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Abstract. Let Tn denote a tree of order n and Wm a wheel of order m+1. In this paper,
we determine the Ramsey numbers R(Tn, W6) for Tn without certain deletable sets.
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1 Introduction

All graphs considered in this paper are finite simple graph without loops. For two given
graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest positive integer n such that for
any graph G of order n, either G contains G1 or G contains G2, where G is the complement of
G. Let G be a graph. The minimum and maximum degree of G are denoted by δ(G) and ∆(G),
respectively. The independence number of G is denoted by α(G). The neighborhood N(v) of
a vertex v is the set of vertices adjacent to v in G. For a vertex v ∈ V (G) and a subgraph H
of G, NH(v) is the set of neighbors of v contained in H , i.e., NH(v) = N(v) ∩ V (H); and if
U ⊆ V (G), then NH(U) =

⋃

u∈U

NH(u). We let dH(v) = |NH(v)|. For S ⊆ V (G), G[S] denotes

the subgraph induced by S in G. Let m be a positive integer. We use mG to denote m vertex
disjoint copies of G. A path and a cycle of order n are denoted by Pn and Cn respectively. A
Star Sn (n ≥ 3) is a bipartite graph K1,n−1. A complete graph of order n is denoted by Kn.
A Wheel Wn = K1 + Cn is a graph of n + 1 vertices, where K1 called the hub of the wheel.
Sn(l, m) is a tree of order n obtained from Sn−l×m by subdividing each of l chosen edges m
times. Sn(l) is a tree of order n obtained from an Sl and an Sn−l by adding an edge joining
the centers of them. Sn[l] is a tree of order n obtained from an Sl and an Sn−l by adding an
edge joining a vertex of degree one of Sl to the center of Sn−l. Define

T = {Sn | n ≥ 5} ∪ {Sn(1, 1) | n ≥ 5} ∪ {Sn(1, 2) | n ≥ 6 and n ≡ 0 (mod 3)}.

For a tree T , we define L(T ) = {v | v ∈ V (T ) and d(v) = 1}. Let V ⊆ L(T ) and |V | = k.
Write TV = T − V . If TV /∈ T , we call V a k-deletable set. If k = 2 and |N(V )| = 2, we call
V a II-set. If k = 3 and |N(V )| = 3, we call V a III-set. If k = 3 and |N(V )| = 2, we call
V a IV-set. If V is a II-set and TV /∈ T , we call V a II-deletable set. Similarly, we can define
III-deletable set and IV-deletable set. A graph on n vertices is pancyclic if it contains cycles of
every length l, 3 ≤ l ≤ n.
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In [1], Baskoro et al. obtain the following
Theorem 1[1] Let Tn be a tree of order n other than Sn. Then R(Tn, W4) = 2n − 1 for

n ≥ 3; R(Tn, W5) = 3n − 2 for n ≥ 4.
Motivated by Theorem 1, Baskoro et al.[1] pose the following
Conjecture 1 Let Tn be a tree other than Sn and n ≥ m− 1. Then R(Tn, Wm) = 2n− 1

for m ≥ 6 even; R(Tn, Wm) = 3n − 2 for m ≥ 7 and odd.
In [2] we show Conjecture 1 holds for Tn = Pn.
Theorem 2 R(Pn, Wm) = 3n − 2 for m odd and n ≥ m − 1 ≥ 2; R(Pn, Wm) = 2n − 1 for

m even and n ≥ m − 1 ≥ 3.
In [3], we consider R(Tn, W6) for ∆(Tn) ≥ n − 3 and establish the following
Theorem 3[3] R(Sn(1, 1), W6) = 2n for n ≥ 4.
Theorem 4[3] R(Sn(1, 2), W6) = 2n for n ≥ 6 and n ≡ 0 (mod 3).
Theorem 5[3] R(Sn(3), W6) = R(Sn(2, 1), W6) = 2n−1 for n ≥ 6; R(Sn(1, 2), W6) = 2n−1

for n ≥ 6 and n 	≡ 0 (mod 3).
By Theorems 3 and 4, we can see that Conjecture 1 is not true when m is even. However,

we believe that R(Tn, W6) = 2n−1 for Tn /∈ T and n ≥ 5. In [4] we show this is true for n ≤ 8.
In order to determine R(Tn, W6) for a general tree Tn, we need to use induction on n. However,
if you delete some vertices of degree one from Tn, the resulting tree maybe belongs to T and
induction does not work in this case. So it is necessary to consider trees with this property.
Before giving the main result of this paper, we first define several classes of special trees. Let

T1 = {T9b, T9c, T9d, T9e, T9f , T9g, T9h, T9i},

T2 = {Ta, Tb, Tc, Td, Te, Tf , Tg},

S = {Sn(3), Sn(2, 1), Sn(1, 2)|n ≥ 6} ∪ {Sn[4], Sn(1, 3)|n ≥ 8} ∪ {S9[5], S9(4, 1), T9a},

S′ = {S9(3, 1), S10[5], S10(4, 1), S11(5, 1)} ∪ T1 ∪ T2,

where, T9a, T9b, T9c, T9d, T9e, T9f , T9g, T9h, T9i denote the nine trees of order 9, and Ta, Tb, Tc,
Td, Te, Tf , Tg the seven trees of order 10, respectively, as shown in Figure 1.

In this paper, we first give a characterization of trees without II-deletable set or III-deletable
set and IV-deletable set or 4-deletable set, and then we determine R(Tn, W6) for Tn with this
property. The main result of this paper is the following

Theorem 6 Let T /∈ T be a tree of order n ≥ 9. If
(1) T contains no II-deletable set, or
(2) |L(T )| ≥ 3 and T contains neither III-deletable set nor IV-deletable set, or
(3) |L(T )| ≥ 4 and T contains no 4-deletable set, then R(T, W6) = 2n − 1.
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Figure 1

2 Deletable Sets in Trees

In this section, we will characterize trees without II-deletable set or III-deletable set and
IV-deletable set or 4-deletable set.

Proposition 1 Let T /∈ T be a tree of order n ≥ 9. If T contains no II-deletable set, then
T ∈ {Sn(2, 1), Sn(3), Sn(1, 2), Sn[4], Sn(1, 3)}.

Proof Since T /∈ T , T contains a II-set U = {u1, u2}. Suppose TU ∈ T . If TU = Sn−2, then
it is easy to see T = Sn(2, 1). If TU = Sn−2(1, 1), we let V (TU ) = {v0, v1, · · · , vn−4, w1} and
E(TU ) = {v0vi | 1 ≤ i ≤ n−4}∪{v1w1}. If v0 ∈ N(U), we let v0 ∈ N(u1). By symmetry, we may
assume N(u2) ⊆ {v2, v1, w1}. If v2 ∈ N(u2), then T = Sn(2, 1). If v1 ∈ N(u2), then T = Sn(3).
If w1 ∈ N(u2), then T = Sn(1, 2). If v0 /∈ N(U), then by symmetry, we need to consider the
following four cases: (1) v2 ∈ N(u1) and v3 ∈ N(u2), (2) v2 ∈ N(u1) and v1 ∈ N(u2), (3)
v2 ∈ N(u1) and w1 ∈ N(u2), (4) v1 ∈ N(u1) and w1 ∈ N(u2). Thus, taking V = {u2, v4}
in all cases, we have TV /∈ T . If TU = Sn−2(1, 2), we let TU = {v0, v1, · · · , vn−5, w1, w2} and
E(TU ) = {v0vi | 1 ≤ i ≤ n−5}∪{v1w1, w1w2}. If v0 ∈ N(U), we let v0 ∈ N(u1). By symmetry,
we assume N(u2) ⊆ {v2, v1, w1, w2}. If N(u2) ⊆ {v2, v1}, then taking V = {u1, w2}, we have
TV /∈ T . If w1 ∈ N(u2), then T = Sn[4]. If w2 ∈ N(u2), then T = Sn(1, 3). If v0 /∈ N(U),
then by symmetry, we need to consider the following seven cases: (1) v2u1, v3u2 ∈ E(T ), (2)
v2u1, v1u2 ∈ E(T ), (3) v2u1, w1u2 ∈ E(T ), (4) v2u1, w2u2 ∈ E(T ), (5) v1u2, w1u1 ∈ E(T ), (6)
v1u2, w2u1 ∈ E(T ), (7) w1u2, w2u1 ∈ E(T ). Thus, taking V = {u2, v4} in each case, we have
TV /∈ T .

Using the same method, we can prove the following two propositions. Since the proofs are
easy but tedious, we leave them to the readers.

Proposition 2 Let T /∈ T be a tree of order n ≥ 9 and |L(T )| ≥ 3. If T contains neither
III-deletable set nor IV-deletable set, then T ∈ S.

Proposition 3 Let T /∈ S ∪ T be a tree of order n ≥ 9 and |L(T )| ≥ 4. If T contains no
4-deletable set, then T ∈ S′.

3 Some Lemmas

In order to prove Theorem 6, we need the following lemmas.
Lemma 1[5] Let G be a graph of order n. If δ(G) ≥ n/2, then either G is pancyclic or n

is even and G = Kn/2,n/2.
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Lemma 2[3] Let G be a graph of order 2n − 1 ≥ 7 and (U, V ) a partition of V (G) with
|U | ≥ 3 and |V | ≥ 4. Suppose ui ∈ U and NV (ui) = ∅, 1 ≤ i ≤ 3. If G contains no W6, then
δ(G[V ]) ≥ |V | − 3.

Lemma 3[4] R(T, W6) = 2n − 1 for T = Sn[4], Sn(1, 3), Sn(3, 1) and n ≥ 8.
Lemma 4[4] Let G be a graph of order 7 and δ(G) ≥ 4. Then for any v ∈ V (G), G contains

a tree T = S7(3, 1) such that dT (v) = 3.
Lemma 5[4] Let Tn /∈ T be a tree of order n and 5 ≤ n ≤ 8. Then R(Tn, W6) = 2n − 1.
Lemma 6[6] R(Sn, W6) = 2n + 1 for n ≥ 3.
Lemma 7 R(Sn[5], W6) = 2n − 1 for n ≥ 9.
Proof Let G be a graph of order 2n − 1. If G contains no W6, then G contains an Sn[4]

by Lemma 3. Let T be an Sn[4] with V (T ) = V = {v0, v1, · · · , vn−4, w1, w2, w3} and E(T ) =
{v0vi | 1 ≤ i ≤ n − 4} ∪ {v1w1, w1w2, w1w3}. Set U = V (G) − V . Obviously, |U | = n − 1 ≥ 8.

If G contains no Sn[5], then we have w1vi /∈ E(G) for 2 ≤ i ≤ n − 4 and NU (w1) = ∅. For
any u ∈ U , if dU (u) ≥ 3, then N(u) ∩ NT (v0) = ∅. Thus if U contains three vertices u1, u2, u3

such that dU (ui) ≥ 3 for 1 ≤ i ≤ 3, then G[w1, v2, v3, v4, u1, u2, u3] contains a W6 with the hub
w1. Hence we may assume U contains at most two vertices, say u1, u2 such that dU (ui) ≥ 3,
i = 1, 2. Thus, noting that |U | ≥ 8, U contains a subset U ′ with |U ′| = 6 such that dU ′ (u) ≤ 2
for each u ∈ U ′ which implies G[U ′] contains a C6 by Lemma 1, and hence G contains a W6

with the hub w1, a contradiction. Thus we have R(Sn[5], W6) ≤ 2n − 1. On the other hand,
the graph G = 2Kn−1 shows R(Sn[5], W6) ≥ 2n− 1 and hence we have R(Sn[5], W6) = 2n− 1.

Lemma 8 R(T, W6) = 17 for T = S9(4, 1), T9a.
Proof Let G be a graph of order 17. Suppose G contains no W6.
We first show G contains an S9(4, 1). By Lemma 3, G contains an S9(3, 1). Let T = S9(3, 1),

V (T ) = V = {v0, · · · , v5, w1, w2, w3} and E(T ) = {v0vi | 1 ≤ i ≤ 5} ∪ {v1w1, v2w2, v3w3}. Set
U = V (G) − V . Obviously, |U | = 8. If G contains no S9(4, 1), then v4v5 /∈ E(G), NU (vi) = ∅
for i = 4, 5 and if u ∈ NU (v0), then dU (u) = 0. Thus if dU (v0) ≥ 2, say u1, u2 ∈ NU (v0),
then it is not difficult to see that G[v4, v5, u1, u2, u3, u4, u5] contains a W6 with the hub v4 for
any three vertices u3, u4, u5 ∈ U − {u1, u2}, a contradiction. Hence we have dU (v0) ≤ 1. Let
U ′ ⊆ U −NU (v0) and |U ′| = 7. By Lemma 2, we have δ(G[U ′]) ≥ 4 and then NT (u) = ∅ for any
u ∈ U ′ by Lemma 4. Thus we have δ(G[V ]) ≥ 6 by Lemma 2. Noting that v4v5 /∈ E(G), after
an easy check, we can see G[V ] contains an S9(4, 1), and hence we have R(S9(4, 1), W6) ≤ 17.

Next, we show G contains a T9a. Let T be an S9(4, 1) with V (T ) = V ∪ W , where V =
{vi | 0 ≤ i ≤ 4} and W = {wi | 1 ≤ i ≤ 4}, and E(T ) = {v0vi | 1 ≤ i ≤ 4} ∪ {viwi | 1 ≤ i ≤ 4}.
Set U = V (G) − V . Obviously, |U | = 8. If G contains no T9a, then W is an independent set.
Since |U | = 8, by Lemma 6, G[U ] contains a star S3. Assume u1, u2, u3 ∈ U and u1u2, u2u3 ∈
E(G). Since G contains no T9a, we have N(wi) ∩ {u1, u2, u3} = ∅ for 1 ≤ i ≤ 4. Thus
G[w1, w2, w3, w4, u1, u2, u3] contains a W6 with the hub w1, a contradiction. Thus we have
R(T9a, W6) ≤ 17.

Since 2K8 contains no trees of order 9 and its complement contains no W6, we have
R(T, W6) ≥ 17, and hence R(T, W6) = 17, for T = S9(4, 1), T9a.

Lemma 9 Let G be a graph of order n. If α(G) = 2 and δ(G) ≥ n−3, then for any maximum
independent set I = {u1, u2} and any two vertices v1, v2 ∈ V (G) − I, either u1v1, u2v2 ∈ E(G)
or u1v2, u2v1 ∈ E(G).

Proof Since δ(G) ≥ n− 3, we have N(u1)∩ {v1, v2} 	= ∅ and N(u2) ∩ {v1, v2} 	= ∅. Assume
u1v1 ∈ E(G). If u2v2 ∈ E(G), then we are done. Hence we have u2v2 /∈ E(G) which implies
u2v1 ∈ E(G). If u1v2 ∈ E(G), then we are done, and hence u1v2 /∈ E(G) which implies
α(G) ≥ 3, a contradiction.

Lemma 10 Let G be a graph of order 2n − 1. If α(G) ≤ 2, then G contains all trees of
order n.
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Proof If α(G) = 1, then it is trivial, and hence we may assume α(G) = 2. We use induction
on n. If n = 3, then it holds. Assume it holds for small values of n. Let I = {u, v} be
a maximum independent set of G and T any given tree of order n. Let v1v0 ∈ E(T ) with
dT (v0) = 1 and T ′ = T − v0. By induction hypothesis, G − I contains T ′. Since any vertex in
G − I, especially v1, must be adjacent to at least one of {u, v} as v0, G contains T . Thus G
contains all trees of order n.

4 Proof of Theorem 6

Proof of Theorem 6 Let G be a graph of order 2n− 1. Suppose G contains no W6. Before
starting to prove Theorem 6, we first show the following claims under the assumption α(G) = 3.

• Claim 1 G contains an Sn(4, 1) for n ≥ 10.
Proof By Lemma 3, we may assume that T = Sn(3, 1) is a tree in G. Let V (T ) =
{v0, · · · , vn−4, w1, w2, w3} and E(T ) = {v0vi | 1 ≤ i ≤ n − 4} ∪ {viwi | 1 ≤ i ≤ 3}. Set
U = V (G) − V (T ). If G contains no Sn(4, 1), then {v4, v5, v6} is an independent set and
NU (vi) = ∅ for i = 4, 5, 6 which implies α(G) ≥ 4, a contradiction.

• Claim 2 If n = 11, then G contains an S11(5, 1).
Proof By Claim 1, G contains a tree S11(4, 1). Let T = S11(4, 1) with V (T ) = {v0, · · · ,
v6, w1, · · · , w4} and E(T ) = {v0vi | 1 ≤ i ≤ 6}∪{viwi | 1 ≤ i ≤ 4}. Set U = V (G)−V (T ).
If G contains no S11(5, 1), then v5v6 /∈ E(G) and NU (vi) = ∅ for i = 5, 6. Thus, since
α(G) = 3, we have G[U ] = K10, and hence dU (v) = 0 for any v ∈ V (T ), since otherwise G
contains an S11(5, 1). By Lemma 2, we have δ(G[V (T )]) ≥ 8 which implies there is some
i with 1 ≤ i ≤ 4 such that vi, wi ∈ N(v5) ∩ N(v6), and hence G contains an S11(5, 1).

• Claim 3 If n = 9, then G contains all trees T ∈ T1.
Proof By Theorem 5, G contains an S9(3). Let T = S9(3), V (T ) = {v0, · · · , v6, w1, w2}
and E(T ) = {v0vi | 1 ≤ i ≤ 6} ∪ {v1w1, v1w2}. Set V0 = {v2, · · · , v6} and U = V (G) −
V (T ). Since α(G) = 3, G[V0] contains at least two edges.
If G contains no T9b and we assume v2v3 ∈ E(G), then {v4, v5, v6} is an independent set
and NU (vi) = ∅ for i = 4, 5, 6 which implies α(G) ≥ 4, a contradiction. Hence G contains
a T9b.
If ∆(G[V0]) = 1, then G[V0] = 2K2 ∪K1. Assume E(G[V0]) = {v2v3, v4v5}. If G contains
no T9c, then NU (vi) = ∅ for 2 ≤ i ≤ 5. Since α(G) = 3, we have G[U ∪ {v6}] = K9

which implies G contains a T9c, a contradiction. Hence we have ∆(G[V0]) ≥ 2. Assume
v2v3, v2v4 ∈ E(G). If G contains no T9c, then v5v6 /∈ E(G) and NU (vi) = ∅ for i = 5, 6.
Since α(G) = 3, we have G[U ] = K8, and hence dU (v) = 0 for any v ∈ V (T ) which implies
δ(G[V (T )]) ≥ 6 by Lemma 2 and {v5, v6} is a maximum independent set of G[V (T )]. Thus
by Lemma 9 we can assume v1 ∈ N(v5) and w1, w2 ∈ N(v6) which implies G contains a
T9c.
If G contains no T9d, then v1vi /∈ E(G) for 2 ≤ i ≤ 6, NU (v1) = ∅ and dU (vi) ≤ 2 for 2 ≤
i ≤ 6. Thus, since |U | = 8, we can choose three vertices u1, u2, u3 ∈ U such that there is at
most one edge between {v2, v3, v4} and {u1, u2, u3}, and hence G[v1, v2, v3, v4, u1, u2, u3]
contains a W6 with the hub v1, a contradiction. Thus G contains a T9d.
Let T = T9d, V (T ) = {v0, · · · , v5, w1, w2, w3} and E(T ) = {v0vi | 1 ≤ i ≤ 5} ∪
{v1w1, v1w2, v1w3}. Set U = V (G) − V (T ). Since α(G) = 3, G[v2, · · · , v5] contains
at least one edge. Assume v2v3 ∈ E(G). If G contains no T9e, then v4v5 /∈ E(G) and
NU (vi) = ∅ for i = 4, 5. Thus, since α(G) = 3, we have G[U ] = K8. And then dU (v) = 0
for any v ∈ V (T ) which implies α(G[V (T )]) = 2. By Lemma 2, we have δ(G[V (T )]) ≥ 6.
By Lemma 9, we can assume v4v2, v5v3 ∈ E(G) and hence G contains a T9e.
By Lemma 3, G contains an S9[4]. Let T = S9[4], V (T ) = {v0, · · · , v5, w1, w2, w3} and
E(T ) = {v0vi | 1 ≤ i ≤ 5} ∪ {v1w1, w1w2, w1w3}. Set V1 = {v2, · · · , v5} and U =
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V (G) − V (T ). Since α(G) = 3, G[V1] contains at least one edge. Assume v2v3 ∈ E(G).
By an argument similar to that for the case when G contains a T9e, we can see G contains
a T9f .
Let T = T9e, V (T ) = {v0, · · · , v3, w1, · · · , w5} and E(T ) = {v0vi | 1 ≤ i ≤ 3} ∪
{v1w1, v1w2, v1w3, v2w4, v3w5}. Set U = V (G) − V (T ). If G contains no T9g, then
{w1, w2, w3} is an independent set and NU (wi) = ∅ for i = 1, 2, 3 which implies α(G) ≥ 4,
a contradiction. Hence G contains a T9g.
Let T = T9c, V (T ) = {v0, · · · , v3, w1, · · · , w5} and E(T ) = {v0vi | 1 ≤ i ≤ 3} ∪
{v1w1, v1w2, v2w3, v3w4, v3w5}. Set U = V (G) − V (T ). If G contains no T9h, then
{w1, w2, w3} is an independent set and NU (wi) = ∅ for i = 1, 2, 3 which implies α(G) ≥ 4,
a contradiction. Hence G contains a T9h.
By Lemma 8, G contains an S9(4, 1). Let T = S9(4, 1). If G contains no T9i, then L(T )
is an independent set which implies α(G) ≥ 4 and hence G contains a T9i.

• Claim 4 If n = 10, then G contains all trees T ∈ T2.
Proof We first show G contains Ta. By Theorem 5, G contains a tree T = S10(3).
Let V (T ) = {v0, · · · , v7, w1, w2} and E(T ) = {v0vi | 1 ≤ i ≤ 7} ∪ {v1w1, v1w2}. Set
V0 = {v2, · · · , v7} and U = V (G) − V (T ). Since α(G) = 3, G[V0] contains at least two
independent edges. Assume v2v3, v4v5 ∈ E(G). If G contains no Ta, then v6v7 /∈ E(G)
and NU (vi) = ∅ for i = 6, 7. Thus we have G[U ] = K9, and hence dU (v) = 0 for any
v ∈ V (T ) which implies α(G[V (T )]) = 2 and δ(G[V (T )]) ≥ 7 by Lemma 2. By Lemma 9,
we can assume v4v6, v5v7 ∈ E(G) which implies G contains a Ta.
Next, we show G contains Tb, Tc, Td, Te. Let T = Ta, V (T ) = {v0, · · · , v4, w1, · · · , w5} and
E(T ) = {v0vi | 1 ≤ i ≤ 4} ∪ {viwi | 1 ≤ i ≤ 4} ∪ {v4w5}. Set U = V (G) − V (T ).
If G contains no Tb, then {w3, w4, w5} is an independent set and NU (wi) = ∅ for i = 3, 4, 5
which implies α(G) ≥ 4, a contradiction. Thus, G contains a Tb.
If G contains no Tc, then w4vi /∈ E(G) for i = 1, 2, 3. Since |U | = 9, G[U ] contains
S4 by Lemma 6. Assume u0, u1, u2, u3 ∈ U and u0u1, u0u2, u0u3 ∈ E(G). Since G
contains no Tc, we have uivj /∈ E(G) for i, j = 1, 2, 3 and w4ui /∈ E(G) for i = 1, 2, 3.
Thus G[w4, v1, v2, v3, u1, u2, u3] contains a W6 with the hub w4, a contradiction. Hence
G contains a Tc.
If G contains no Td, then v4wi /∈ E(G) for i = 1, 2, 3. Since |U | = 9, G[U ] contains
an S4 by Lemma 6. Assume u0, u1, u2, u3 ∈ U and u0u1, u0u2, u0u3 ∈ E(G). Since G
contains no Td, we have v4ui /∈ E(G) for i = 1, 2, 3. If there is some wiuj ∈ E(G) with
i, j ∈ {1, 2, 3}, say w1u1 ∈ E(G), then N(u1)∩ {w2, w3, u2, u3} = ∅; otherwise G contains
a Td. Since α(G) = 3, {w2, w3, u2, u3} is a clique which implies G contains a Td. Hence
wiuj /∈ E(G) for i, j = 1, 2, 3 which implies G[w4, w1, w2, w3, u1, u2, u3] contains a W6

with the hub w4, a contradiction. Thus G contains a Td.
If G contains no Te, then {w1, w2, w3} is an independent set. Since α(G) = 3 and |U | = 9,
G[U ] contains an edge u1u2. Noting that {w1, w2, w3} is an maximum independent set,
we have N(u1) ∩ {w1, w2, w3} 	= ∅ which implies G contains a Te.
And then we show G contains Tf . By Lemma 3, G contains a tree T = S10(1, 3). Let
V (T ) = {v0, · · · , v6, w1, w2, w3} and E(T ) = {v0vi | 1 ≤ i ≤ 6}∪{v1w1, w1w2, w2w3}. Set
V0 = {v2, · · · , v6} and U = V (G) − V (T ). Since α(G) = 3, G[V0] contains at least one
edge. Assume v2v3 ∈ E(G). If G contains no Tf , then {v4, v5, v6} is an independent set
and NU (vi) = ∅ for i = 4, 5, 6 which implies α(G) ≥ 4, a contradiction. Hence G contains
a Tf .
Finally, we show G contains Tg. Let T = Tb, V (T ) = {v0, · · · , v4, w1, · · · , w5} and E(T ) =
{v0vi | 1 ≤ i ≤ 4} ∪ {viwi | 1 ≤ i ≤ 4} ∪ {w1w5}. Set U = V (G) − V (T ). Since |U | = 9,
G[U ] contains P5 by Theorem 2. Let P = u1 · · ·u5 be a P5 in G[U ]. If G contains no Tg,
then we have w1vi /∈ E(G), w1ui /∈ E(G) for 2 ≤ i ≤ 4 and viuj /∈ E(G) for 2 ≤ i, j ≤ 4.
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Thus, G[w1, v2, v3, v4, u2, u3, u4] contains a W6 with the hub w1, a contradiction. Thus G
contains a Tg.

We now begin to prove Theorem 6.
(1) By Proposition 1 we have T ∈ {Sn(2, 1), Sn(3), Sn(1, 2), Sn[4], Sn(1, 3)}, and hence

R(T, W6) = 2n − 1 by Theorem 5 and Lemma 3.
(2) If T contains neither III-deletable set nor IV-deletable set, then T ∈ S by Proposition

2, and hence R(T, W6) = 2n − 1 by Theorem 5 and Lemmas 3, 7, 8.
(3) Suppose T contains no 4-deletable set. If T ∈ S, then R(T, W6) = 2n − 1 by Theorem

5 and Lemmas 3, 7, 8. If T /∈ S, then T ∈ S′ by Proposition 3. By Lemmas 3 and 7 we may
assume T ∈ S′ − {S9(3, 1), S10[5]} = {S10(4, 1), S11(5, 1)} ∪ T1 ∪ T2.

We now show R(T, W6) = 2|T |−1 for T ∈ {S10(4, 1), S11(5, 1)}∪T1∪T2. Obviously, 2K|T |−1

shows R(T, W6) ≥ 2|T | − 1 for any tree T . In the following, we will prove G contains T .
Since G contains no W6, we have α(G) ≤ 6. If α(G) ≤ 2, then G contains T by Lemma 10.

If α(G) = 3, then G contains T by Claims 1–4. Now, we assume 4 ≤ α(G) ≤ 6.
Let I be a maximum independent set of G. If α(G) = 4, then since T /∈ S, by Proposition

1, T contains a II-deletable set U0. If n = 9, 10, then G − I contains TU0 by Lemma 5. If
n = 11, then T = S11(5, 1) and for any II-deletable set U0, TU0 = S9(3, 1), and hence G − I
contains TU0 by Lemma 3. Let NT (U0) = U . If |NI(U)| ≥ 2, then G contains T . Thus we have
|NI(U)| = 1 which implies G contains an induced subgraph 3K1∪K3 since otherwise α(G) ≥ 5.
Let G′ = 3K1 ∪ K3 with V (G′) = W = {wi | 1 ≤ i ≤ 6} and E(G′) = {w4w5, w4w6, w5w6}.
Since T /∈ S, by Proposition 2, T contains a 3-deletable set U0. Let NT (U0) = U . By Lemma
5, G − W contains TU0 . If dW (u) ≥ 3 for each u ∈ U , then G contains T . Hence there is some
vertex u0 ∈ U such that dW (u0) ≤ 2. Since α(G) = 4, we have |N(u0) ∩ {w4, w5, w6}| ≤ 1.
Since dW (u0) ≤ 2, we may assume w1 /∈ N(u0). Thus G[w1, w2, w3, w4, w5, w6, u0] contains a
W6 with the hub w1, a contradiction.

For α(G) = 5, 6, since T /∈ S, by Proposition 2, T contains a 3-deletable set U0. Let
NT (U0) = U . By Lemma 5, G − I contains TU0 . If dI(u) ≥ 3 for each u ∈ U , then G contains
T . Hence there is some vertex u ∈ U such that dI(u) ≤ 2. Thus, if α(G) = 5, then G contains
an induced subgraph 3K1 ∪ P3 or 4K1 ∪ K2. By an analogous argument of α(G) = 4, we can
get a contradiction. If α(G) = 6, then G[I ∪ {u}] contains a W6, a contradiction.

The proof of Theorem 6 is completed.
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