

DISCRETE APPLIED MATHEMATICS

Discrete Applied Mathematics 119 (2002) 259-264

Note

Edge-pancyclicity of coupled graphs

Ko-Wei Lih^{a, *}, Song Zengmin^b, Wang Weifan^c, Zhang Kemin^d

^aInstitute of Mathematics, Academia Sinica, 128, Section 2, Academy Road, Nankang, Taipei 11529,

Taiwan

^bDepartment of Applied Mathematics, Southeast University, Nanjing 210096, People's Republic of China

^cDepartment of Mathematics, Liaoning University, Shenyang 110036, People's Republic of China ^dDepartment of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

Received 6 March 2000; received in revised form 29 November 2000; accepted 19 March 2001

Abstract

The coupled graph c(G) of a plane graph G is the graph defined on the vertex set $V(G) \cup F(G)$ so that two vertices in c(G) are joined by an edge if and only if they are adjacent or incident in G. We prove that the coupled graph of a 2-connected plane graph is edge-pancyclic. However, there exists a 2-edge-connected plane graph G such that c(G) is not Hamiltonian. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Coupled graph; Edge-panciclicity; Ear decomposition

1. Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges unless stated otherwise. A *plane graph* G is a particular drawing in the Euclidean plane of a certain planar graph. For a plane graph G, we denote its vertex set, edge set, face set, and order by V(G), E(G), F(G), and |G|, respectively. The *total* graph of a graph G is defined on the vertex set $V(G) \cup E(G)$ such that two vertices are joined by an edge if and only if they are adjacent or incident in G. For a plane graph G, its *coupled graph* c(G) (or *entire graph* e(G)) is defined on the vertex set $V(G) \cup F(G)$ (or $V(G) \cup E(G) \cup F(G)$) such that two vertices in c(G) (or e(G)) are joined by an edge if and only if they are adjacent or incident in G. A graph G is *pancyclic* if it possesses cycles of all lengths ranging from 3 to the order of G. We call G *vertex-pancyclic* (or *edge-pancyclic*) if, for every vertex v (or every edge e), there

^{*} Corresponding author.

E-mail address: makwlih@sinica.edu.tw (Ko-Wei Lih).

⁰¹⁶⁶⁻²¹⁸X/02/\$ - see front matter @ 2002 Elsevier Science B.V. All rights reserved. PII: S0166-218X(01)00307-9

exist cycles of all lengths ranging from 3 to the order of G each of which contains v (or e). We call G panconnected if, for every pair of distinct vertices, there exist paths joining them of all possible lengths greater than or equal to the distance between the vertices.

Fleischner [5] proved that the total graph of every 2-edge-connected graph with at least three vertices is Hamiltonian. Fleischner and Hobbs [6] further showed that the total graph of a graph G of order at least two is Hamiltonian if and only if G contains an EPS-subgraph. An *EPS-subgraph* of a graph G is a connected spanning subgraph S of G such that S is the edge-disjoint union of an Euler graph (not necessarily connected) and a (possibly empty) forest F such that each of the components of F is a path.

Mitchem [8] first investigated Hamiltonian and Eulerian properties of entire graphs. Hobbs and Mitchem [7] proved that the entire graph of a 2-edge-connected plane graph is Hamiltonian and the entire graph of a 2-connected plane graph is Hamiltonian connected and pancyclic. Faudree and Schelp [4] strengthened this result to show that the entire graph of a 2-edge-connected plane graph is panconnected.

A *k*-coupled coloring of a plane graph G is a *k*-coloring of the vertices and the faces of G so that any two distinct adjacent or incident elements in $V(G) \cup F(G)$ receive different colors. Obviously, G is *k*-coupled colorable if and only if c(G) is *k*-colorable. Ringel [9] conjectured that every plane graph is 6-coupled colorable. Finally, Borodin [3] established the truth of Ringel's conjecture. The reader is referred to [1,2,10] for further properties of coupled graphs. The purpose of this paper is to study Hamiltonian properties of coupled graphs.

2. Results

Let G be a plane graph. The unique unbounded face of G is called the *outer* face and is denoted by $f_{out}(G)$ (or simply f_{out}). The other faces of G are called *inner* faces. Let $\tau(G)$ (or simply τ) denote the number of inner faces of G. Thus $\tau(G) = |F(G)| - 1$. Given a cycle C in G, let IN(C) denote the subgraph of G induced by the vertices on and inside C and let in(C) denote the number of edges in $E(IN(C)) \setminus E(C)$. For $f \in F(G)$, we use b(f) to denote the boundary of f.

The following is a refined version of the well-known ear decomposition of Whitney [11] applied to 2-connected plane graphs.

Lemma 1. Let G be a 2-connected plane graph and P_0 be an edge of G. Then G can be decomposed into an edge-disjoint union of paths $G = P_0 \cup P_1 \cup \cdots \cup P_{\tau(G)}$ such that the following properties hold.

(1) Let $H_i = P_0 \cup P_1 \cup \cdots \cup P_i$ for $0 \le i \le \tau = \tau(G)$. Then the path P_{i+1} , $0 \le i < \tau = \tau(G)$, with end vertices x_{i+1} and y_{i+1} passes through the outer face of the subgraph H_i and it moves from x_{i+1} to y_{i+1} in the clockwise direction along the outer face of H_{i+1} .

(2) $P_{i+1} \cap H_i = \{x_{i+1}, y_{i+1}\}.$

(3) There is a path Q_{i+1} moving from x_{i+1} to y_{i+1} in the clockwise direction along the boundary of the outer face of H_i such that $P_{i+1} \cup Q_{i+1}$ forms an inner face of G.

Proof. Since G is 2-connected, P_0 forms an inner face with a certain path P_1 . Suppose that P_0, P_1, \ldots, P_i , $1 \le i < \tau$, have been determined. If $G = H_i$, then we are done. If $E(G) \setminus E(H_i) \neq \emptyset$, we choose an H_i -bridge B, i.e., B is a component of the subgraph induced by $E(G) \setminus E(H_i)$. Since G is 2-connected, $|V(B) \cap V(H_i)| \ge 2$. Note that every inner face of H_i is an inner face of G. It follows that all vertices of $V(B) \cap V(H_i)$ belong to the boundary of the outer face of H_i . There exists a path $P = u_1 u_2 \cdots u_s$ in B such that $s \ge 2$, $u_1, u_s \in V(B) \cap V(H_i)$, and $u_2, \ldots, u_{s-1} \in V(B) \setminus V(H_i)$. We may also assume that moving clockwise from u_1 to u_s along the boundary of the outer face of H_i forms a path Q. Thus $C_0 = P \cup Q$ becomes a cycle of G. Now consider the set $\Gamma = \{C \mid C \text{ is a cycle in } \mathbb{N}(C_0) \text{ and } C \text{ contains at least one edge of the boundary of } \}$ the outer face of H_{i} . The set Γ is non-empty since it contains C_0 . Note that IN(C) is 2-connected for every $C \in \Gamma$. Among the elements $C \in \Gamma$, we choose a certain C' having the smallest value of in(C). If some $e \in E(IN(C')) \setminus E(C')$, then the 2-connectedness of IN(C') implies that there is a cycle C^* in IN(C') through both e and an edge of Q. Since $E(IN(C^*)) \setminus E(C^*) \subseteq E(IN(C')) \setminus E(C')$ and $e \notin E(IN(C^*)) \setminus E(C^*)$, we have $in(C^*) < in(C')$. This contradicts the choice of C'. It follows that in(C') = 0 and C' forms the boundary of an inner face of G. It is straightforward to define P_{i+1} , Q_{i+1} , x_{i+1} , and y_{i+1} from C'. Since we add one more inner face in each stage, the construction is finished in τ stages. \Box

We note that every H_i , $1 \le i \le \tau$, is a 2-connected plane graph in the proof of Lemma 1.

Theorem 2. Let G be a 2-connected plane graph. Then c(G) is edge-pancyclic.

Proof. Let e = uv be an arbitrary edge of c(G).

Case 1: Both vertices $u, v \in V(G)$.

Without loss of generality, we may assume that uv lies on the common boundary of f_1 and $f_{out}(G)$. We first decompose G into the form $P_0 \cup P_1 \cup \cdots \cup P_{\tau}$ guaranteed by Lemma 1 so that P_0 is the edge uv. As we add the P_i 's, the inner faces of G can be simultaneously numbered as $f_1, f_2, \ldots, f_{\tau}$. Again let $H_i = P_0 \cup P_1 \cup \cdots \cup P_i$ for $0 \le i \le \tau$.

We proceed by induction on τ . Actually, in each induction stage we construct the cycles in a systematic way such that, when the next path P_i is added, a certain property (\bigstar) is preserved.

When $\tau = 1$, *G* is the cycle $u_1u_2\cdots u_su_1$, where $u = u_1$ and $v = u_s$, moving along the clockwise direction. Since *G* is the common boundary of f_1 and f_{out} , we have $V(c(G)) = V(G) \cup \{f_1, f_{out}\}$ and $E(c(G)) = E(C) \cup \{f_1f_{out}\} \cup \{u_if_1, u_if_{out}\}$ $|i = 1, 2, ..., s\}$. In c(G), we construct a particular sequence of cycles C_n of length $n, 3 \le n \le s+2$, each of which contains the edge uv. Let $C_3 = uf_{out}vu$, $C_4 = uf_1f_{out}vu$, $C_5 = uu_2f_1f_{out}vu$, ..., $C_{s+2} = uu_2 \cdots u_{s-1}f_1f_{out}vu$. Note that each C_{i+1} , $i \ge 4$, is obtained from C_i by inserting a new vertex of c(G) prior to a fixed vertex of C_i . We call this type of construction a monotone expansion of cycles.

Now rename C_{s+2} temporarily as $z_1z_2 \cdots z_{s+2}z_1$, where $z_1 = u$ and $z_{s+2} = v$. When the path $P_2 = p_1 p_2 \cdots p_q$ is added along the clockwise direction to H_1 , we may assume that $p_1 = z_i$ and $p_q = z_j$ for some i < j. Then the following property (\bigstar) holds: z_{i+1} is either a vertex of H_1 that is incident to f_2 in H_2 or a face of H_1 that is adjacent to f_2 in H_2 .

Assume that the theorem holds for $\tau = k \ge 1$. Let G be a 2-connected plane graph with k + 1 inner faces. We decompose G into the form $P_0 \cup \cdots \cup P_k \cup P_{k+1}$ as in Lemma 1. By the induction hypothesis, $c(H_k) = c(P_0 \cup P_1 \cup \cdots \cup P_k)$ is edge-pancyclic through uv. We further assume that all the cycles in $c(H_k)$ through uv are constructed by inductive stages and, within each stage, by a monotone expansion of cycles. For $m = |H_k| + |F(H_k)| = |H_k| + k + 1$, let $C_m = z_1 z_2 \cdots z_m z_1$, where $z_1 = u$ and $z_m = v$, be the Hamiltonian cycle so constructed. Suppose that $P_{k+1} = v_1 v_2 \cdots v_t$, where $v_1 = z_i$ and $v_t = z_j$ for some i < j. Assume that P_{k+1} moves from v_1 to v_t in the clockwise direction along the boundary of the outer face of H_{k+1} . By our assumption, f_{k+1} is the inner face of G formed by H_k and P_{k+1} . Now the property (\bigstar) holds by the induction hypothesis, i.e., z_{i+1} is either a vertex of H_k that is incident to f_{k+1} in H_{k+1} or a face of H_k that is adjacent to f_{k+1} in H_{k+1} .

In c(G), a monotone expansion of cycles C_l of length $l, m + 1 \le l \le |c(G)|$, each of which contains uv can be constructed as follows:

$$C_{m+1} = z_1 \cdots z_i f_{k+1} z_{i+1} \cdots z_m z_1,$$

$$C_{m+2} = z_1 \cdots z_i v_2 f_{k+1} z_{i+1} \cdots z_m z_1,$$

...

$$C_{|c(G)|} = z_1 \cdots z_i v_2 \cdots v_{t-1} f_{k+1} z_{i+1} \cdots z_m z_1$$

Note that the path P_{k+2} will be added in the clockwise direction along the boundary of the outer face of H_{k+1} , and $C_{|c(G)|}$ is obtained from C_m by inserting a consecutive segment $v_2 \cdots v_{t-1} f_{k+1}$. If the initial end of P_{k+2} does not belong to $\{z_i, v_2, \ldots, v_{t-1}\}$, then the property (\bigstar) holds by induction. However, it is easy to see that the property (\bigstar) is preserved if the initial end of P_{k+2} belongs to $\{z_i, v_2, \ldots, v_{t-1}\}$.

Case 2: At least one vertex $u \in F(G)$.

If $v \in F(G)$, we suppose that $u = f_1$ and $v = f_{out}$. If $v \in V(G)$, we let $u = f_{out}$ and $v = u_s$, where $u_s \in b(f_1) \cap b(f_{out}(G))$, as defined in Case 1. We let $C_3 = u_s f_1 f_{out} u_s$. For $4 \leq n \leq |c(G)|$, we may take the same cycles C_n as in Case 1 since each C_n always contains both the edge $f_1 f_{out}$ and the edge $f_{out} u_s$. \Box

Once the edge-disjoint decomposition into paths is given, the inductive proof of Theorem 2 actually supplies a polynomial-time algorithm for finding a Hamiltonian cycle in the coupled graph of a 2-connected plane graph. The next theorem provides examples to show that Theorem 2 is best possible in the sense that there exists a 2-edge-connected plane graph G such that c(G) is not Hamiltonian.

The block graph B(G) of a graph G is the graph whose vertices are the blocks of G and two vertices in B(G) are adjacent if and only if the corresponding blocks of G share a common vertex. Note that two blocks of G can share at most one vertex. Suppose that x is a cut vertex of G. Let the components of G - x have vertex sets V_1, V_2, \ldots, V_n . Then the induced subgraphs $G[V_i \cup \{x\}]$, $i = 1, 2, \ldots, n$, are called the *x*-components of G. For $S \subseteq V(G)$, let $\omega(G - S)$ denote the number of components of the graph G - S.

Theorem 3. Let G be a plane graph. If B(G) contains a vertex of degree at least 3, then c(G) is not Hamiltonian.

Proof. Let B_0 be a block of G having degree $m \ge 3$ in B(G). Let B_1, B_2, \ldots, B_m be the blocks of G that are neighbors of B_0 in B(G). There are vertices x_i in G for all $i \in [m] = \{1, 2, \ldots, m\}$ such that $V(B_0) \cap V(B_i) = \{x_i\}$. Each x_i is a cut vertex of G as well as a cut vertex of $c(G) - f_{out}$. Moreover, $(V(B_i) \cap V(B_j)) \setminus V(B_0) = \emptyset$ for all $i, j \in [m]$ and $i \neq j$. We have the following two cases.

Case 1: There exist $i, j \in [m]$ such that $i \neq j$ and $x_i = x_j$.

Let $S = \{x_i, f_{out}\}$. Clearly S is a cut set of c(G). Since $m \ge 3$, the number of x_i -components of G is at least 3. It follows that $\omega(c(G) - S) \ge 3 > 2 = |S|$. Hence c(G) violates the necessary condition to be Hamiltonian.

Case 2: The vertices x_1, x_2, \ldots, x_m are all distinct.

Note that G has exactly two x_i -components for each $i \in [m]$. One of the x_i components, called G_i , is a supergraph of B_i . The plane drawing of G induces a
natural plane embedding of G_i and we may assume $f_{out}(G_i) = f_{out}(G) = f_{out}$. Since $|G_i| \ge 2$, the vertex set of $c(G_i) - \{x_i, f_{out}\}$ is nonempty.

Suppose that c(G) has a Hamiltonian cycle. Then $c(G) - f_{out}$ has a Hamiltonian path $P = z_1 z_2 \cdots z_t$, where t = |c(G)| - 1. Since $m \ge 3$, we may pick three vertices z_i, z_j , and z_k such that $1 \le i < j < k \le t$ and $z_i \in c(G_p) - \{x_p, f_{out}\}, z_j \in c(G_q) - \{x_q, f_{out}\},$ and $z_k \in c(G_r) - \{x_r, f_{out}\}$ for distinct p, q, and r in [m]. Since x_q is a cut vertex of $c(G) - f_{out}$, the path P has to traverse x_q twice to include z_j . This contradicts the definition of P. It follows that c(G) is not Hamiltonian. \Box

It is easy to construct infinitely many 2-edge-connected plane graphs that satisfy the assumption of Theorem 3. We conclude this paper by posing the following problem.

Problem 4. Let G be a 2-edge-connected plane graph. Is its coupled graph c(G) edge-pancyclic when its block graph B(G) is a path?

Acknowledgements

This work was done while the last three authors were visiting Institute of Mathematics, Academia Sinica, Taipei. The financial support provided by the Institute is greatly appreciated.

References

- R. Bodendiek, H. Schumacher, K. Wagner, Bemerkungen zu einem Sechsfarbenproblem von G. Ringel, Abh. Math. Sem. Univ. Hamburg 53 (1983) 41–52.
- [2] R. Bodendiek, H. Schumacher, K. Wagner, Über 1-optimale Graphen, Math. Nachr. 117 (1984) 323–339.
- [3] O.V. Borodin, A new proof of the 6-color theorem, J. Graph Theory 19 (1995) 507-521.
- [4] R.J. Faudree, R.H. Schelp, The entire graph of a bridgeless connected plane graph is panconnected, J. London Math. Soc. 12 (1975) 59–66.
- [5] H. Fleischner, On spanning subgraphs of a connected graph and their application to DT-graphs, J. Combin. Theory Ser. B 16 (1974) 17–28.
- [6] H. Fleischner, A.M. Hobbs, Hamiltonian total graphs, Math. Nachr. 68 (1975) 59-82.
- [7] A.M. Hobbs, J. Mitchem, The entire graph of a bridgeless connected plane graph is Hamiltonian, Discrete Math. 16 (1976) 233–239.
- [8] J. Mitchem, Hamiltonian and Eulerian properties of entire graphs, in: Y. Alavi, D.R. Lick, A.T. White (Eds.), Graph Theory and Applications, Springer, Berlin, 1972, pp. 189–195.
- [9] G. Ringel, Ein sechsfarbenproblem auf der kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965) 107-117.
- [10] H. Schumacher, Zur struktur 1-planarer graphen, Math. Nachr. 125 (1986) 291–300.
- [11] H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math. 54 (1932) 150-168.