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Abstract

The coupled graph c(G) of a plane graph G is the graph de.ned on the vertex set V (G)∪F(G)
so that two vertices in c(G) are joined by an edge if and only if they are adjacent or incident in
G. We prove that the coupled graph of a 2-connected plane graph is edge-pancyclic. However,
there exists a 2-edge-connected plane graph G such that c(G) is not Hamiltonian. ? 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

All graphs considered in this paper are .nite, loopless, and without multiple edges
unless stated otherwise. A plane graph G is a particular drawing in the Euclidean
plane of a certain planar graph. For a plane graph G, we denote its vertex set, edge
set, face set, and order by V (G); E(G), F(G), and |G|, respectively. The total graph of
a graph G is de.ned on the vertex set V (G) ∪ E(G) such that two vertices are joined
by an edge if and only if they are adjacent or incident in G. For a plane graph G, its
coupled graph c(G) (or entire graph e(G)) is de.ned on the vertex set V (G) ∪ F(G)
(or V (G) ∪ E(G) ∪ F(G)) such that two vertices in c(G) (or e(G)) are joined by
an edge if and only if they are adjacent or incident in G. A graph G is pancyclic
if it possesses cycles of all lengths ranging from 3 to the order of G. We call G
vertex-pancyclic (or edge-pancyclic) if, for every vertex v (or every edge e), there
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exist cycles of all lengths ranging from 3 to the order of G each of which contains
v (or e). We call G panconnected if, for every pair of distinct vertices, there exist
paths joining them of all possible lengths greater than or equal to the distance between
the vertices.
Fleischner [5] proved that the total graph of every 2-edge-connected graph with at

least three vertices is Hamiltonian. Fleischner and Hobbs [6] further showed that the
total graph of a graph G of order at least two is Hamiltonian if and only if G contains an
EPS-subgraph. An EPS-subgraph of a graph G is a connected spanning subgraph S of
G such that S is the edge-disjoint union of an Euler graph (not necessarily connected)
and a (possibly empty) forest F such that each of the components of F is a path.
Mitchem [8] .rst investigated Hamiltonian and Eulerian properties of entire graphs.

Hobbs and Mitchem [7] proved that the entire graph of a 2-edge-connected plane
graph is Hamiltonian and the entire graph of a 2-connected plane graph is Hamiltonian
connected and pancyclic. Faudree and Schelp [4] strengthened this result to show that
the entire graph of a 2-edge-connected plane graph is panconnected.
A k-coupled coloring of a plane graph G is a k-coloring of the vertices and the faces

of G so that any two distinct adjacent or incident elements in V (G) ∪ F(G) receive
diFerent colors. Obviously, G is k-coupled colorable if and only if c(G) is k-colorable.
Ringel [9] conjectured that every plane graph is 6-coupled colorable. Finally, Borodin
[3] established the truth of Ringel’s conjecture. The reader is referred to [1,2,10] for
further properties of coupled graphs. The purpose of this paper is to study Hamiltonian
properties of coupled graphs.

2. Results

Let G be a plane graph. The unique unbounded face of G is called the outer face
and is denoted by fout(G) (or simply fout). The other faces of G are called inner faces.
Let �(G) (or simply �) denote the number of inner faces of G. Thus �(G)= |F(G)|−1.
Given a cycle C in G, let IN(C) denote the subgraph of G induced by the vertices
on and inside C and let in(C) denote the number of edges in E(IN(C)) \ E(C). For
f∈F(G), we use b(f) to denote the boundary of f.
The following is a re.ned version of the well-known ear decomposition of Whitney

[11] applied to 2-connected plane graphs.

Lemma 1. Let G be a 2-connected plane graph and P0 be an edge of G. Then G
can be decomposed into an edge-disjoint union of paths G=P0 ∪P1 ∪ · · · ∪P�(G) such
that the following properties hold.
(1) Let Hi =P0 ∪P1 ∪ · · · ∪Pi for 06 i6 �= �(G). Then the path Pi+1; 06 i ¡ �

= �(G); with end vertices xi+1 and yi+1 passes through the outer face of the subgraph
Hi and it moves from xi+1 to yi+1 in the clockwise direction along the outer face of
Hi+1.
(2) Pi+1 ∩ Hi = {xi+1; yi+1}.
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(3) There is a path Qi+1 moving from xi+1 to yi+1 in the clockwise direction along
the boundary of the outer face of Hi such that Pi+1 ∪Qi+1 forms an inner face of G.

Proof. Since G is 2-connected, P0 forms an inner face with a certain path P1. Suppose
that P0; P1; : : : ; Pi, 16 i ¡ �, have been determined. If G=Hi, then we are done. If
E(G) \ E(Hi) 
= ∅, we choose an Hi-bridge B, i.e., B is a component of the subgraph
induced by E(G)\E(Hi). Since G is 2-connected, |V (B)∩V (Hi)|¿ 2. Note that every
inner face of Hi is an inner face of G. It follows that all vertices of V (B) ∩ V (Hi)
belong to the boundary of the outer face of Hi. There exists a path P= u1u2 · · · us in
B such that s¿ 2, u1; us ∈V (B)∩V (Hi), and u2; : : : ; us−1 ∈V (B)\V (Hi). We may also
assume that moving clockwise from u1 to us along the boundary of the outer face of
Hi forms a path Q. Thus C0 =P ∪ Q becomes a cycle of G. Now consider the set
�= {C |C is a cycle in IN(C0) and C contains at least one edge of the boundary of
the outer face of Hi:} The set � is non-empty since it contains C0. Note that IN(C) is
2-connected for every C ∈�. Among the elements C ∈�, we choose a certain C′ having
the smallest value of in(C). If some e∈E(IN(C′)) \ E(C′), then the 2-connectedness
of IN(C′) implies that there is a cycle C∗ in IN(C′) through both e and an edge of
Q. Since E(IN(C∗)) \ E(C∗) ⊆ E(IN(C′)) \ E(C′) and e 
∈ E(IN(C∗)) \ E(C∗), we
have in(C∗)¡ in(C′). This contradicts the choice of C′. It follows that in(C′)= 0 and
C′ forms the boundary of an inner face of G. It is straightforward to de.ne Pi+1,
Qi+1, xi+1, and yi+1 from C′. Since we add one more inner face in each stage, the
construction is .nished in � stages.

We note that every Hi, 16i6�, is a 2-connected plane graph in the proof of Lemma 1.

Theorem 2. Let G be a 2-connected plane graph. Then c(G) is edge-pancyclic.

Proof. Let e= uv be an arbitrary edge of c(G).
Case 1: Both vertices u; v∈V (G).
Without loss of generality, we may assume that uv lies on the common boundary

of f1 and fout(G). We .rst decompose G into the form P0 ∪ P1 ∪ · · · ∪ P� guaranteed
by Lemma 1 so that P0 is the edge uv. As we add the Pi’s, the inner faces of G can
be simultaneously numbered as f1; f2; : : : ; f�. Again let Hi =P0 ∪ P1 ∪ · · · ∪ Pi for
06 i6 �.

We proceed by induction on �. Actually, in each induction stage we construct the
cycles in a systematic way such that, when the next path Pi is added, a certain property
(?) is preserved.
When �=1, G is the cycle u1u2 · · · usu1, where u= u1 and v= us, moving along

the clockwise direction. Since G is the common boundary of f1 and fout, we have
V (c(G))=V (G) ∪ {f1; fout} and E(c(G))=E(C) ∪ {f1fout} ∪ {uif1; uifout

| i=1; 2; : : : ; s}. In c(G), we construct a particular sequence of cycles Cn of length
n, 36 n6 s+2, each of which contains the edge uv. Let C3 = ufoutvu, C4 = uf1foutvu,
C5 = uu2f1foutvu; : : : ; Cs+2 = uu2 · · · us−1f1foutvu. Note that each Ci+1; i¿ 4, is
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obtained from Ci by inserting a new vertex of c(G) prior to a .xed vertex of Ci.
We call this type of construction a monotone expansion of cycles.
Now rename Cs+2 temporarily as z1z2 · · · zs+2z1, where z1 = u and zs+2 = v. When the

path P2 =p1p2 · · ·pq is added along the clockwise direction to H1, we may assume
that p1 = zi and pq = zj for some i ¡ j. Then the following property (?) holds: zi+1

is either a vertex of H1 that is incident to f2 in H2 or a face of H1 that is adjacent to
f2 in H2.
Assume that the theorem holds for �= k¿ 1. Let G be a 2-connected plane graph

with k + 1 inner faces. We decompose G into the form P0 ∪ · · · ∪ Pk ∪ Pk+1 as in
Lemma 1. By the induction hypothesis, c(Hk)= c(P0 ∪P1 ∪ · · · ∪Pk) is edge-pancyclic
through uv. We further assume that all the cycles in c(Hk) through uv are constructed
by inductive stages and, within each stage, by a monotone expansion of cycles. For
m= |Hk | + |F(Hk)|= |Hk | + k + 1, let Cm = z1z2 · · · zmz1, where z1 = u and zm = v, be
the Hamiltonian cycle so constructed. Suppose that Pk+1 = v1v2 · · · vt , where v1 = zi and
vt = zj for some i ¡ j. Assume that Pk+1 moves from v1 to vt in the clockwise direction
along the boundary of the outer face of Hk+1. By our assumption, fk+1 is the inner
face of G formed by Hk and Pk+1. Now the property (?) holds by the induction
hypothesis, i.e., zi+1 is either a vertex of Hk that is incident to fk+1 in Hk+1 or a face
of Hk that is adjacent to fk+1 in Hk+1.
In c(G), a monotone expansion of cycles Cl of length l, m + 16 l6 |c(G)|, each

of which contains uv can be constructed as follows:

Cm+1 = z1 · · · zifk+1zi+1 · · · zmz1;

Cm+2 = z1 · · · ziv2fk+1zi+1 · · · zmz1;

: : :

C|c(G)| = z1 · · · ziv2 · · · vt−1fk+1zi+1 · · · zmz1:

Note that the path Pk+2 will be added in the clockwise direction along the boundary
of the outer face of Hk+1, and C|c(G)| is obtained from Cm by inserting a consecutive
segment v2 · · · vt−1fk+1. If the initial end of Pk+2 does not belong to {zi; v2; : : : ; vt−1},
then the property (?) holds by induction. However, it is easy to see that the property
(?) is preserved if the initial end of Pk+2 belongs to {zi; v2; : : : ; vt−1}.
Case 2: At least one vertex u∈F(G).
If v∈F(G), we suppose that u=f1 and v=fout. If v∈V (G), we let u=fout and

v= us, where us ∈ b(f1) ∩ b(fout(G)), as de.ned in Case 1. We let C3 = usf1foutus.
For 46 n6 |c(G)|, we may take the same cycles Cn as in Case 1 since each Cn

always contains both the edge f1fout and the edge foutus.

Once the edge-disjoint decomposition into paths is given, the inductive proof of
Theorem 2 actually supplies a polynomial-time algorithm for .nding a Hamiltonian
cycle in the coupled graph of a 2-connected plane graph. The next theorem provides
examples to show that Theorem 2 is best possible in the sense that there exists a
2-edge-connected plane graph G such that c(G) is not Hamiltonian.
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The block graph B(G) of a graph G is the graph whose vertices are the blocks of
G and two vertices in B(G) are adjacent if and only if the corresponding blocks of
G share a common vertex. Note that two blocks of G can share at most one vertex.
Suppose that x is a cut vertex of G. Let the components of G − x have vertex sets
V1; V2; : : : ; Vn. Then the induced subgraphs G[Vi ∪ {x}], i=1; 2; : : : ; n, are called the
x-components of G. For S ⊆ V (G), let !(G − S) denote the number of components
of the graph G − S.

Theorem 3. Let G be a plane graph. If B(G) contains a vertex of degree at least 3;
then c(G) is not Hamiltonian.

Proof. Let B0 be a block of G having degree m¿ 3 in B(G). Let B1; B2; : : : ; Bm be
the blocks of G that are neighbors of B0 in B(G). There are vertices xi in G for all
i∈ [m] = {1; 2; : : : ; m} such that V (B0) ∩ V (Bi)= {xi}. Each xi is a cut vertex of G as
well as a cut vertex of c(G) − fout. Moreover, (V (Bi) ∩ V (Bj)) \ V (B0)= ∅ for all
i; j∈ [m] and i 
= j. We have the following two cases.
Case 1: There exist i; j∈ [m] such that i 
= j and xi = xj.
Let S = {xi; fout}. Clearly S is a cut set of c(G). Since m¿ 3, the number of

xi-components of G is at least 3. It follows that !(c(G) − S)¿ 3¿ 2= |S|. Hence
c(G) violates the necessary condition to be Hamiltonian.
Case 2: The vertices x1; x2; : : : ; xm are all distinct.
Note that G has exactly two xi-components for each i∈ [m]. One of the xi-

components, called Gi, is a supergraph of Bi. The plane drawing of G induces a
natural plane embedding of Gi and we may assume fout(Gi)=fout(G)=fout. Since
|Gi|¿ 2, the vertex set of c(Gi)− {xi; fout} is nonempty.
Suppose that c(G) has a Hamiltonian cycle. Then c(G) − fout has a Hamiltonian

path P= z1z2 · · · zt , where t= |c(G)|−1. Since m¿ 3, we may pick three vertices zi; zj,
and zk such that 16 i ¡ j ¡k6 t and zi ∈ c(Gp)−{xp; fout}, zj ∈ c(Gq)−{xq; fout},
and zk ∈ c(Gr) − {xr; fout} for distinct p; q, and r in [m]. Since xq is a cut vertex of
c(G) − fout, the path P has to traverse xq twice to include zj. This contradicts the
de.nition of P. It follows that c(G) is not Hamiltonian.

It is easy to construct in.nitely many 2-edge-connected plane graphs that satisfy the
assumption of Theorem 3. We conclude this paper by posing the following problem.

Problem 4. Let G be a 2-edge-connected plane graph. Is its coupled graph c(G)
edge-pancyclic when its block graph B(G) is a path?
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