, Academia Sinica, Taipei. The financial support provided by the Institute is greatly appreciated.

References

[1] R. Bodendiek, H. Schumacher, K. Wagner, Bemerkungen zu einem Sechsfarbenproblem von G. Ringel, Abh. Math. Sem. Univ. Hamburg 53 (1983) 41-52.
[2] R. Bodendiek, H. Schumacher, K. Wagner, Über 1-optimale Graphen, Math. Nachr. 117 (1984) 323339.
[3] O.V. Borodin, A new proof of the 6-color theorem, J. Graph Theory 19 (1995) 507-521.
[4] R.J. Faudree, R.H. Schelp, The entire graph of a bridgeless connected plane graph is panconnected, J. London Math. Soc. 12 (1975) 59-66.
[5] H. Fleischner, On spanning subgraphs of a connected graph and their application to DT-graphs, J. Combin. Theory Ser. B 16 (1974) 17-28.
[6] H. Fleischner, A.M. Hobbs, Hamiltonian total graphs, Math. Nachr. 68 (1975) 59-82.
[7] A.M. Hobbs, J. Mitchem, The entire graph of a bridgeless connected plane graph is Hamiltonian, Discrete Math. 16 (1976) 233-239.
[8] J. Mitchem, Hamiltonian and Eulerian properties of entire graphs, in: Y. Alavi, D.R. Lick, A.T. White (Eds.), Graph Theory and Applications, Springer, Berlin, 1972, pp. 189-195.
[9] G. Ringel, Ein sechsfarbenproblem auf der kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965) 107-117.
[10] H. Schumacher, Zur struktur 1-planarer graphen, Math. Nachr. 125 (1986) 291-300.
[11] H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math. 54 (1932) 150-168.

[^0]: * Corresponding author.

 E-mail address: makwlih@sinica.edu.tw (Ko-Wei Lih).

