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Abstract

The coupled graph ¢(G) of a plane graph G is the graph defined on the vertex set V(G)UF(G)
so that two vertices in ¢(G) are joined by an edge if and only if they are adjacent or incident in
G. We prove that the coupled graph of a 2-connected plane graph is edge-pancyclic. However,
there exists a 2-edge-connected plane graph G such that ¢(G) is not Hamiltonian. © 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges
unless stated otherwise. A plane graph G is a particular drawing in the Euclidean
plane of a certain planar graph. For a plane graph G, we denote its vertex set, edge
set, face set, and order by V(G),E(G), F(G), and |G|, respectively. The total graph of
a graph G is defined on the vertex set V(G)U E(G) such that two vertices are joined
by an edge if and only if they are adjacent or incident in G. For a plane graph G, its
coupled graph ¢(G) (or entire graph e(G)) is defined on the vertex set V(G)U F(G)
(or V(G)U E(G) U F(G)) such that two vertices in ¢(G) (or e(G)) are joined by
an edge if and only if they are adjacent or incident in G. A graph G is pancyclic
if it possesses cycles of all lengths ranging from 3 to the order of G. We call G
vertex-pancyclic (or edge-pancyclic) if, for every vertex v (or every edge e¢), there
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exist cycles of all lengths ranging from 3 to the order of G each of which contains
v (or e). We call G panconnected if, for every pair of distinct vertices, there exist
paths joining them of all possible lengths greater than or equal to the distance between
the vertices.

Fleischner [5] proved that the total graph of every 2-edge-connected graph with at
least three vertices is Hamiltonian. Fleischner and Hobbs [6] further showed that the
total graph of a graph G of order at least two is Hamiltonian if and only if G contains an
EPS-subgraph. An EPS-subgraph of a graph G is a connected spanning subgraph S of
G such that S is the edge-disjoint union of an Euler graph (not necessarily connected)
and a (possibly empty) forest F' such that each of the components of F' is a path.

Mitchem [8] first investigated Hamiltonian and Eulerian properties of entire graphs.
Hobbs and Mitchem [7] proved that the entire graph of a 2-edge-connected plane
graph is Hamiltonian and the entire graph of a 2-connected plane graph is Hamiltonian
connected and pancyclic. Faudree and Schelp [4] strengthened this result to show that
the entire graph of a 2-edge-connected plane graph is panconnected.

A k-coupled coloring of a plane graph G is a k-coloring of the vertices and the faces
of G so that any two distinct adjacent or incident elements in V' (G) U F(G) receive
different colors. Obviously, G is k-coupled colorable if and only if ¢(G) is k-colorable.
Ringel [9] conjectured that every plane graph is 6-coupled colorable. Finally, Borodin
[3] established the truth of Ringel’s conjecture. The reader is referred to [1,2,10] for
further properties of coupled graphs. The purpose of this paper is to study Hamiltonian
properties of coupled graphs.

2. Results

Let G be a plane graph. The unique unbounded face of G is called the outer face
and is denoted by fou(G) (or simply fo ). The other faces of G are called inner faces.
Let 7(G) (or simply 7) denote the number of inner faces of G. Thus ©(G) = |F(G)|—1.
Given a cycle C in G, let IN(C) denote the subgraph of G induced by the vertices
on and inside C and let in(C) denote the number of edges in E(IN(C)) \ E(C). For
f€F(G), we use b(f) to denote the boundary of f.

The following is a refined version of the well-known ear decomposition of Whitney
[11] applied to 2-connected plane graphs.

Lemma 1. Let G be a 2-connected plane graph and Py be an edge of G. Then G
can be decomposed into an edge-disjoint union of paths G =PyUP,U---UPyg) such
that the following properties hold.

(1) Let Hi=PyUPyU---UP; for 0 <i<t=1(G). Then the path P;;1, 0<i<<
=1(G), with end vertices x;.1 and y;y passes through the outer face of the subgraph
H; and it moves from x; 1 to yi11 in the clockwise direction along the outer face of
Hiy.

(2) Pixt NHy={xi11, yis1}
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(3) There is a path Q;,1 moving from x;11 to y;yy in the clockwise direction along
the boundary of the outer face of H; such that P;y UQ;y forms an inner face of G.

Proof. Since G is 2-connected, Py forms an inner face with a certain path P;. Suppose
that Py, Py,...,P;, 1 <i <, have been determined. If G =H;, then we are done. If
E(G)\ E(H;)#0, we choose an H;-bridge B, i.e., B is a component of the subgraph
induced by E(G)\ E(H;). Since G is 2-connected, |V (B)NV(H;)| = 2. Note that every
inner face of H; is an inner face of G. It follows that all vertices of V(B) N V(H;)
belong to the boundary of the outer face of H;. There exists a path P =uju, - - - u; in
B such that s = 2, uj,u; € V(B)NV(H;), and uy, ..., us—1 € V(B)\ V(H;). We may also
assume that moving clockwise from u; to u; along the boundary of the outer face of
H; forms a path Q. Thus Cy=P U Q becomes a cycle of G. Now consider the set
I'={C|C is a cycle in IN(Cy) and C contains at least one edge of the boundary of
the outer face of H;.} The set I' is non-empty since it contains Cy. Note that IN(C) is
2-connected for every C € I'. Among the elements C € I', we choose a certain C’ having
the smallest value of in(C). If some e € E(IN(C')) \ E(C"), then the 2-connectedness
of IN(C") implies that there is a cycle C* in IN(C’) through both ¢ and an edge of
Q. Since E(IN(C*)) \ E(C*) C E(IN(C")) \ E(C") and e ¢ E(IN(C*)) \ E(C*), we
have in(C*) < in(C"). This contradicts the choice of C’. It follows that in(C’)=0 and
C’ forms the boundary of an inner face of G. It is straightforward to define P;.i,
Qir1, xir1, and y;1; from C’. Since we add one more inner face in each stage, the
construction is finished in 7 stages. [J

We note that every H;, 1 <i<7, is a 2-connected plane graph in the proof of Lemma 1.
Theorem 2. Let G be a 2-connected plane graph. Then ¢(G) is edge-pancyclic.

Proof. Let e=uv be an arbitrary edge of ¢(G).

Case 1: Both vertices u,v € V(G).

Without loss of generality, we may assume that uv lies on the common boundary
of f1 and fou(G). We first decompose G into the form Py U P U---U P, guaranteed
by Lemma 1 so that Py is the edge uv. As we add the P;’s, the inner faces of G can
be simultaneously numbered as f', f7,..., f¢. Again let H;=Py U Py U --- U P; for
0<i<r

We proceed by induction on t. Actually, in each induction stage we construct the
cycles in a systematic way such that, when the next path P; is added, a certain property
(%) is preserved.

When t=1, G is the cycle ujuy - - - usu;, where u=uwu; and v=u,, moving along
the clockwise direction. Since G is the common boundary of f; and f,u, we have
V((G)=V(G) U {f1.fou} and E(c(G)=E(C) U {fifou} U {usfr,ttfou
|i=1,2,...,s}. In ¢(G), we construct a particular sequence of cycles C, of length
n, 3 < n < s+2, each of which contains the edge uv. Let C3 =u fouvu, Cs =uf foutle,
Cs=uur f1 foutVtdy...,Corp=uuy---ug_1 f1 foutu. Note that each Ci .y, i =4, is
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obtained from C; by inserting a new vertex of ¢(G) prior to a fixed vertex of C;.
We call this type of construction a monotone expansion of cycles.

Now rename C,., temporarily as z;z; - - - zg1 221, where z; =u and zg,, = v. When the
path P, = p;p>--- p, is added along the clockwise direction to H;, we may assume
that p; =z and p,=z; for some i < j. Then the following property (%) holds: z;;;
is either a vertex of H; that is incident to f, in H, or a face of H that is adjacent to
fz in Hz.

Assume that the theorem holds for t=% > 1. Let G be a 2-connected plane graph
with & + 1 inner faces. We decompose G into the form Py U --- U Py U Py as in
Lemma 1. By the induction hypothesis, c(H;)=c(PyUP; U---UPy) is edge-pancyclic
through uv. We further assume that all the cycles in ¢(Hj) through uv are constructed
by inductive stages and, within each stage, by a monotone expansion of cycles. For
m=|Hy| + |F(H)|=|Hy| + k+ 1, let C,y=z1z5 - - - z,yz1, Where z; =u and z,, =v, be
the Hamiltonian cycle so constructed. Suppose that Py =vv; - - - vy, where v} =z; and
v, =z; for some i < j. Assume that P, moves from v; to v, in the clockwise direction
along the boundary of the outer face of Hjy;. By our assumption, f4; is the inner
face of G formed by H; and Pjy;. Now the property (%) holds by the induction
hypothesis, i.e., z;;; is either a vertex of Hj that is incident to f4, in Hy,| or a face
of Hj that is adjacent to f4; in Hyy;.

In ¢(G), a monotone expansion of cycles C; of length I, m + 1 <1 < |¢(G)|, each
of which contains uv can be constructed as follows:

Cov1=21"Zi [k 41Zi11 " * " ZmZ1,
Cnra=2z1" 202 f§112Zit1 " * ZmZ1,
Cloe) =21 ZiV2 U1 fk1Zi41 " ZmZ1-

Note that the path P, will be added in the clockwise direction along the boundary
of the outer face of Hy1, and C.) is obtained from C, by inserting a consecutive

segment vy - - - ;1 f41. If the initial end of Py, does not belong to {z;,v,...,0;-1},
then the property (%) holds by induction. However, it is easy to see that the property
(%) is preserved if the initial end of Py, belongs to {z;,vy,...,0;—1}.

Case 2: At least one vertex u € F(G).

If ve F(G), we suppose that u= f| and v= fou. If vEV(G), we let u= foy and
v=uy, where u; €b(f1) N b(fou(G)), as defined in Case 1. We let Cs =u, [ foutlts-
For 4 <n < |e(G)|, we may take the same cycles C, as in Case 1 since each C,
always contains both the edge f fou and the edge fouus. O

Once the edge-disjoint decomposition into paths is given, the inductive proof of
Theorem 2 actually supplies a polynomial-time algorithm for finding a Hamiltonian
cycle in the coupled graph of a 2-connected plane graph. The next theorem provides
examples to show that Theorem 2 is best possible in the sense that there exists a
2-edge-connected plane graph G such that ¢(G) is not Hamiltonian.
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The block graph B(G) of a graph G is the graph whose vertices are the blocks of
G and two vertices in B(G) are adjacent if and only if the corresponding blocks of
G share a common vertex. Note that two blocks of G can share at most one vertex.
Suppose that x is a cut vertex of G. Let the components of G — x have vertex sets
Vi,V2,..., Vy. Then the induced subgraphs G[V; U {x}], i=1,2,...,n, are called the
x-components of G. For S C V(G), let w(G — §) denote the number of components
of the graph G — S.

Theorem 3. Let G be a plane graph. If B(G) contains a vertex of degree at least 3,
then ¢(G) is not Hamiltonian.

Proof. Let By be a block of G having degree m > 3 in B(G). Let By,B,,...,B,, be
the blocks of G that are neighbors of By in B(G). There are vertices x; in G for all
i€[m]={1,2,...,m} such that V' (By) N V(B;)={x;}. Each x; is a cut vertex of G as
well as a cut vertex of ¢(G) — fou. Moreover, (V(B;) N V(B;)) \ V(Bo)=0 for all
i,j €[m] and i# j. We have the following two cases.

Case 1: There exist i, j € [m] such that i #j and x; =x;.

Let S={x;, four}. Clearly S is a cut set of ¢(G). Since m >3, the number of
x;-components of G is at least 3. It follows that w(c(G) — S) =3 > 2=|S|. Hence
¢(G) violates the necessary condition to be Hamiltonian.

Case 2: The vertices x1,xp,...,X, are all distinct.

Note that G has exactly two x;-components for each i€[m]. One of the x;-
components, called G;, is a supergraph of B;. The plane drawing of G induces a
natural plane embedding of G; and we may assume fou(Gi)= four(G)= fou. Since
|G;| = 2, the vertex set of ¢(G;) — {xi, fou} IS nonempty.

Suppose that ¢(G) has a Hamiltonian cycle. Then ¢(G) — fo, has a Hamiltonian
path P=zz; - - - z;, where 1 = |c(G)|—1. Since m > 3, we may pick three vertices z;,z;,
and z; such that 1 <i<j <k <t and z;€c(G)) — {xp, fou}, z; €c(Gy) — {xg, fout }»
and z; € ¢(G,) — {x,, fou} for distinct p,g, and r in [m]. Since x, is a cut vertex of
¢(G) — fou, the path P has to traverse x, twice to include z;. This contradicts the
definition of P. It follows that ¢(G) is not Hamiltonian. [

It is easy to construct infinitely many 2-edge-connected plane graphs that satisfy the
assumption of Theorem 3. We conclude this paper by posing the following problem.

Problem 4. Let G be a 2-edge-connected plane graph. Is its coupled graph c(G)
edge-pancyclic when its block graph B(G) is a path?
Acknowledgements

This work was done while the last three authors were visiting Institute of Mathemat-

ics, Academia Sinica, Taipei. The financial support provided by the Institute is greatly
appreciated.



264 Ko-Wei Lih et al. | Discrete Applied Mathematics 119 (2002) 259-264

References

[1] R. Bodendiek, H. Schumacher, K. Wagner, Bemerkungen zu einem Sechsfarbenproblem von G. Ringel,
Abh. Math. Sem. Univ. Hamburg 53 (1983) 41-52.

[2] R. Bodendiek, H. Schumacher, K. Wagner, Uber 1-optimale Graphen, Math. Nachr. 117 (1984) 323
339.

[3] O.V. Borodin, A new proof of the 6-color theorem, J. Graph Theory 19 (1995) 507-521.

[4] R.J. Faudree, R.H. Schelp, The entire graph of a bridgeless connected plane graph is panconnected, J.
London Math. Soc. 12 (1975) 59-66.

[5] H. Fleischner, On spanning subgraphs of a connected graph and their application to DT-graphs, J.
Combin. Theory Ser. B 16 (1974) 17-28.

[6] H. Fleischner, A.M. Hobbs, Hamiltonian total graphs, Math. Nachr. 68 (1975) 59-82.

[7] AM. Hobbs, J. Mitchem, The entire graph of a bridgeless connected plane graph is Hamiltonian,
Discrete Math. 16 (1976) 233-239.

[8] J. Mitchem, Hamiltonian and Eulerian properties of entire graphs, in: Y. Alavi, D.R. Lick, A.T. White
(Eds.), Graph Theory and Applications, Springer, Berlin, 1972, pp. 189-195.

[9] G. Ringel, Ein sechsfarbenproblem auf der kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965) 107-117.

[10] H. Schumacher, Zur struktur 1-planarer graphen, Math. Nachr. 125 (1986) 291-300.

[11] H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math. 54 (1932) 150-168.



