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Abstract. In this paper, we generate all nonisomorphic tournaments of order at most
nine, all nonisomorphic almost regular tournaments of order 10 and all nonisomorphic
regular tournaments of order 11. For each of these tournaments, we have given its score-
list, connectivity, diameter, the minimal number of leedbacks, automorphisms and spectra.
Moreover, we have verified the well-known Kelly’s Conjecture for n = 2k + 1 < 11. And
we also determine the n-universal tournaments for n < 6. However, several related results
are given and some related open problems are raised.
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1 Introduction

In [1], D. Cvetkovi¢ and M. Petri¢ illustrated a table of 112 connected graphs on six ver-
tices. Several data such as the spectrum, and its main part, coefficients of the characteristic
polynomial and of the matching polynomial, number of cycles, etc., are given for each graph in
the table. In [2], D. Cvetkovié¢ and Z. Radosavljevi¢ gave a table of exactly 250 regular graphs
on at most ten vertices. As for tournaments, in the appendix of [3], the author illustrated all
nonisomorphic tournaments 7, (n < 6), their score-lists, the number of ways labeling their
nodes, and their automorphism groups. In this paper, we are concerned with tournaments of
order n < 9. Tournaments form a large class of directed graphs, they provide a rich source for

Al

combinatorial investigations and for various models in applied situations

Using a program “NAUTY” written by B. D. McKay¥l, we generate all nonisomorphic tour-
naments T, (n < 9) with the aid of a computer. It seems that when n > 10, illustrating all
nonisomorphic tournaments T, will be out of calculation. However, we have illustrated all 13333
nonisomorphic almost regular tournaments of order 10 and all 1223 nonisomorphic regular tour-
naments of order 11. For each of these tournaments, we have given its score-lists, connectivity,
diameter, the minimal number of feedbacks, automorphisms and spectra. Moreover, several
conclusions are drawn, implied by the data of these nonisomorphic tournaments.

Let T'(n) denote the number of nonisomorphic tournaments T,,. The values of T'(n) for
1 < n < 12 are given in Table 1P
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Table 1 T(n), the number of nonisomorphic tournaments T,

n 1 2 3 4 5 6
T(n) | 1 1 2 4 12 56

n 7 8 9 10 11 12
T(n) | 456 | 6,880 | 191,536 | 9,733,056 | 903,753,248 | 154,108,311,168

2 Terminology and Notation

A tournament is a directed graph in which every pair of vertices is joined by exactly one
arc. If the arc joining vertices v and w is directed from v to w, then v is said to dominate w
(symbolically, v — w). The set of vertices dominated by v is denoted by N¥(v), and the set
of vertices which dominate v is denoted by N~ (v). We define the outdegree d*(v) = [Nt (v)|
and the indegree d~(v) = [N~ (v)|. The score s(v) of the vertex v is the number of vertices
dominated by v. A tournament is regular if all vertices have equal scores and a tournament is
almost regular if the difference of scores between any two vertices is at most 1 and there exist
at least two vertices such that the difference of scores between them is 1. The score-list of a
tournament is the list of the scores of the vertices, usually arranged in non-decreasing order.
A tournament is strong if from each vertex there are directed paths to all other vertices. Two
tournaments T; and T are said to be isomorphic if there is a bijection f from V(T}) to V(T3)
such that for every arc uv of Ty, f(u)f(v) is an arc of T5.

A tournament of order n is called an n-tournament, and the induced subtournament of T'
with S as its set of vertices will be denoted by T[S]. The converse T” of a tournament T has
the same vertex-set as T, but every arc is conversed (that is, if vw is an arc in T, then wv is
an arc of T”). The adjacency matrix of a tournament T}, is the n x n matrix M(T,) = (a;;) in
which a;; is 1 if p; — p; and 0 otherwise, where V(T},) = {p1,p2, ", Pn}-

A simple path (cycle, resp.) in a digraph is antidirected if every two adjacent arcs of the
path (cycle, resp.) have opposite orientations. An antidirected Hamiltonian path (cycle, resp.)
(abbreviated to ADH-path (ADH-cycle, resp.)), is a simple antidirected path (cycle, resp.)
which contains all vertices.

A transitive tournament is a tournament which contains no directed cycle. T'T,, denotes a
transitive tournament with n vertices. T3 and T are the unique regular tournaments with three
and five vertices, respectively. T¥ is a regular tournament with seven vertices v, vy, -, vg, and
v; = v; if and only if i — j (mod 7) € {1,2,4}. T{ =T¢ —z and T = TF — . A vertex v is
called a starting (terminating, resp.) vertex in T, if there exists an ADH-path v — v + -~
(v ¢ vy — ---, resp.). If v is both a starting and a terminating vertex, then v is called a double
point.

In this paper, an n-tournament is represented by an array of n sets, the i-th set gives the
vertices which are dominated by vertex ¢. For example, the tournament in Figure 1(a) will be
represented by

2;
3.

’

W N = O
S W

3 A Table of Tournaments of Small Orders

By calling a program “NAUTY” written by B. D. McKay!4l, we generate all nonisomorphic
tournaments T,, (n < 9) with the aid of a computer. It seems that when n > 10, illustrating
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all nonisomorphic tournaments T;, will be out of calculation. However, we have illustrated
all 13333 nonisomorphic almost regular tournaments of order 10 and all 1223 nonisomorphic
regular tournaments of order 11. For each of these tournaments, we have given its score-
lists, connectivity, diameter, the minimal number of feedbacks, automorphisms and spectra (for
details, the reader can contact the first author).

(a) (b) () (d)

Figure 1 Nonisomorphic tournaments of order 4

4 Regular Tournaments and Kelly’s Conjecture

4.1 Regular tournaments

Since regular tournaments seem to have good characterization, a lot of authors are inter-
ested in regular tournaments. In the following, we will illustrate all nonisomorphic regular
tournaments with at most nine vertices. Those nonisomorphic regular tournaments are saved
in a CD.

0: 1 0:12;
1: 2; 1: 2 3;
2: 0. 2: 3 4;
3:40;
4:0 1.

Figure 2 Regular tournaments of order three and five

0:156; 0:356; 0: 3 5 6;
1: 45 6; 1: 0 2 6; 1: 04 5;
2:015; 2: 03 5; 2: 01 6;
3:012; 3:145; 3:125;
4:023; 4:012; 4:02 3;
5: 34 6; 5:14 6; 5:246;
6:234. 6: 23 4. 6:134.

(a) (b) (c)

Figure 3 Regular tournaments of order seven.

4.2 On Kelly’s conjecture

A conjecture attributed to P. Kelly (see [3], p.7) is as follows:

Conjecture 4.1 The arcs of every regular tournament can be partitioned into arc-disjoint
Hamiltonian cycles.

This conjecture was verified for n < 9 by Alspach. Morever, R. Haggkvist claims that he
has proved that Kelly’s Conjecture is true for a sufficiently large n ([5]), but unfortunately his
proof has never been written up in full details.
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0:4567, 0:4578; 0:1578; 0:1568; 0:1567;
1: 04 5 6; 1:0456; 1:3567; 1:356 7, 1: 3568;
2:0145; 2:0145; 2: 015 6; 2:015T7; 2:0157;
3:01 24 3:0124; 3:0256; 3: 025 6; 3:0256;
4:5678; 4:5678; 4:0123; 4:0123; 4:0123;
5:3678§; 5:3678§; 5:4678; 5:4678; 5:467S8;
6:2378; 6:023T, 6:0478; 6:2478; 6:2478;
7:1238; 7:1238; 7:2348; 7:0348; 7:1348;
8:0123. 8:1236. 8:1234. 8:1234. 8:0234.

(1) 2 3) (4) (5)
0:1578; 0:1578; 0:1578; 0:1678; 0:1678;
1:3568; 1:3567; 1:3568; 1:3567; 1:3567;
2:0157; 2:0158; 2:0156; 2:0158; 2:0156;
3:0256; 3:0256; 3:0257; 3:0256; 3:0258;
4:0123; 4:0123; 4:0123; 4:0123; 4:0123;
5:467S8; 5:4678; 5:4678; 5:046T; 5:0467T,
6:0247, 6:0247, 6:0347; 6:2478; 6:3478;
7:1348; 7:2348; 7:1248; 7:2348; 7:2348;
8:2346. 8:1346. 8:2346. 8:13465. 8:1245.

(6) (M (8) (9) (10)
0:1678; 0:1568; 0:1567, 0:3578; 0:4567,
1:3578; 1:3678; 1:3567, 1:026 7, 1: 046 §;
2:0158; 2:0157; 2:0178; 2:0358; 2:0145;
3:0256; 3:0256; 3:0256; 3:1456; 3:0124;
4:0123; 4:0123; 4:0123; 4:0127; 4:5678;
5:0467, 5:1467, 5:2468; 5:1468; 5:136T7,
6:12407, 6:2478; 6:2478; 6:0247; 6:2378;
7:2348; 7:0348; 7:3458; 7:2358; 7:1238;
8:3456. 8:2345. 8:0134. 8:1346. 8:0235.

(11) (12) (13) (14) (15)

Figure 4 Regular tournaments of order nine.

More than thirty years have passed, Conjecture 4.1 has not been proved. It seems that
Conjecture 4.1 is very difficult to prove, we confirm this conjecture for tournament of order 11
or less.

The numbers of distinct Hamiltonian cycles in Figure 3 are 17, 15 and 24. Let N (i) be the
distinct Hamiltonian cycles in Figure 4(i). Then

Table 2 The number of distinct Hamiltonian cycles in regular tournaments of order 9

N NQ2) NQ3) N@3) NG)
222 224 221 230 224
N(6) N(7) N(8) N(9) N(10)
222 224 225 231 231
N{1) N(12) N(13) N(14) N(15)
243 249 225 207 228

Let HN (k) be the minimum number of distinct Hamiltonian cycles in a regular tournament
of order n = 2k + 1 and let R(k) = HN(k)/k. Thus we have HN(3) = 5, HN(4) = 207,
HN(5) = 4899, R(3) = 5, R(4) = 51.75 > R(3) x 10, R(5) = 979.8 > R(4) x 10. From the
order of an increase in R(k), we believe strongly that the Kelly’s Conjecture is true once more.
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5 Some Applications

5.1 Spectra and spectral radius of tournaments

Let A be a square matrix. Then the determinant of A is denoted by det(A). Let T, be an
n-tournament, and let M be an adjacency matrix of T,,. The characteristic polynomial of T, is
det(A] — M), and the eigenvalues of M are also called the eigenvalues of T;,. Let Ay, A2,y An
be the eigenvalues of T},, where |A;| > |A2| > -+ > |As|. Then || is called the spectral radius
of T,,, denoted by p(T,). The spectrum is denoted by Sp(T.) = [A1,Az, -, An]. We define
pn = max{p(T,)}, with T}, being over all nonisomorphic tournaments of order n. And define
pn = min{p(T»)}.

It can be proved®! that if n = odd, then 5, = (n — 1)/2. For n = even, R. A. Brualdi and
Li Qiaol® raised the following

Conjecture 5.1 p(T,) = py if and only if T;, is almost regular and p, = o(T,), where

A(Tn) = [ M%VI+I 1\]/{; ]

and
I_ 0 1 1 1 -l
o 6 1 --- 1
M=|: . :
0 .-+ .-~ 0 1
0 -+- +-+ == 0
Here we give some support to this Conjecture. py = 1.3534, it can be reached only if
0: 12
= 1: 23;
Ta= 2: 3
3 0.
pe = 1.83929, it can be reached only if
0: 15;
1: 45;
- 2: 015
Te= 3. 01 2;
4: 023;
5: 34.
ps = 3.45135, it can be reached only if
0: 4567,
1: 0456,
2: 0145
= _ 3: 0124
Ts= 4. 56 7
5: 36T,
6: 23T,
7: 123

These A(T;) i € {4,6,8} are exactly of the form (up to an isomorphism) stated in the above
Conjecture.
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They also raised the following

Conjecture 5.2 If T! and T2 are two non-isomorphic almost regular tournaments, then
p(Ty) # p(T2).

We disprove this Conjecture. The following two nonisomorphic tournaments T} and T2 are
almost regular, but p(T}) = p(T?2).

T} T2
0: 457 0: 457
1: 0456; 1: 0456;
2: 0145 2: 0145;
3: 0124, 3:0124;
4: 567 4: 567,
5: 36T, 5: 367,
6: 0237, 6: 023;
7:123. 7:1236.

In fact, both of the above tournaments have the same characteristic polynomials:
2% — 202° — 462* — 7023 — 602% — 292 — 6,

hence they have the same spectral radius.
Conjecture 5.3 5, = p(T},), where

[0 1 0 0 ]
00 1 . . . 0
B 1 0 0 1 :
A(T,) =
1 IR 0
11 - 1 0 1
(1 1 1 -~ 1 0 0 |

Here we give some support to this Conjecture:

Table 3 5,

p3 Pa Ps Ps o7 Ps P9
1.000 1.39534 1.65930 1.83929 1.96702 2.06064 2.83585

When g, = p(T,,) n = 3,4,---,9, A(T,) is exactly of the form (up to an isomorphism)
stated in the above Conjecture.

5.2 Universal tournaments

A tournament Ty is said to be n-universal (n < N) if every tournament T, is isomorphic
to some subtournament of 7. For every positive integer n, let A(n) denote the least integer
N for which there exists an n-universal tournament T. It is clear that A(n) is finite, since any

tournament that contains disjoint copies of all the different tournaments T, is n-universal.
Moonl®! obtained the bound for A(n).
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Theorem 5.1

n2(1/2)(n=1) if nis odd,

(1/2)(n-1)
2 < An) < %nZ(l/z)(”_l) if nis even.

However, we have determined the exact values of A(n) for n < 6.
Theorem 5.2 The ezact values of A(n) for n < 6 are:

n 1 2 3 4 5 6
A(n) 1 2 4 5 8 10

In 1971, B. Griinbaum introduced the ADH-paths and ADH-cycles inl”! and proved that ev-
ery tournament, except Ty, T¢ and T%.has an ADH-path. A simpler proof with some additional
results was given by M. Rosenfeld in [8].

Theorem 5.3!") If a tournament T,, with odd order has an ADH-path, then T, has a double
point.

Theorem 5.4  Every tournament, except T§, TS and TS, has an ADH-path.

Theorem 5.5 (a) If n = 2k, then TT, has an ADH-path starting at i (i # n) and
terminating at j except for the following cases:

@Hi=1,

(i)i=1,j=2(n>2),

(i) e =2k — 1,5 = 2k.

(b) If n = 2k + 1, then TT,, has an ADH-path with i and j as the starting vertices if
1,7 #2k+1 and {i,7} # {2k — 1,2k} (n > 3).

M. R. Rosenfeld® proved that any tournament of odd order n = 2k + 1 > 9 contains a
double point. With the aid of a computer, we get

Theorem 5.6 Let T, be a tournament of order n € {4,5,6,7,8}. Then each T, contains
a double point except T,, = Ty, T¢,T¢,T¥.

By Theorems 5.3 and 5.4, we know that if n > 9 and n is odd, then every tournament T, has
a double point. Also, by an exhaustive search on all the nonisomorphic tournaments of order 8
with a computer, we find each Tz has a double point. So we raise the following conjecture:

Conjecture 5.4 If n > 8, then each tournament of order n contains a double point.

Since a tournament T, can have an ADH-cycle only if n is even, and Ty which contains
a T7 can’t have any ADH cycle, B. Griinbaum conjectured that every tournament T, with
n = 2k > 10 has an ADH-cycle. The conjecture was proved by C. Thomassen['®! for n > 50
and by M. Rosenfeld!® for n > 26 and by V. Petrovicl'!l for n > 16.As a major application of
the table of tournaments of order at most nine, this conjecture is completely solved. That is,
we have

Theorem 5.71'2 Every T,, (n = 2k > 10) contains an ADH-cycle.
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