Note

Edge-pancyclicity of coupled graphs

Ko-Wei Liha,*, Song Zengminb, Wang Weifanc, Zhang Kemind

aInstitute of Mathematics, Academia Sinica, 128, Section 2, Academy Road, Nankang, Taipei 11529, Taiwan
bDepartment of Applied Mathematics, Southeast University, Nanjing 210096, People’s Republic of China
cDepartment of Mathematics, Liaoning University, Shenyang 110036, People’s Republic of China
dDepartment of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

Received 6 March 2000; received in revised form 29 November 2000; accepted 19 March 2001

Abstract

The coupled graph $c(G)$ of a plane graph G is the graph defined on the vertex set $V(G) \cup F(G)$ so that two vertices in $c(G)$ are joined by an edge if and only if they are adjacent or incident in G. We prove that the coupled graph of a 2-connected plane graph is edge-pancyclic. However, there exists a 2-edge-connected plane graph G such that $c(G)$ is not Hamiltonian. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Coupled graph; Edge-pancyclicity; Ear decomposition

1. Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges unless stated otherwise. A plane graph G is a particular drawing in the Euclidean plane of a certain planar graph. For a plane graph G, we denote its vertex set, edge set, face set, and order by $V(G), E(G), F(G)$, and $|G|$, respectively. The total graph of a graph G is defined on the vertex set $V(G) \cup E(G)$ such that two vertices are joined by an edge if and only if they are adjacent or incident in G. For a plane graph G, its coupled graph $c(G)$ (or entire graph $e(G)$) is defined on the vertex set $V(G) \cup F(G)$ (or $V(G) \cup E(G) \cup F(G)$) such that two vertices in $c(G)$ (or $e(G)$) are joined by an edge if and only if they are adjacent or incident in G. A graph G is pancyclic if it possesses cycles of all lengths ranging from 3 to the order of G. We call G vertex-pancyclic (or edge-pancyclic) if, for every vertex v (or every edge e), there

* Corresponding author.
E-mail address: makwlih@sinica.edu.tw (Ko-Wei Lih).
exist cycles of all lengths ranging from 3 to the order of G each of which contains v (or e). We call G panconnected if, for every pair of distinct vertices, there exist paths joining them of all possible lengths greater than or equal to the distance between the vertices.

Fleischner [5] proved that the total graph of every 2-edge-connected graph with at least three vertices is Hamiltonian. Fleischner and Hobbs [6] further showed that the total graph of a graph G of order at least two is Hamiltonian if and only if G contains an EPS-subgraph. An EPS-subgraph of a graph G is a connected spanning subgraph S of G such that S is the edge-disjoint union of an Euler graph (not necessarily connected) and a (possibly empty) forest F such that each of the components of F is a path.

Mitchem [8] first investigated Hamiltonian and Eulerian properties of entire graphs. Hobbs and Mitchem [7] proved that the entire graph of a 2-edge-connected plane graph is Hamiltonian and the entire graph of a 2-connected plane graph is Hamiltonian connected and pancyclic. Faudree and Schelp [4] strengthened this result to show that the entire graph of a 2-edge-connected plane graph is panconnected.

A k-coupled coloring of a plane graph G is a k-coloring of the vertices and the faces of G so that any two distinct adjacent or incident elements in $V(G) \cup F(G)$ receive different colors. Obviously, G is k-coupled colorable if and only if $c(G)$ is k-colorable. Ringel [9] conjectured that every plane graph is 6-coupled colorable. Finally, Borodin [3] established the truth of Ringel’s conjecture. The reader is referred to [1,2,10] for further properties of coupled graphs. The purpose of this paper is to study Hamiltonian properties of coupled graphs.

2. Results

Let G be a plane graph. The unique unbounded face of G is called the outer face and is denoted by $f_{out}(G)$ (or simply f_{out}). The other faces of G are called inner faces. Let $\tau(G)$ (or simply τ) denote the number of inner faces of G. Thus $\tau(G) = |F(G)| - 1$. Given a cycle C in G, let $IN(C)$ denote the subgraph of G induced by the vertices on and inside C and let $in(C)$ denote the number of edges in $E(IN(C)) \setminus E(C)$. For $f \in F(G)$, we use $b(f)$ to denote the boundary of f.

The following is a refined version of the well-known ear decomposition of Whitney [11] applied to 2-connected plane graphs.

Lemma 1. Let G be a 2-connected plane graph and P_0 be an edge of G. Then G can be decomposed into an edge-disjoint union of paths $G = P_0 \cup P_1 \cup \cdots \cup P_{\tau(G)}$ such that the following properties hold.

1. Let $H_i = P_0 \cup P_1 \cup \cdots \cup P_i$ for $0 \leq i \leq \tau = \tau(G)$. Then the path P_{i+1}, $0 \leq i < \tau = \tau(G)$, with end vertices x_{i+1} and y_{i+1} passes through the outer face of the subgraph H_i and it moves from x_{i+1} to y_{i+1} in the clockwise direction along the outer face of H_{i+1}.

2. $P_{i+1} \cap H_i = \{x_{i+1}, y_{i+1}\}$.
(3) There is a path Q_{i+1} moving from x_{i+1} to y_{i+1} in the clockwise direction along the boundary of the outer face of H_i such that $P_{i+1} \cup Q_{i+1}$ forms an inner face of G.

Proof. Since G is 2-connected, P_0 forms an inner face with a certain path P_i. Suppose that $P_0, P_1, \ldots, P_i, 1 \leq i < \tau$, have been determined. If $G = H_i$, then we are done. If $E(G) \setminus E(H_i) \neq \emptyset$, we choose an H_i-bridge B, i.e., B is a component of the subgraph induced by $E(G) \setminus E(H_i)$. Since G is 2-connected, $|V(B) \cap V(H_i)| \geq 2$. Note that every inner face of H_i is an inner face of G. It follows that all vertices of $V(B) \cap V(H_i)$ belong to the boundary of the outer face of H_i. There exists a path $P = u_1u_2 \cdots u_s$ in B such that $s \geq 2$, $u_1, u_s \in V(B) \cap V(H_i)$, and $u_2, \ldots, u_{s-1} \in V(B) \setminus V(H_i)$. We may also assume that moving clockwise from u_1 to u_s along the boundary of the outer face of H_i forms a path Q_i. Thus $C_0 = P \cup Q_i$ becomes a cycle of G. Now consider the set $\Gamma = \{C | C$ is a cycle in $IN(C_0)$ and C contains at least one edge of the boundary of the outer face of $H_i\}$. The set Γ is non-empty since it contains C_0. Note that $IN(C)$ is 2-connected for every $C \in \Gamma$. Among the elements $C \in \Gamma$, we choose a certain C' having the smallest value of $in(C)$. If some $e \in E(IN(C')) \setminus E(C')$, then the 2-connectedness of $IN(C')$ implies that there is a cycle C'' in $IN(C')$ through both e and an edge of Q. Since $E(IN(C')) \setminus E(C') \subset E(IN(C')) \setminus E(C')$ and $e \notin E(IN(C')) \setminus E(C')$, we have $in(C') < in(C'')$. This contradicts the choice of C'. It follows that $in(C') = 0$ and C' forms the boundary of an inner face of G. It is straightforward to define P_{i+1}, Q_{i+1}, x_{i+1}, and y_{i+1} from C'. Since we add one more inner face in each stage, the construction is finished in τ stages. \hfill \square

We note that every $H_i, 1 \leq i \leq \tau$, is a 2-connected plane graph in the proof of Lemma 1.

Theorem 2. Let G be a 2-connected plane graph. Then $c(G)$ is edge-pancyclic.

Proof. Let $e = uv$ be an arbitrary edge of $c(G)$.

Case 1: Both vertices $u, v \in V(G)$.

Without loss of generality, we may assume that uv lies on the common boundary of f_1 and $f_{out}(G)$. We first decompose G into the form $P_0 \cup P_1 \cup \cdots \cup P_\tau$ guaranteed by Lemma 1 so that P_0 is the edge uv. As we add the P_i's, the inner faces of G can be simultaneously numbered as f_1, f_2, \ldots, f_τ. Again let $H_i = P_0 \cup P_1 \cup \cdots \cup P_i$ for $0 \leq i \leq \tau$.

We proceed by induction on τ. Actually, in each induction stage we construct the cycles in a systematic way such that, when the next path P_i is added, a certain property (★) is preserved.

When $\tau = 1$, G is the cycle $u_1u_2 \cdots u_s$, where $u = u_1$ and $v = u_s$, moving along the clockwise direction. Since G is the common boundary of f_1 and f_{out}, we have $V(c(G)) = V(G) \cup \{f_1, f_{out}\}$ and $E(c(G)) = E(G) \cup \{f_1, f_{out}\} \cup \{u_if_1, u_if_{out} \mid i = 1, 2, \ldots, s\}$. In $c(G)$, we construct a particular sequence of cycles C_n of length n, $3 \leq n \leq s+2$, each of which contains the edge uv. Let $C_3 = u_1f_{out}vu$, $C_4 = u_1f_{out}vu$, $C_5 = u_2f_1f_{out}vu, \ldots, C_{s+2} = u_s-1f_1f_{out}vu$. Note that each $C_{i+1}, i \geq 4$, is
obtained from C_l by inserting a new vertex of $c(G)$ prior to a fixed vertex of C_l. We call this type of construction a monotone expansion of cycles.

Now rename C_{l+2} temporarily as $z_1z_2\cdots z_{l+2}$, where $z_1 = u$ and $z_{l+2} = v$. When the path $P_2 = p_1p_2\cdots p_q$ is added along the clockwise direction to H_1, we may assume that $p_1 = z_i$ and $p_q = z_j$ for some $i < j$. Then the following property (\star) holds: z_{i+1} is either a vertex of H_1 that is incident to f_2 in H_2 or a face of H_1 that is adjacent to f_2 in H_2.

Assume that the theorem holds for $\tau = k \geq 1$. Let G be a 2-connected plane graph with $k + 1$ inner faces. We decompose G into the form $P_0 \cup \cdots \cup P_k \cup P_{k+1}$ as in Lemma 1. By the induction hypothesis, $c(H_k) = c(P_0 \cup P_1 \cup \cdots \cup P_k)$ is edge-pancyclic through uv. We further assume that all the cycles in $c(H_k)$ through uv are constructed by inductive stages and, within each stage, by a monotone expansion of cycles. For $m = |H_k| + |F(H_k)| = |H_k| + k + 1$, let $C_m = z_1z_2\cdots z_{m-1}$, where $z_1 = u$ and $z_m = v$, be the Hamiltonian cycle so constructed. Suppose that $P_{k+1} = v_1v_2\cdots v_t$, where $v_1 = z_i$ and $v_j = z_j$ for some $i < j$. Assume that P_{k+1} moves from v_1 to v_t in the clockwise direction along the boundary of the outer face of H_{k+1}. By our assumption, f_{k+1} is the inner face of G formed by H_k and P_{k+1}. Now the property (\star) holds by the induction hypothesis, i.e., z_{i+1} is either a vertex of H_k that is incident to f_{k+1} in H_{k+1} or a face of H_k that is adjacent to f_{k+1} in H_{k+1}.

In $c(G)$, a monotone expansion of cycles C_l of length l, $m + 1 \leq l \leq |c(G)|$, each of which contains uv can be constructed as follows:

\begin{align*}
C_{m+1} &= z_1 \cdots z_if_{k+1}z_{i+1} \cdots z_{m}z_1, \\
C_{m+2} &= z_1 \cdots z_iv_2f_{k+1}z_{i+1} \cdots z_{m}z_1, \\
&\vdots \\
C_{|c(G)|} &= z_1 \cdots z_iv_2 \cdots v_{t-1}f_{k+1}z_{i+1} \cdots z_{m}z_1.
\end{align*}

Note that the path P_{k+2} will be added in the clockwise direction along the boundary of the outer face of H_{k+1}, and $C_{|c(G)|}$ is obtained from C_m by inserting a consecutive segment $v_2 \cdots v_{t-1}f_{k+1}$ if the initial end of P_{k+2} does not belong to $\{z_i, v_2, \ldots, v_{t-1}\}$, then the property ($\star$) holds by induction. However, it is easy to see that the property (\star) is preserved if the initial end of P_{k+2} belongs to $\{z_i, v_2, \ldots, v_{t-1}\}$.

Case 2: At least one vertex $u \in F(G)$.

If $v \in F(G)$, we suppose that $u = f_1$ and $v = f_{out}$. If $v \in V(G)$, we let $u = f_{out}$ and $v = u_k$, where $u_k \in b(f_1) \cap b(f_{out}(G))$, as defined in Case 1. We let $C_3 = u_kf_1f_{out}u_k$. For $4 \leq n \leq |c(G)|$, we may take the same cycles C_n as in Case 1 since each C_n always contains both the edge f_1f_{out} and the edge $f_{out}u_k$. "

Once the edge-disjoint decomposition into paths is given, the inductive proof of Theorem 2 actually supplies a polynomial-time algorithm for finding a Hamiltonian cycle in the coupled graph of a 2-connected plane graph. The next theorem provides examples to show that Theorem 2 is best possible in the sense that there exists a 2-edge-connected plane graph G such that $c(G)$ is not Hamiltonian.
The block graph $B(G)$ of a graph G is the graph whose vertices are the blocks of G and two vertices in $B(G)$ are adjacent if and only if the corresponding blocks of G share a common vertex. Note that two blocks of G can share at most one vertex. Suppose that x is a cut vertex of G. Let the components of $G - x$ have vertex sets V_1, V_2, \ldots, V_n. Then the induced subgraphs $G[V_i \cup \{x\}]$, $i = 1, 2, \ldots, n$, are called the x-components of G. For $S \subseteq V(G)$, let $\omega(G - S)$ denote the number of components of the graph $G - S$.

Theorem 3. Let G be a plane graph. If $B(G)$ contains a vertex of degree at least 3, then $c(G)$ is not Hamiltonian.

Proof. Let B_0 be a block of G having degree $m \geq 3$ in $B(G)$. Let B_1, B_2, \ldots, B_m be the blocks of G that are neighbors of B_0 in $B(G)$. There are vertices x_i in G for all $i \in [m] = \{1, 2, \ldots, m\}$ such that $V(B_0) \cap V(B_i) = \{x_i\}$. Each x_i is a cut vertex of G as well as a cut vertex of $c(G) - f_{out}$. Moreover, $(V(B_i) \cap V(B_j)) \setminus V(B_0) = \emptyset$ for all $i, j \in [m]$ and $i \neq j$. We have the following two cases.

Case 1: There exist $i, j \in [m]$ such that $i \neq j$ and $x_i = x_j$.

Let $S = \{x_i, f_{out}\}$. Clearly S is a cut set of $c(G)$. Since $m \geq 3$, the number of x_i-components of G is at least 3. It follows that $\omega(c(G) - S) \geq 3 > 2 = |S|$. Hence $c(G)$ violates the necessary condition to be Hamiltonian.

Case 2: The vertices x_1, x_2, \ldots, x_m are all distinct.

Note that G has exactly two x_i-components for each $i \in [m]$. One of the x_i-components, called G_i, is a supergraph of B_i. The plane drawing of G induces a natural plane embedding of G_i and we may assume $f_{out}(G_i) = f_{out}(G) = f_{out}$. Since $|G_i| \geq 2$, the vertex set of $c(G_i) - \{x_i, f_{out}\}$ is nonempty.

Suppose that $c(G)$ has a Hamiltonian cycle. Then $c(G) - f_{out}$ has a Hamiltonian path $P = z_1z_2 \cdots z_t$, where $t = |c(G)| - 1$. Since $m \geq 3$, we may pick three vertices $z_i, z_j, \text{ and } z_k$ such that $1 \leq i < j < k \leq t$ and $z_i \in c(G_p) - \{x_p, f_{out}\}$, $z_j \in c(G_q) - \{x_q, f_{out}\}$, and $z_k \in c(G_r) - \{x_r, f_{out}\}$ for distinct $p, q, \text{ and } r \in [m]$. Since x_q is a cut vertex of $c(G) - f_{out}$, the path P has to traverse x_q twice to include z_j. This contradicts the definition of P. It follows that $c(G)$ is not Hamiltonian.

It is easy to construct infinitely many 2-edge-connected plane graphs that satisfy the assumption of Theorem 3. We conclude this paper by posing the following problem.

Problem 4. Let G be a 2-edge-connected plane graph. Is its coupled graph $c(G)$ edge-pancyclic when its block graph $B(G)$ is a path?

Acknowledgements

This work was done while the last three authors were visiting Institute of Mathematics, Academia Sinica, Taipei. The financial support provided by the Institute is greatly appreciated.
References