THE RAMSEY NUMBERS $R\left(T_{n}, W_{6}\right)$ FOR T_{n} WITHOUT CERTAIN DELETABLE SETS*

CHEN Yaojun ${ }^{\dagger}$ ZHANG Yunqing ZHANG Kemin ${ }^{\ddagger}$
(Department of Mathematics, Nanjing University, Nanjing 210093, China. Email: yaojunc@nju.edu.cn, yunqingzh@nju.edu.cn, zkmf@@otmail.com)

Abstract

Let T_{n} denote a tree of order n and W_{m} a wheel of order $m+1$. In this paper, we determine the Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for T_{n} without certain deletable sets.

Key words. Ramsey number, tree, wheel.

1 Introduction

All graphs considered in this paper are finite simple graph without loops. For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest positive integer n such that for any graph G of order n, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. Let G be a graph. The minimum and maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The independence number of G is denoted by $\alpha(G)$. The neighborhood $N(v)$ of a vertex v is the set of vertices adjacent to v in G. For a vertex $v \in V(G)$ and a subgraph H of $G, N_{H}(v)$ is the set of neighbors of v contained in H, i.e., $N_{H}(v)=N(v) \cap V(H)$; and if $U \subseteq V(G)$, then $N_{H}(U)=\bigcup_{u \in U} N_{H}(u)$. We let $d_{H}(v)=\left|N_{H}(v)\right|$. For $S \subseteq V(G), G[S]$ denotes the subgraph induced by S in G. Let m be a positive integer. We use $m G$ to denote m vertex disjoint copies of G. A path and a cycle of order n are denoted by P_{n} and C_{n} respectively. A Star $S_{n}(n \geq 3)$ is a bipartite graph $K_{1, n-1}$. A complete graph of order n is denoted by K_{n}. A Wheel $W_{n}=K_{1}+C_{n}$ is a graph of $n+1$ vertices, where K_{1} called the hub of the wheel. $S_{n}(l, m)$ is a tree of order n obtained from $S_{n-l \times m}$ by subdividing each of l chosen edges m times. $S_{n}(l)$ is a tree of order n obtained from an S_{l} and an S_{n-l} by adding an edge joining the centers of them. $S_{n}[l]$ is a tree of order n obtained from an S_{l} and an S_{n-l} by adding an edge joining a vertex of degree one of S_{l} to the center of S_{n-l}. Define

$$
\mathcal{T}=\left\{S_{n} \mid n \geq 5\right\} \cup\left\{S_{n}(1,1) \mid n \geq 5\right\} \cup\left\{S_{n}(1,2) \mid n \geq 6 \text { and } n \equiv 0(\bmod 3)\right\} .
$$

For a tree T, we define $L(T)=\{v \mid v \in V(T)$ and $d(v)=1\}$. Let $V \subseteq L(T)$ and $|V|=k$. Write $T_{V}=T-V$. If $T_{V} \notin \mathcal{T}$, we call V a k-deletable set. If $k=2$ and $|N(V)|=2$, we call V a II-set. If $k=3$ and $|N(V)|=3$, we call V a III-set. If $k=3$ and $|N(V)|=2$, we call V a IV-set. If V is a II-set and $T_{V} \notin \mathcal{T}$, we call V a II-deletable set. Similarly, we can define III-deletable set and IV-deletable set. A graph on n vertices is pancyclic if it contains cycles of every length $l, 3 \leq l \leq n$.

[^0]In [1], Baskoro et al. obtain the following
Theorem $1^{[1]}$ Let T_{n} be a tree of order n other than S_{n}. Then $R\left(T_{n}, W_{4}\right)=2 n-1$ for $n \geq 3 ; R\left(T_{n}, W_{5}\right)=3 n-2$ for $n \geq 4$.

Motivated by Theorem 1, Baskoro et al. ${ }^{[1]}$ pose the following
Conjecture 1 Let T_{n} be a tree other than S_{n} and $n \geq m-1$. Then $R\left(T_{n}, W_{m}\right)=2 n-1$ for $m \geq 6$ even; $R\left(T_{n}, W_{m}\right)=3 n-2$ for $m \geq 7$ and odd.

In [2] we show Conjecture 1 holds for $T_{n}=P_{n}$.
Theorem $2 R\left(P_{n}, W_{m}\right)=3 n-2$ for m odd and $n \geq m-1 \geq 2 ; R\left(P_{n}, W_{m}\right)=2 n-1$ for m even and $n \geq m-1 \geq 3$.

In [3], we consider $R\left(T_{n}, W_{6}\right)$ for $\Delta\left(T_{n}\right) \geq n-3$ and establish the following
Theorem $3^{[3]} \quad R\left(S_{n}(1,1), W_{6}\right)=2 n$ for $n \geq 4$.
Theorem $4^{[3]} \quad R\left(S_{n}(1,2), W_{6}\right)=2 n$ for $n \geq 6$ and $n \equiv 0(\bmod 3)$.
Theorem $5^{[3]} R\left(S_{n}(3), W_{6}\right)=R\left(S_{n}(2,1), W_{6}\right)=2 n-1$ for $n \geq 6 ; R\left(S_{n}(1,2), W_{6}\right)=2 n-1$ for $n \geq 6$ and $n \not \equiv 0(\bmod 3)$.

By Theorems 3 and 4, we can see that Conjecture 1 is not true when m is even. However, we believe that $R\left(T_{n}, W_{6}\right)=2 n-1$ for $T_{n} \notin \mathcal{T}$ and $n \geq 5$. In [4] we show this is true for $n \leq 8$. In order to determine $R\left(T_{n}, W_{6}\right)$ for a general tree T_{n}, we need to use induction on n. However, if you delete some vertices of degree one from T_{n}, the resulting tree maybe belongs to \mathcal{T} and induction does not work in this case. So it is necessary to consider trees with this property. Before giving the main result of this paper, we first define several classes of special trees. Let

$$
\begin{aligned}
& \mathcal{T}_{1}=\left\{T_{9 b}, T_{9 c}, T_{9 d}, T_{9 e}, T_{9 f}, T_{9 g}, T_{9 h}, T_{9 i}\right\} \\
& \mathcal{T}_{2}=\left\{T_{a}, T_{b}, T_{c}, T_{d}, T_{e}, T_{f}, T_{g}\right\} \\
& \mathcal{S}=\left\{S_{n}(3), S_{n}(2,1), S_{n}(1,2) \mid n \geq 6\right\} \cup\left\{S_{n}[4], S_{n}(1,3) \mid n \geq 8\right\} \cup\left\{S_{9}[5], S_{9}(4,1), T_{9 a}\right\} \\
& \mathcal{S}^{\prime}=\left\{S_{9}(3,1), S_{10}[5], S_{10}(4,1), S_{11}(5,1)\right\} \cup \mathcal{T}_{1} \cup \mathcal{T}_{2}
\end{aligned}
$$

where, $T_{9 a}, T_{9 b}, T_{9 c}, T_{9 d}, T_{9 e}, T_{9 f}, T_{9 g}, T_{9 h}, T_{9 i}$ denote the nine trees of order 9 , and T_{a}, T_{b}, T_{c}, $T_{d}, T_{e}, T_{f}, T_{g}$ the seven trees of order 10, respectively, as shown in Figure 1.

In this paper, we first give a characterization of trees without II-deletable set or III-deletable set and IV-deletable set or 4-deletable set, and then we determine $R\left(T_{n}, W_{6}\right)$ for T_{n} with this property. The main result of this paper is the following

Theorem 6 Let $T \notin \mathcal{T}$ be a tree of order $n \geq 9$. If
(1) T contains no II-deletable set, or
(2) $|L(T)| \geq 3$ and T contains neither III-deletable set nor IV-deletable set, or
(3) $|L(T)| \geq 4$ and T contains no 4-deletable set, then $R\left(T, W_{6}\right)=2 n-1$.

$T_{9 e}$

$T_{9 f}$

$T_{9 g}$

$T_{9 h}$

Figure 1

2 Deletable Sets in Trees

In this section, we will characterize trees without II-deletable set or III-deletable set and IV-deletable set or 4-deletable set.

Proposition 1 Let $T \notin \mathcal{T}$ be a tree of order $n \geq 9$. If T contains no II-deletable set, then $T \in\left\{S_{n}(2,1), S_{n}(3), S_{n}(1,2), S_{n}[4], S_{n}(1,3)\right\}$.

Proof Since $T \notin \mathcal{T}, T$ contains a II-set $U=\left\{u_{1}, u_{2}\right\}$. Suppose $T_{U} \in \mathcal{T}$. If $T_{U}=S_{n-2}$, then it is easy to see $T=S_{n}(2,1)$. If $T_{U}=S_{n-2}(1,1)$, we let $V\left(T_{U}\right)=\left\{v_{0}, v_{1}, \cdots, v_{n-4}, w_{1}\right\}$ and $E\left(T_{U}\right)=\left\{v_{0} v_{i} \mid 1 \leq i \leq n-4\right\} \cup\left\{v_{1} w_{1}\right\}$. If $v_{0} \in N(U)$, we let $v_{0} \in N\left(u_{1}\right)$. By symmetry, we may assume $N\left(u_{2}\right) \subseteq\left\{v_{2}, v_{1}, w_{1}\right\}$. If $v_{2} \in N\left(u_{2}\right)$, then $T=S_{n}(2,1)$. If $v_{1} \in N\left(u_{2}\right)$, then $T=S_{n}(3)$. If $w_{1} \in N\left(u_{2}\right)$, then $T=S_{n}(1,2)$. If $v_{0} \notin N(U)$, then by symmetry, we need to consider the following four cases: (1) $v_{2} \in N\left(u_{1}\right)$ and $v_{3} \in N\left(u_{2}\right)$, (2) $v_{2} \in N\left(u_{1}\right)$ and $v_{1} \in N\left(u_{2}\right)$, (3) $v_{2} \in N\left(u_{1}\right)$ and $w_{1} \in N\left(u_{2}\right)$, (4) $v_{1} \in N\left(u_{1}\right)$ and $w_{1} \in N\left(u_{2}\right)$. Thus, taking $V=\left\{u_{2}, v_{4}\right\}$ in all cases, we have $T_{V} \notin \mathcal{T}$. If $T_{U}=S_{n-2}(1,2)$, we let $T_{U}=\left\{v_{0}, v_{1}, \cdots, v_{n-5}, w_{1}, w_{2}\right\}$ and $E\left(T_{U}\right)=\left\{v_{0} v_{i} \mid 1 \leq i \leq n-5\right\} \cup\left\{v_{1} w_{1}, w_{1} w_{2}\right\}$. If $v_{0} \in N(U)$, we let $v_{0} \in N\left(u_{1}\right)$. By symmetry, we assume $N\left(u_{2}\right) \subseteq\left\{v_{2}, v_{1}, w_{1}, w_{2}\right\}$. If $N\left(u_{2}\right) \subseteq\left\{v_{2}, v_{1}\right\}$, then taking $V=\left\{u_{1}, w_{2}\right\}$, we have $T_{V} \notin \mathcal{T}$. If $w_{1} \in N\left(u_{2}\right)$, then $T=S_{n}[4]$. If $w_{2} \in N\left(u_{2}\right)$, then $T=S_{n}(1,3)$. If $v_{0} \notin N(U)$, then by symmetry, we need to consider the following seven cases: (1) $v_{2} u_{1}, v_{3} u_{2} \in E(T)$, (2) $v_{2} u_{1}, v_{1} u_{2} \in E(T),(3) v_{2} u_{1}, w_{1} u_{2} \in E(T)$, (4) $v_{2} u_{1}, w_{2} u_{2} \in E(T)$, (5) $v_{1} u_{2}, w_{1} u_{1} \in E(T)$, (6) $v_{1} u_{2}, w_{2} u_{1} \in E(T),(7) w_{1} u_{2}, w_{2} u_{1} \in E(T)$. Thus, taking $V=\left\{u_{2}, v_{4}\right\}$ in each case, we have $T_{V} \notin \mathcal{T}$.

Using the same method, we can prove the following two propositions. Since the proofs are easy but tedious, we leave them to the readers.

Proposition 2 Let $T \notin \mathcal{T}$ be a tree of order $n \geq 9$ and $|L(T)| \geq 3$. If T contains neither III-deletable set nor $I V$-deletable set, then $T \in \mathcal{S}$.

Proposition 3 Let $T \notin \mathcal{S} \cup \mathcal{T}$ be a tree of order $n \geq 9$ and $|L(T)| \geq 4$. If T contains no 4-deletable set, then $T \in \mathcal{S}^{\prime}$.

3 Some Lemmas

In order to prove Theorem 6, we need the following lemmas.
Lemma $1^{[5]}$ Let G be a graph of order n. If $\delta(G) \geq n / 2$, then either G is pancyclic or n is even and $G=K_{n / 2, n / 2}$.

Lemma $2^{[3]}$ Let G be a graph of order $2 n-1 \geq 7$ and (U, V) a partition of $V(G)$ with $|U| \geq 3$ and $|V| \geq 4$. Suppose $u_{i} \in U$ and $N_{V}\left(u_{i}\right)=\emptyset, 1 \leq i \leq 3$. If \bar{G} contains no W_{6}, then $\delta(G[V]) \geq|V|-3$.

Lemma $3^{[4]} \quad R\left(T, W_{6}\right)=2 n-1$ for $T=S_{n}[4], S_{n}(1,3), S_{n}(3,1)$ and $n \geq 8$.
Lemma $4^{[4]}$ Let G be a graph of order 7 and $\delta(G) \geq 4$. Then for any $v \in V(G), G$ contains a tree $T=S_{7}(3,1)$ such that $d_{T}(v)=3$.

Lemma $\mathbf{5}^{[4]}$ Let $T_{n} \notin \mathcal{T}$ be a tree of order n and $5 \leq n \leq 8$. Then $R\left(T_{n}, W_{6}\right)=2 n-1$.
Lemma $6^{[6]} \quad R\left(S_{n}, W_{6}\right)=2 n+1$ for $n \geq 3$.
Lemma $7 R\left(S_{n}[5], W_{6}\right)=2 n-1$ for $n \geq 9$.
Proof Let G be a graph of order $2 n-1$. If \bar{G} contains no W_{6}, then G contains an $S_{n}[4]$ by Lemma 3. Let T be an $S_{n}[4]$ with $V(T)=V=\left\{v_{0}, v_{1}, \cdots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=$ $\left\{v_{0} v_{i} \mid 1 \leq i \leq n-4\right\} \cup\left\{v_{1} w_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Set $U=V(G)-V$. Obviously, $|U|=n-1 \geq 8$.

If G contains no $S_{n}[5]$, then we have $w_{1} v_{i} \notin E(G)$ for $2 \leq i \leq n-4$ and $N_{U}\left(w_{1}\right)=\emptyset$. For any $u \in U$, if $d_{U}(u) \geq 3$, then $N(u) \cap N_{T}\left(v_{0}\right)=\emptyset$. Thus if U contains three vertices u_{1}, u_{2}, u_{3} such that $d_{U}\left(u_{i}\right) \geq 3$ for $1 \leq i \leq 3$, then $\bar{G}\left[w_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right]$ contains a W_{6} with the hub w_{1}. Hence we may assume U contains at most two vertices, say u_{1}, u_{2} such that $d_{U}\left(u_{i}\right) \geq 3$, $i=1,2$. Thus, noting that $|U| \geqq 8, U$ contains a subset U^{\prime} with $\left|U^{\prime}\right|=6$ such that $d_{U^{\prime}}(u) \leq 2$ for each $u \in U^{\prime}$ which implies $\bar{G}\left[U^{\prime}\right]$ contains a C_{6} by Lemma 1 , and hence \bar{G} contains a W_{6} with the hub w_{1}, a contradiction. Thus we have $R\left(S_{n}[5], W_{6}\right) \leq 2 n-1$. On the other hand, the graph $G=2 K_{n-1}$ shows $R\left(S_{n}[5], W_{6}\right) \geq 2 n-1$ and hence we have $R\left(S_{n}[5], W_{6}\right)=2 n-1$.I

Lemma $8 \quad R\left(T, W_{6}\right)=17$ for $T=S_{9}(4,1), T_{9 a}$.
Proof Let G be a graph of order 17. Suppose \bar{G} contains no W_{6}.
We first show G contains an $S_{9}(4,1)$. By Lemma $3, G$ contains an $S_{9}(3,1)$. Let $T=S_{9}(3,1)$, $V(T)=V=\left\{v_{0}, \cdots, v_{5}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 5\right\} \cup\left\{v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}\right\}$. Set $U=V(G)-V$. Obviously, $|U|=8$. If G contains no $S_{9}(4,1)$, then $v_{4} v_{5} \notin E(G), N_{U}\left(v_{i}\right)=\emptyset$ for $i=4,5$ and if $u \in N_{U}\left(v_{0}\right)$, then $d_{U}(u)=0$. Thus if $d_{U}\left(v_{0}\right) \geq 2$, say $u_{1}, u_{2} \in N_{U}\left(v_{0}\right)$, then it is not difficult to see that $\bar{G}\left[v_{4}, v_{5}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right]$ contains a W_{6} with the hub v_{4} for any three vertices $u_{3}, u_{4}, u_{5} \in U-\left\{u_{1}, u_{2}\right\}$, a contradiction. Hence we have $d_{U}\left(v_{0}\right) \leq 1$. Let $U^{\prime} \subseteq U-N_{U}\left(v_{0}\right)$ and $\left|U^{\prime}\right|=7$. By Lemma 2, we have $\delta\left(G\left[U^{\prime}\right]\right) \geq 4$ and then $N_{T}(u)=\emptyset$ for any $u \in U^{\prime}$ by Lemma 4. Thus we have $\delta(G[V]) \geq 6$ by Lemma 2. Noting that $v_{4} v_{5} \notin E(G)$, after an easy check, we can see $G[V]$ contains an $S_{9}(4,1)$, and hence we have $R\left(S_{9}(4,1), W_{6}\right) \leq 17$.

Next, we show G contains a $T_{9 a}$. Let T be an $S_{9}(4,1)$ with $V(T)=V \cup W$, where $V=$ $\left\{v_{i} \mid 0 \leq i \leq 4\right\}$ and $W=\left\{w_{i} \mid 1 \leq i \leq 4\right\}$, and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 4\right\} \cup\left\{v_{i} w_{i} \mid 1 \leq i \leq 4\right\}$. Set $U=V(G)-V$. Obviously, $|U|=8$. If G contains no $T_{9 a}$, then W is an independent set. Since $|U|=8$, by Lemma $6, G[U]$ contains a star S_{3}. Assume $u_{1}, u_{2}, u_{3} \in U$ and $u_{1} u_{2}, u_{2} u_{3} \in$ $E(G)$. Since G contains no $T_{9 a}$, we have $N\left(w_{i}\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}=\emptyset$ for $1 \leq i \leq 4$. Thus $\bar{G}\left[w_{1}, w_{2}, w_{3}, w_{4}, u_{1}, u_{2}, u_{3}\right]$ contains a W_{6} with the hub w_{1}, a contradiction. Thus we have $R\left(T_{9 a}, W_{6}\right) \leq 17$.

Since $2 K_{8}$ contains no trees of order 9 and its complement contains no W_{6}, we have $R\left(T, W_{6}\right) \geq 17$, and hence $R\left(T, W_{6}\right)=17$, for $T=S_{9}(4,1), T_{9 a}$.

Lemma 9 Let G be a graph of order n. If $\alpha(G)=2$ and $\delta(G) \geq n-3$, then for any maximum independent set $I=\left\{u_{1}, u_{2}\right\}$ and any two vertices $v_{1}, v_{2} \in V(G)-I$, either $u_{1} v_{1}, u_{2} v_{2} \in E(G)$ or $u_{1} v_{2}, u_{2} v_{1} \in E(G)$.

Proof Since $\delta(G) \geq n-3$, we have $N\left(u_{1}\right) \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset$ and $N\left(u_{2}\right) \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset$. Assume $u_{1} v_{1} \in E(G)$. If $u_{2} v_{2} \in E(G)$, then we are done. Hence we have $u_{2} v_{2} \notin E(G)$ which implies $u_{2} v_{1} \in E(G)$. If $u_{1} v_{2} \in E(G)$, then we are done, and hence $u_{1} v_{2} \notin E(G)$ which implies $\alpha(G) \geq 3$, a contradiction.

Lemma 10 Let G be a graph of order $2 n-1$. If $\alpha(G) \leq 2$, then G contains all trees of order n.

Proof If $\alpha(G)=1$, then it is trivial, and hence we may assume $\alpha(G)=2$. We use induction on n. If $n=3$, then it holds. Assume it holds for small values of n. Let $I=\{u, v\}$ be a maximum independent set of G and T any given tree of order n. Let $v_{1} v_{0} \in E(T)$ with $d_{T}\left(v_{0}\right)=1$ and $T^{\prime}=T-v_{0}$. By induction hypothesis, $G-I$ contains T^{\prime}. Since any vertex in $G-I$, especially v_{1}, must be adjacent to at least one of $\{u, v\}$ as v_{0}, G contains T. Thus G contains all trees of order n.

4 Proof of Theorem 6

Proof of Theorem 6 Let G be a graph of order $2 n-1$. Suppose \bar{G} contains no W_{6}. Before starting to prove Theorem 6 , we first show the following claims under the assumption $\alpha(G)=3$.

- Claim $1 G$ contains an $S_{n}(4,1)$ for $n \geq 10$.

Proof By Lemma 3, we may assume that $T=S_{n}(3,1)$ is a tree in G. Let $V(T)=$ $\left\{v_{0}, \cdots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq n-4\right\} \cup\left\{v_{i} w_{i} \mid 1 \leq i \leq 3\right\}$. Set $U=V(G)-V(T)$. If G contains no $S_{n}(4,1)$, then $\left\{v_{4}, v_{5}, v_{6}\right\}$ is an independent set and $N_{U}\left(v_{i}\right)=\emptyset$ for $i=4,5,6$ which implies $\alpha(G) \geq 4$, a contradiction.

- Claim 2 If $n=11$, then G contains an $S_{11}(5,1)$.

Proof By Claim 1, G contains a tree $S_{11}(4,1)$. Let $T=S_{11}(4,1)$ with $V(T)=\left\{v_{0}, \cdots\right.$, $\left.v_{6}, w_{1}, \cdots, w_{4}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 6\right\} \cup\left\{v_{i} w_{i} \mid 1 \leq i \leq 4\right\}$. Set $U=V(G)-V(T)$. If G contains no $S_{11}(5,1)$, then $v_{5} v_{6} \notin E(G)$ and $N_{U}\left(v_{i}\right)=\emptyset$ for $i=5,6$. Thus, since $\alpha(G)=3$, we have $G[U]=K_{10}$, and hence $d_{U}(v)=0$ for any $v \in V(T)$, since otherwise G contains an $S_{11}(5,1)$. By Lemma 2, we have $\delta(G[V(T)]) \geq 8$ which implies there is some i with $1 \leq i \leq 4$ such that $v_{i}, w_{i} \in N\left(v_{5}\right) \cap N\left(v_{6}\right)$, and hence G contains an $S_{11}(5,1)$.

- Claim 3 If $n=9$, then G contains all trees $T \in \mathcal{T}_{1}$.

Proof By Theorem 5, G contains an $S_{9}(3)$. Let $T=S_{9}(3), V(T)=\left\{v_{0}, \cdots, v_{6}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 6\right\} \cup\left\{v_{1} w_{1}, v_{1} w_{2}\right\}$. Set $V_{0}=\left\{v_{2}, \cdots, v_{6}\right\}$ and $U=V(G)-$ $V(T)$. Since $\alpha(G)=3, G\left[V_{0}\right]$ contains at least two edges.
If G contains no $T_{9 b}$ and we assume $v_{2} v_{3} \in E(G)$, then $\left\{v_{4}, v_{5}, v_{6}\right\}$ is an independent set and $N_{U}\left(v_{i}\right)=\emptyset$ for $i=4,5,6$ which implies $\alpha(G) \geq 4$, a contradiction. Hence G contains a $T_{9 b}$.
If $\Delta\left(G\left[V_{0}\right]\right)=1$, then $G\left[V_{0}\right]=2 K_{2} \cup K_{1}$. Assume $E\left(G\left[V_{0}\right]\right)=\left\{v_{2} v_{3}, v_{4} v_{5}\right\}$. If G contains no $T_{9 c}$, then $N_{U}\left(v_{i}\right)=\emptyset$ for $2 \leq i \leq 5$. Since $\alpha(G)=3$, we have $G\left[U \cup\left\{v_{6}\right\}\right]=K_{9}$ which implies G contains a $T_{9 c}$, a contradiction. Hence we have $\Delta\left(G\left[V_{0}\right]\right) \geq 2$. Assume $v_{2} v_{3}, v_{2} v_{4} \in E(G)$. If G contains no $T_{9 c}$, then $v_{5} v_{6} \notin E(G)$ and $N_{U}\left(v_{i}\right)=\emptyset$ for $i=5,6$. Since $\alpha(G)=3$, we have $G[U]=K_{8}$, and hence $d_{U}(v)=0$ for any $v \in V(T)$ which implies $\delta(G[V(T)]) \geq 6$ by Lemma 2 and $\left\{v_{5}, v_{6}\right\}$ is a maximum independent set of $G[V(T)]$. Thus by Lemma 9 we can assume $v_{1} \in N\left(v_{5}\right)$ and $w_{1}, w_{2} \in N\left(v_{6}\right)$ which implies G contains a $T_{9 c}$.
If G contains no $T_{9 d}$, then $v_{1} v_{i} \notin E(G)$ for $2 \leq i \leq 6, N_{U}\left(v_{1}\right)=\emptyset$ and $d_{U}\left(v_{i}\right) \leq 2$ for $2 \leq$ $i \leq 6$. Thus, since $|U|=8$, we can choose three vertices $u_{1}, u_{2}, u_{3} \in U$ such that there is at most one edge between $\left\{v_{2}, v_{3}, v_{4}\right\}$ and $\left\{u_{1}, u_{2}, u_{3}\right\}$, and hence $\bar{G}\left[v_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right]$ contains a W_{6} with the hub v_{1}, a contradiction. Thus G contains a $T_{9 d}$.
Let $T=T_{9 d}, V(T)=\left\{v_{0}, \cdots, v_{5}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 5\right\} \cup$ $\left\{v_{1} w_{1}, v_{1} w_{2}, v_{1} w_{3}\right\}$. Set $U=V(G)-V(T)$. Since $\alpha(G)=3, G\left[v_{2}, \cdots, v_{5}\right]$ contains at least one edge. Assume $v_{2} v_{3} \in E(G)$. If G contains no $T_{9 e}$, then $v_{4} v_{5} \notin E(G)$ and $N_{U}\left(v_{i}\right)=\emptyset$ for $i=4,5$. Thus, since $\alpha(G)=3$, we have $G[U]=K_{8}$. And then $d_{U}(v)=0$ for any $v \in V(T)$ which implies $\alpha(G[V(T)])=2$. By Lemma 2, we have $\delta(G[V(T)]) \geq 6$. By Lemma 9 , we can assume $v_{4} v_{2}, v_{5} v_{3} \in E(G)$ and hence G contains a $T_{9 e}$.
By Lemma $3, G$ contains an $S_{9}[4]$. Let $T=S_{9}[4], V(T)=\left\{v_{0}, \cdots, v_{5}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 5\right\} \cup\left\{v_{1} w_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Set $V_{1}=\left\{v_{2}, \cdots, v_{5}\right\}$ and $U=$
$V(G)-V(T)$. Since $\alpha(G)=3, G\left[V_{1}\right]$ contains at least one edge. Assume $v_{2} v_{3} \in E(G)$. By an argument similar to that for the case when G contains a $T_{9 e}$, we can see G contains a $T_{9 f}$.
Let $T=T_{9 e}, V(T)=\left\{v_{0}, \cdots, v_{3}, w_{1}, \cdots, w_{5}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 3\right\} \cup$ $\left\{v_{1} w_{1}, v_{1} w_{2}, v_{1} w_{3}, v_{2} w_{4}, v_{3} w_{5}\right\}$. Set $U=V(G)-V(T)$. If G contains no $T_{9 g}$, then $\left\{w_{1}, w_{2}, w_{3}\right\}$ is an independent set and $N_{U}\left(w_{i}\right)=\emptyset$ for $i=1,2,3$ which implies $\alpha(G) \geq 4$, a contradiction. Hence G contains a $T_{9 g}$.
Let $T=T_{9 c}, V(T)=\left\{v_{0}, \cdots, v_{3}, w_{1}, \cdots, w_{5}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 3\right\} \cup$ $\left\{v_{1} w_{1}, v_{1} w_{2}, v_{2} w_{3}, v_{3} w_{4}, v_{3} w_{5}\right\}$. Set $U=V(G)-V(T)$. If G contains no $T_{9 h}$, then $\left\{w_{1}, w_{2}, w_{3}\right\}$ is an independent set and $N_{U}\left(w_{i}\right)=\emptyset$ for $i=1,2,3$ which implies $\alpha(G) \geq 4$, a contradiction. Hence G contains a $T_{9 h}$.
By Lemma $8, G$ contains an $S_{9}(4,1)$. Let $T=S_{9}(4,1)$. If G contains no $T_{9 i}$, then $L(T)$ is an independent set which implies $\alpha(G) \geq 4$ and hence G contains a $T_{9 i}$.

- Claim 4 If $n=10$, then G contains all trees $T \in \mathcal{T}_{2}$.

Proof We first show G contains T_{a}. By Theorem 5, G contains a tree $T=S_{10}(3)$. Let $V(T)=\left\{v_{0}, \cdots, v_{7}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 7\right\} \cup\left\{v_{1} w_{1}, v_{1} w_{2}\right\}$. Set $V_{0}=\left\{v_{2}, \cdots, v_{7}\right\}$ and $U=V(G)-V(T)$. Since $\alpha(G)=3, G\left[V_{0}\right]$ contains at least two independent edges. Assume $v_{2} v_{3}, v_{4} v_{5} \in E(G)$. If G contains no T_{a}, then $v_{6} v_{7} \notin E(G)$ and $N_{U}\left(v_{i}\right)=\emptyset$ for $i=6,7$. Thus we have $G[U]=K_{9}$, and hence $d_{U}(v)=0$ for any $v \in V(T)$ which implies $\alpha(G[V(T)])=2$ and $\delta(G[V(T)]) \geq 7$ by Lemma 2. By Lemma 9 , we can assume $v_{4} v_{6}, v_{5} v_{7} \in E(G)$ which implies G contains a T_{a}.
Next, we show G contains $T_{b}, T_{c}, T_{d}, T_{e}$. Let $T=T_{a}, V(T)=\left\{v_{0}, \cdots, v_{4}, w_{1}, \cdots, w_{5}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 4\right\} \cup\left\{v_{i} w_{i} \mid 1 \leq i \leq 4\right\} \cup\left\{v_{4} w_{5}\right\}$. Set $U=V(G)-V(T)$.
If G contains no T_{b}, then $\left\{w_{3}, w_{4}, w_{5}\right\}$ is an independent set and $N_{U}\left(w_{i}\right)=\emptyset$ for $i=3,4,5$ which implies $\alpha(G) \geq 4$, a contradiction. Thus, G contains a T_{b}.
If G contains no T_{c}, then $w_{4} v_{i} \notin E(G)$ for $i=1,2,3$. Since $|U|=9, G[U]$ contains S_{4} by Lemma 6. Assume $u_{0}, u_{1}, u_{2}, u_{3} \in U$ and $u_{0} u_{1}, u_{0} u_{2}, u_{0} u_{3} \in E(G)$. Since G contains no T_{c}, we have $u_{i} v_{j} \notin E(G)$ for $i, j=1,2,3$ and $w_{4} u_{i} \notin E(G)$ for $i=1,2,3$. Thus $\bar{G}\left[w_{4}, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}\right]$ contains a W_{6} with the hub w_{4}, a contradiction. Hence G contains a T_{c}.
If G contains no T_{d}, then $v_{4} w_{i} \notin E(G)$ for $i=1,2,3$. Since $|U|=9, G[U]$ contains an S_{4} by Lemma 6. Assume $u_{0}, u_{1}, u_{2}, u_{3} \in U$ and $u_{0} u_{1}, u_{0} u_{2}, u_{0} u_{3} \in E(G)$. Since G contains no T_{d}, we have $v_{4} u_{i} \notin E(G)$ for $i=1,2,3$. If there is some $w_{i} u_{j} \in E(G)$ with $i, j \in\{1,2,3\}$, say $w_{1} u_{1} \in E(G)$, then $N\left(u_{1}\right) \cap\left\{w_{2}, w_{3}, u_{2}, u_{3}\right\}=\emptyset$; otherwise G contains a T_{d}. Since $\alpha(G)=3,\left\{w_{2}, w_{3}, u_{2}, u_{3}\right\}$ is a clique which implies G contains a T_{d}. Hence $w_{i} u_{j} \notin E(G)$ for $i, j=1,2,3$ which implies $\bar{G}\left[w_{4}, w_{1}, w_{2}, w_{3}, u_{1}, u_{2}, u_{3}\right]$ contains a W_{6} with the hub w_{4}, a contradiction. Thus G contains a T_{d}.
If G contains no T_{e}, then $\left\{w_{1}, w_{2}, w_{3}\right\}$ is an independent set. Since $\alpha(G)=3$ and $|U|=9$, $G[U]$ contains an edge $u_{1} u_{2}$. Noting that $\left\{w_{1}, w_{2}, w_{3}\right\}$ is an maximum independent set, we have $N\left(u_{1}\right) \cap\left\{w_{1}, w_{2}, w_{3}\right\} \neq \emptyset$ which implies G contains a T_{e}.
And then we show G contains T_{f}. By Lemma $3, G$ contains a tree $T=S_{10}(1,3)$. Let $V(T)=\left\{v_{0}, \cdots, v_{6}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 6\right\} \cup\left\{v_{1} w_{1}, w_{1} w_{2}, w_{2} w_{3}\right\}$. Set $V_{0}=\left\{v_{2}, \cdots, v_{6}\right\}$ and $U=V(G)-V(T)$. Since $\alpha(G)=3, G\left[V_{0}\right]$ contains at least one edge. Assume $v_{2} v_{3} \in E(G)$. If G contains no T_{f}, then $\left\{v_{4}, v_{5}, v_{6}\right\}$ is an independent set and $N_{U}\left(v_{i}\right)=\emptyset$ for $i=4,5,6$ which implies $\alpha(G) \geq 4$, a contradiction. Hence G contains a T_{f}.
Finally, we show G contains T_{g}. Let $T=T_{b}, V(T)=\left\{v_{0}, \cdots, v_{4}, w_{1}, \cdots, w_{5}\right\}$ and $E(T)=$ $\left\{v_{0} v_{i} \mid 1 \leq i \leq 4\right\} \cup\left\{v_{i} w_{i} \mid 1 \leq i \leq 4\right\} \cup\left\{w_{1} w_{5}\right\}$. Set $U=V(G)-V(T)$. Since $|U|=9$, $G[U]$ contains P_{5} by Theorem 2. Let $P=u_{1} \cdots u_{5}$ be a P_{5} in $G[U]$. If G contains no T_{g}, then we have $w_{1} v_{i} \notin E(G), w_{1} u_{i} \notin E(G)$ for $2 \leq i \leq 4$ and $v_{i} u_{j} \notin E(G)$ for $2 \leq i, j \leq 4$.

Thus, $\bar{G}\left[w_{1}, v_{2}, v_{3}, v_{4}, u_{2}, u_{3}, u_{4}\right]$ contains a W_{6} with the hub w_{1}, a contradiction. Thus G contains a T_{g}.
We now begin to prove Theorem 6 .
(1) By Proposition 1 we have $T \in\left\{S_{n}(2,1), S_{n}(3), S_{n}(1,2), S_{n}[4], S_{n}(1,3)\right\}$, and hence $R\left(T, W_{6}\right)=2 n-1$ by Theorem 5 and Lemma 3.
(2) If T contains neither III-deletable set nor IV-deletable set, then $T \in \mathcal{S}$ by Proposition 2 , and hence $R\left(T, W_{6}\right)=2 n-1$ by Theorem 5 and Lemmas 3, 7, 8 .
(3) Suppose T contains no 4 -deletable set. If $T \in \mathcal{S}$, then $R\left(T, W_{6}\right)=2 n-1$ by Theorem 5 and Lemmas 3, 7, 8. If $T \notin \mathcal{S}$, then $T \in \mathcal{S}^{\prime}$ by Proposition 3. By Lemmas 3 and 7 we may assume $T \in \mathcal{S}^{\prime}-\left\{S_{9}(3,1), S_{10}[5]\right\}=\left\{S_{10}(4,1), S_{11}(5,1)\right\} \cup \mathcal{T}_{1} \cup \mathcal{T}_{2}$.

We now show $R\left(T, W_{6}\right)=2|T|-1$ for $T \in\left\{S_{10}(4,1), S_{11}(5,1)\right\} \cup \mathcal{T}_{1} \cup \mathcal{T}_{2}$. Obviously, $2 K_{|T|-1}$ shows $R\left(T, W_{6}\right) \geq 2|T|-1$ for any tree T. In the following, we will prove G contains T.

Since \bar{G} contains no W_{6}, we have $\alpha(G) \leq 6$. If $\alpha(G) \leq 2$, then G contains T by Lemma 10 . If $\alpha(G)=3$, then G contains T by Claims $1-4$. Now, we assume $4 \leq \alpha(G) \leq 6$.

Let I be a maximum independent set of G. If $\alpha(G)=4$, then since $T \notin \mathcal{S}$, by Proposition $1, T$ contains a II-deletable set U_{0}. If $n=9,10$, then $G-I$ contains $T_{U_{0}}$ by Lemma 5 . If $n=11$, then $T=S_{11}(5,1)$ and for any II-deletable set $U_{0}, T_{U_{0}}=S_{9}(3,1)$, and hence $G-I$ contains $T_{U_{0}}$ by Lemma 3. Let $N_{T}\left(U_{0}\right)=U$. If $\left|N_{I}(U)\right| \geq 2$, then G contains T. Thus we have $\left|N_{I}(U)\right|=1$ which implies G contains an induced subgraph $3 K_{1} \cup K_{3}$ since otherwise $\alpha(G) \geq 5$. Let $G^{\prime}=3 K_{1} \cup K_{3}$ with $V\left(G^{\prime}\right)=W=\left\{w_{i} \mid 1 \leq i \leq 6\right\}$ and $E\left(G^{\prime}\right)=\left\{w_{4} w_{5}, w_{4} w_{6}, w_{5} w_{6}\right\}$. Since $T \notin \mathcal{S}$, by Proposition $2, T$ contains a 3 -deletable set U_{0}. Let $N_{T}\left(U_{0}\right)=U$. By Lemma $5, G-W$ contains $T_{U_{0}}$. If $d_{W}(u) \geq 3$ for each $u \in U$, then G contains T. Hence there is some vertex $u_{0} \in U$ such that $d_{W}\left(u_{0}\right) \leq 2$. Since $\alpha(G)=4$, we have $\left|N\left(u_{0}\right) \cap\left\{w_{4}, w_{5}, w_{6}\right\}\right| \leq 1$. Since $d_{W}\left(u_{0}\right) \leq 2$, we may assume $w_{1} \notin N\left(u_{0}\right)$. Thus $\bar{G}\left[w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, u_{0}\right]$ contains a W_{6} with the hub w_{1}, a contradiction.

For $\alpha(G)=5,6$, since $T \notin \mathcal{S}$, by Proposition $2, T$ contains a 3-deletable set U_{0}. Let $N_{T}\left(U_{0}\right)=U$. By Lemma $5, G-I$ contains $T_{U_{0}}$. If $d_{I}(u) \geq 3$ for each $u \in U$, then G contains T. Hence there is some vertex $u \in U$ such that $d_{I}(u) \leq 2$. Thus, if $\alpha(G)=5$, then G contains an induced subgraph $3 K_{1} \cup P_{3}$ or $4 K_{1} \cup K_{2}$. By an analogous argument of $\alpha(G)=4$, we can get a contradiction. If $\alpha(G)=6$, then $\bar{G}[I \cup\{u\}]$ contains a W_{6}, a contradiction.

The proof of Theorem 6 is completed.

References

[1] E. T. Baskoro, S. M. Surahmat, Nababan and M. Miller, On Ramsey numbers for trees versus wheels of five or six vertices, Graphs and Combin., 2002, 18: 717-721.
[2] Y. J. Chen, Y. Q. Zhang and K. M. Zhang, The Ramsey numbers of paths versus wheels, Discrete Mathematics, to appear.
[3] Y. J. Chen, Y. Q. Zhang and K. M. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for $\Delta\left(T_{n}\right) \geq n-3$, Applied Mathematics Letters, 2004, 17: 281-285.
[4] Y. J. Chen, Y. Q. Zhang and K. M. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for small n, Utilitas Mathematica, to appear.
[5] J. A. Bondy, Pancyclic graphs, J. Combin. Theory, 1971, 11(Ser.B): 80-84.
[6] Y. J. Chen, Y. Q. Zhang and K. M. Zhang, The Ramsey numbers of stars versus wheels, European Journal of Combinatorics, 2004, 25: 1067-1075.

[^0]: Received May 29, 2003
 Revised June 4, 2004.
 *This work is supported by Natural Science Foundation of China(10201012).
 \dagger CHEN's work is supported partially by Nanjing University Talent Development Foundation.
 \ddagger ZHANG's work is supported partially by National Science Foundation of Zhejiang(M103094).

