

Discrete Mathematics 309 (2009) 1084-1090

www.elsevier.com/locate/disc

The Ramsey number $R(C_8, K_8)^{*}$

Yunqing Zhang*, Ke Min Zhang

Department of Mathematics, Nanjing University, Nanjing 210093, China

Received 27 October 2005; accepted 29 November 2007 Available online 9 January 2008

Abstract

For two given graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer n such that for any graph G of order n, either G contains G_1 or the complement of G contains G_2 . Let C_m denote a cycle of length m and K_n a complete graph of order n. We show that $R(C_8, K_8) = 50$.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Ramsey number; Cycle; Complete graph

1. Introduction

All graphs considered in this paper are simple graphs without loops. For two given graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer n such that for any graph G of order n, either G contains G_1 or \overline{G} contains G_2 , where \overline{G} is the complement of G. The neighborhood N(v) of a vertex v is the set of vertices adjacent to v in G and $N[v] = N(v) \cup \{v\}$. The maximum and minimum degree of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. Let $V_1, V_2 \subseteq V(G)$. We use $E(V_1, V_2)$ to denote the set of the edges between V_1 and V_2 . The independence number of a graph G is denoted by G(G). For G(G), we write G(G) we write G(G), where G(G) is the subgraph induced by G(G) in G(G). We use G(G) is denoted by G(G) and G(G) and G(G) is the subgraph of order G(G) is denoted by G(G). We use G(G) is denote the union of G(G) and G(G) be two given graphs, G(G) is a graph with vertex set G(G) and edge set G(G) and edge set G(G) and G(G) is a graph of order G(G). A Wheel of order G(G) is a graph of order G(G) and edge set G(G) and G(G) and G(G) and G(G) is a graph of order G(G). A Wheel of order G(G) is a graph of order G(G) and edge set G(G) and G(G) and G(G) is a graph of order G(G). A Wheel of order G(G) is a graph of order G(G) and edge set G(G) is a graph of order G(G). For G(G) is a graph of order G(G) is a graph of order G(G) and G(G) is a graph of order G(G) and G(G) is a graph of order G(G) and G(G) and G(G) is a graph of order G(G) and G(G) is a graph of order G(G). For order in the sum of G(G) is a graph of order G(G) and G(G) is a graph of order G(

Conjecture (*Erdös et al.* [5]). $R(C_m, K_n) = (m-1)(n-1) + 1$ for $m \ge n \ge 3$ and $(m, n) \ne (3, 3)$.

The conjecture was confirmed for n=3 in early works on Ramsey theory [6,8]. Yang et al. [10] proved the conjecture for n=4. Bollobás et al. [1] showed that the conjecture is true for n=5. Schiermeyer [9] confirmed the conjecture for n=6. Recently, Cheng et al. [3,4] solved the conjecture for n=7. All the results as above support

E-mail address: yunqingzh@nju.edu.cn (Y. Zhang).

[☆] This project was supported by NSFC under grant number 10671090.

^{*} Corresponding author.

that the conjecture is true. In this paper, we calculate the value of the Ramsey number $R(C_8, K_8)$. The main result is the following.

Theorem 1. $R(C_8, K_8) = 50$.

2. Some lemmas

In order to prove Theorem 1, we need the following lemmas.

Lemma 1 ([3]). Let G be a graph of order 7n - 6 ($n \ge 7$) with $\alpha(G) \le 7$. If G contains no C_n , then $\delta(G) \ge n - 1$.

Lemma 2 ([3]). Let G be a graph of order 7n - 6 $(n \ge 7)$ with $\alpha(G) \le 7$. If G contains no C_n , then G contains no W_{n-2} .

Lemma 3 ([7]). $R(B_2, K_7) < 34$.

3. Proof of Theorem 1

Proof of Theorem 1. Let G be a graph of order 50. Suppose to the contrary that neither G contains a C_8 nor \overline{G} contains a K_8 . By Lemma 1, we have $\delta(G) \geq 7$. That is

$$G$$
 contains no C_8 . (1)

$$1 \le \alpha(G) \le 7. \tag{2}$$

$$\delta(G) > 7. \tag{3}$$

Let $k \in \mathbb{N}$ and $4 \le k \le 6$. If G contains $K_1 + P_k$ as a subgraph, let $P_k = v_1 \cdots v_k$ and $V(P_k) \subseteq N(v_0)$. If G contains W_k or W_k^- , let $C = v_1 \cdots v_k$, $W_k = \{v_0\} + C$ and $W_k^- = \{v_0\} + C - \{v_0v_1\}$. In both cases, let $I = \{0, 1, \ldots, k\}$ and $S = \{v_i \mid i \in I\}$. If G contains K_k as a subgraph, let $\{v_1, \ldots, v_k\}$ be a clique. If G contains a B_{k-2} , let $v_1v_2 \in E(G)$ and $v_3, \ldots, v_k \in N(v_1) \cap N(v_2)$. In both cases, let $I = \{1, \ldots, k\}$ and $S = \{v_i \mid i \in I\}$. In all cases, set U = V(G) - S and $U_i = N_U(v_i)$ for $i \in I$. By (3), $|U_i| \ne \emptyset$ for $i \in I$. If $U_i \cap U_j \ne \emptyset$ for some $i, j \in I$, let $v_{k+1} \in U_i \cap U_j$. Set $I' = I \cup \{k+1\}$, $X = S \cup \{v_{k+1}\}$, Y = V(G) - X and $Y_i = N_Y(v_i)$ for $i \in I'$. If $k \le 5$, then $Y_i \ne \emptyset$ for $i \in I'$. If $Y_i \ne \emptyset$, then for each $i \in I'$, let z_i be an arbitrary vertex in Y_i and let $Z_i = N_Y(z_i)$.

Let I be an index set, $A_i \subseteq V(G)$ for $i \in I$, and $I_1 = \{i_1, i_2, \dots, i_k\} \subseteq I$. We say that A_{i_1}, \dots, A_{i_k} have **Property A** if

$$A_i \cap A_j = \emptyset$$
 for $i \in I_1$, $j \in I$ and $j \neq i$,
and $E(A_i, A_j) = \emptyset$ for $i, j \in I_1$ and $i \neq j$.

We say that A_{i_1}, \ldots, A_{i_k} have **Property B** if

$$A_i \cap A_j = \emptyset$$
 and $E(A_i, A_j) = \emptyset$ for $i, j \in I_1$ and $i \neq j$, and $\alpha\left(\bigcup_{i \in I_1} A_i\right) = \sum_{i \in I_1} \alpha(A_i) \geq 8$.

These notations will be used throughout the proof of Theorem 1.

In order to prove Theorem 1, we need the following claims.

Claim 1. *G* contains no $K_1 + P_6$.

Proof. Suppose, to the contrary, that G contains $K_1 + P_6$. By (1), we have $U_2 \cap U_3 = U_4 \cap U_5 = \emptyset$ and $U_i \cap U_j = \emptyset$ for $i = 1, 6, j \in I$ and $j \neq i$.

If $U_2 \cap U_5 \neq \emptyset$. By (1), we have v_1v_6 , $v_3v_7 \notin E(G)$. By (3), $Y_i \neq \emptyset$ for i = 1, 3, 6, 7. By (1), we have Y_1, Y_3, Y_6 , and Y_7 have Property A, thus $|Z_i| \geq 6$ and $\alpha(Z_i) \geq 2$ for i = 1, 3, 6, 7 by Lemma 2. By (1), Z_1, Z_3, Z_6 , and Z_7 have Property B, a contradiction. Hence $U_2 \cap U_5 = \emptyset$.

If $U_0 \cap U_5 \neq \emptyset$. By Lemma 2, v_1v_6 , $v_1v_7 \notin E(G)$. By (3), $Y_1, Y_6, Y_7 \neq \emptyset$. If $Y_2 = \emptyset$, then $N[v_2] = X$. By (1), $v_3v_6 \notin E(G)$, which implies that $Y_3 \neq \emptyset$. It is clear that Y_1, Y_3, Y_6 , and Y_7 have Property A, thus $|Z_i| \geq 6$ and

 $\alpha(Z_i) \geq 2$ for i=1,3,6,7 by Lemma 2. By (1), Z_1,Z_3,Z_6 , and Z_7 have Property B, a contradiction. Now we can assume that $Y_2 \neq \emptyset$. Since $U_2 \cap U_5 = \emptyset$, we have $Y_2 \cap Y_5 = \emptyset$. If $Y_2 \cap Y_0 = \emptyset$ and $Y_2 \cap Y_4 = \emptyset$, then Y_1,Y_2,Y_6 , and Y_7 have Property A by (1), thus $|Z_i| \geq 6$ and $\alpha(Z_i) \geq 2$ for i=1,2,6,7 by Lemma 2. By (1), Z_1,Z_2,Z_6 , and Z_7 have Property B, a contradiction. Now we assume that $Y_2 \cap Y_0 \neq \emptyset$ or $Y_2 \cap Y_4 \neq \emptyset$, say $v_8 \in Y_2 \cap Y_0$ or $Y_2 \cap Y_4$. Let $X' = X \cup \{v_8\}$ and Y' = V(G) - X'. Set $Y_i' = N_{Y'}(v_i)$, $z_i' \in Y_i'$ and $N_{Y'}(z_i') = Z_i'$ for $0 \leq i \leq 8$. By (1), $\{v_1,v_6,v_7,v_8\}$ is an independent set. Thus $Y_i' \neq \emptyset$ for i=1,6,7,8. By (1), Y_1',Y_0',Y_1' , and Y_8' have Property A, thus $|Z_i'| \geq 6$ and $\alpha(Z_i') \geq 2$ for i=1,6,7,8 by Lemma 2. By (1), Z_1',Z_0',Z_1' , and Z_8' have Property B, a contradiction. Thus $U_0 \cap U_5 = \emptyset$. By symmetry, $U_0 \cap U_2 = \emptyset$.

If $U_3 \cap U_5 \neq \emptyset$. By (1), v_2v_7 , $v_1v_6 \notin E(G)$. By (3), $Y_i \neq \emptyset$ for i = 1, 2, 6, 7. By (1), Y_1, Y_2, Y_6 , and Y_7 have Property A, so $|Z_i| \geq 6$ and $\alpha(Z_i) \geq 2$ for i = 1, 2, 6, 7. Thus Z_1, Z_2, Z_6 , and Z_7 have Property B, a contradiction. So $U_3 \cap U_5 = \emptyset$. By symmetry, $U_2 \cap U_4 = \emptyset$.

By the argument above, U_1 , U_2 , U_5 , and U_6 have Property A. For each i=1,2,5,6, let u_i be an arbitrary vertex in U_i and let $V_i=N_U(u_i)$. Then $|V_i|\geq 6$ and $\alpha(V_i)\geq 2$ for each i=1,2,5,6. By (1), V_1,V_2,V_5 , and V_6 have Property B, a contradiction.

Claim 2. G contains no W_6^- .

Proof. Suppose, to the contrary, that G contains a W_6^- . By (1), U_0 , U_1 , U_3 , and U_5 have Property A. For each i=0,1,3,5, let u_i be any vertex in U_i and let $V_i=N_U(u_i)$. Then $|V_i|\geq 6$. By Lemma 2, $\alpha(V_i)\geq 2$ for i=0,1,3,5. By (1), V_0 , V_1 , V_3 , and V_5 have Property B, a contradiction.

Claim 3. G contains no W₅.

Proof. Suppose, to the contrary, that G contains a W_5 . By Claim 1, $U_0 \cap U_i = \emptyset$ for $1 \le i \le 5$. By Claim 2, $U_1 \cap U_2 = U_2 \cap U_3 = U_3 \cap U_4 = U_4 \cap U_5 = U_5 \cap U_1 = \emptyset$. If $U_1 \cap U_3 \ne \emptyset$, then $U_4 \cap (U_1 \cup U_2) = \emptyset$ and $U_5 \cap (U_2 \cup U_3) = \emptyset$ by (1). So we can assume that $U_3 \cap (U_1 \cup U_5) = \emptyset$ and $U_4 \cap (U_1 \cup U_2) = \emptyset$. By (1), U_0, U_1, U_3 , and U_4 have Property A. For each i = 0, 1, 3, 4, let u_i be any vertex in U_i and let $V_i = N_U(u_i)$. Then $|V_i| \ge 6$ and so $\alpha(V_i) \ge 2$ for i = 0, 1, 3, 4. By (1), V_0, V_1, V_3 , and V_4 have Property B, a contradiction.

Claim 4. G contains no K_5 .

Proof. Suppose, to the contrary, that G contains a K_5 . If there are U_i and U_j with $i \neq j$ such that $U_i \cap U_j \neq \emptyset$, we assume, without loss of generality, that $U_4 \cap U_5 \neq \emptyset$. By Claim 1, $(Y_4 \cup Y_5) \cap (Y_1 \cup Y_2 \cup Y_3 \cup Y_6) = \emptyset$. By Claim 2, $Y_6 \cap (Y_1 \cup Y_2 \cup Y_3) = \emptyset$. If $Y_1 \cap Y_2 \neq \emptyset$, then $Y_1 \cap Y_3 = \emptyset$ by (1). So we may assume that $Y_1 \cap Y_2 = \emptyset$. By (1), $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{1, 2, 5, 6\}$ and $j \neq i$. By the argument as above, $|Z_i| \geq 5$ for i = 1, 2, 5, 6. By Claim 3, $\alpha(Z_i) \geq 2$. By (1), Z_1, Z_2, Z_5 , and Z_6 have Property B, a contradiction. Hence $U_i \cap U_j = \emptyset$ for $1 \leq i < j \leq 5$. For each $1 \leq i \leq 5$, let u_i be an arbitrary vertex in U_i . Let $T = \{u_1, u_2, u_3, u_4, u_5\}$, U' = U - T and $N_{U'}(u_i) = V_i$ for $1 \leq i \leq 5$. By (1), $\Delta(G[T]) \leq 1$, thus $|V_i| \geq 5$ and so $\alpha(V_i) \geq 2$ for $1 \leq i \leq 5$. Thus V_1, \ldots, V_5 have Property B by (1), a contradiction.

Claim 5. G contains no $K_1 + P_5$.

Proof. Suppose, to the contrary, that G contains $K_1 + P_5$. By Claim 1, $U_0 \cap (U_1 \cup U_5) = \emptyset$. By Claim 2, $U_1 \cap U_5 = \emptyset$. If $U_4 \cap U_5 \neq \emptyset$. By (1), $Y_1 \cap Y_i = \emptyset$ for $i \neq 1$, $Y_2 \cap Y_i = \emptyset$ for $i \neq 0, 2, 4, Y_3 \cap Y_i = \emptyset$ for $i \neq 0, 3, Y_6 \cap Y_i = \emptyset$ for $i \neq 6$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{1, 2, 3, 6\}$ and $i \neq j$. Then $|Z_i| \geq 4$ for i = 1, 2, 3, 6. By Claim 4, $\alpha(Z_i) \geq 2$ for i = 1, 2, 3, 6. By (1), Z_1, Z_2, Z_3 , and Z_6 have Property B, a contradiction. Hence $U_4 \cap U_5 = \emptyset$. By symmetry, $U_1 \cap U_2 = \emptyset$.

If $U_2 \cap U_5 \neq \emptyset$. By (1), $Y_1 \cap Y_i = \emptyset$ for $i \neq 1$, $Y_3 \cap Y_i = \emptyset$ for $i \neq 2$, 3, $Y_4 \cap Y_i = \emptyset$ for $i \neq 0$, 2, 4, $Y_6 \cap Y_i = \emptyset$ for $i \neq 6$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{1, 3, 4, 6\}$ and $i \neq j$. Then $|Z_i| \geq 4$ for i = 1, 3, 4, 6. By Claim 4, $\alpha(Z_i) \geq 2$ for i = 1, 3, 4, 6. By (1), Z_1, Z_3, Z_4 , and Z_6 have Property B, a contradiction. Hence $U_2 \cap U_5 = \emptyset$. By symmetry, $U_1 \cap U_4 = \emptyset$.

If $U_3 \cap U_2 \neq \emptyset$. By (1), $Y_1 \cap Y_i = \emptyset$ for $i \neq 1, 3$, $Y_4 \cap Y_i = \emptyset$ for $i \neq 0, 2, 4$, $Y_5 \cap Y_i = \emptyset$ for $i \neq 2, 5$, $Y_6 \cap Y_i = \emptyset$ for $i \neq 0, 6$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{1, 4, 5, 6\}$ and $i \neq j$. Then $|Z_i| \geq 4$ for i = 1, 4, 5, 6. By Claim 4, $\alpha(Z_i) \geq 2$ for i = 1, 4, 5, 6. By (1), Z_1, Z_4, Z_5 , and Z_6 have Property B, a contradiction. So $U_3 \cap U_2 = \emptyset$. By symmetry, $U_3 \cap U_4 = \emptyset$.

If $U_3 \cap U_5 \neq \emptyset$. By (1), $Y_i \cap Y_j = \emptyset$ for i = 1, 6 and $j \neq i$, $Y_2 \cap Y_i = \emptyset$ for $i \neq 0, 2$, $Y_4 \cap Y_i = \emptyset$ for $i \neq 3, 4$ and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{1, 2, 4, 6\}$ and $i \neq j$. Then $|Z_i| \geq 5$ for i = 1, 2, 4, 6. By Claim 4, $\alpha(Z_i) \geq 2$ for i = 1, 2, 4, 6. By (1), Z_1, Z_2, Z_4 , and Z_6 have Property B, a contradiction. So $U_3 \cap U_5 = \emptyset$. By symmetry, $U_1 \cap U_3 = \emptyset$.

By (1), $E(U_i, U_j) = \emptyset$ for $i, j \in \{1, 3, 4, 5\}$ and $i \neq j$. For each i = 1, 3, 4, 5, let u_i be an arbitrary vertex in U_i and let $V_i = N_U(u_i)$. By the argument above, $|V_i| \geq 4$ for i = 1, 3, 4, 5. By Claim 4, $\alpha(V_i) \geq 2$ for i = 1, 3, 4, 5. By (1), V_1, V_3, V_4 , and V_5 have Property B, a contradiction.

Claim 6. G contains no W_5^- .

Proof. Suppose, to the contrary, that G contains a W_5^- .

If $U_0 \cap U_1 \neq \emptyset$. By (1), $Y_2 \cap Y_i = \emptyset$ for $i \neq 2$, $Y_3 \cap Y_i = \emptyset$ for $i \neq 0, 1, 3, Y_4 \cap Y_i = \emptyset$ for $i \neq 0, 1, 4, Y_5 \cap Y_i = \emptyset$ for $i \neq 5$ and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{2, 3, 4, 5\}$ and $i \neq j$. Then $|Z_i| \geq 4$ for i = 2, 3, 4, 5. By Claim 4, $\alpha(Z_i) \geq 2$ for i = 2, 3, 4, 5. By (1), Z_2, Z_3, Z_4 , and Z_5 have Property B, a contradiction. Hence $U_0 \cap U_1 = \emptyset$.

If $U_0 \cap U_3 \neq \emptyset$. By (1), $Y_1 \cap Y_i = \emptyset$ for $i \neq 0, 1, 3, Y_2 \cap Y_i = \emptyset$ for $i \neq 2, 5, Y_4 \cap Y_i = \emptyset$ for $i \neq 4, Y_6 \cap Y_i = \emptyset$ for $i \neq 6$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{1, 2, 4, 6\}$ and $i \neq j$. Then $|Z_i| \geq 4$ for i = 1, 2, 4, 6. By Claim 4, $\alpha(Z_i) \geq 2$ for i = 1, 2, 4, 6. By (1), Z_1, Z_2, Z_4 , and Z_6 have Property B, a contradiction. Hence $U_0 \cap U_3 = \emptyset$. By symmetry, $U_0 \cap U_4 = \emptyset$.

If $U_1 \cap U_3 \neq \emptyset$. By $U_0 \cap U_1 = \emptyset$, $U_0 \cap U_3 \neq \emptyset$ and (1), Y_0 , Y_2 , Y_4 , and Y_5 have Property A, then $|Z_i| \geq 6$ and $\alpha(Z_i) \geq 2$ for i = 0, 2, 4, 5. By (1), Z_0 , Z_2 , Z_4 , and Z_5 have Property B, a contradiction. Hence $U_1 \cap U_3 = \emptyset$. By symmetry, $U_1 \cap U_4 = \emptyset$.

If $U_3 \cap U_4 \neq \emptyset$. By (1), $Y_i \cap Y_j = \emptyset$ for i = 0, 1, 6 and $j \neq i$, and $Y_2 \cap Y_i = \emptyset$ for $i \neq 2, 5$. For the same reason, $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{0, 1, 2, 6\}$ and $i \neq j$. Then $|Z_i| \geq 5$ for i = 0, 1, 2, 6. By Claim 4, $\alpha(Z_i) \geq 2$ for i = 0, 1, 2, 6. By (1), Z_0, Z_1, Z_2 , and Z_6 have Property B, a contradiction. Thus $U_3 \cap U_4 = \emptyset$.

By (1), $E(U_i, U_j) = \emptyset$ for $i, j \in \{0, 1, 3, 4\}$ and $i \neq j$. For each i = 0, 1, 3, 4, let u_i be any vertex in U_i and let $V_i = N_U(u_i)$. Then $|V_i| \geq 4$. By Claim 4, $\alpha(V_i) \geq 2$ for i = 0, 1, 3, 4. By (1), V_0, V_1, V_3 , and V_4 have Property B, a contradiction.

Claim 7. G contains no K_4 .

Proof. Suppose, to the contrary, that G contains a K_4 . By (3), $|U_i| \ge 4$. If there are U_i and U_j with $i \ne j$ such that $U_i \cap U_j \ne \emptyset$, we assume, without loss of generality, that $U_3 \cap U_4 \ne \emptyset$. By (3), $|Y_i| \ge 3$. By Claim 5, $(Y_3 \cup Y_4) \cap (Y_1 \cup Y_2 \cup Y_5) = \emptyset$. By Claim 6, $Y_5 \cap (Y_1 \cup Y_2) = \emptyset$. Let $z_i \in Y_i$ for i = 1, 2, 3, 5. Since $|Y_i| \ge 3$, we may choose z_1 such that $z_1 \ne z_2$. Set $A = \{z_1, z_2, z_3, z_5\}$, Y' = Y - A and $Z'_i = N_{Y'}(z_i)$ for i = 1, 2, 3, 5. By (1), we have $\Delta(G[A]) \le 1$. Then $|Z'_i| \ge 4$ for i = 1, 2, 3, 5. By Claim 5, $\alpha(Z'_i) \ge 2$ for i = 1, 2, 3, 5. By (1), Z'_1, Z'_2, Z'_3 , and Z'_5 have Property B, a contradiction. Hence $U_i \cap U_j = \emptyset$ for $1 \le i < j \le 4$.

For each i = 1, 2, 3, 4, let u_i be any vertex in U_i . Set $T = \{u_1, u_2, u_3, u_4\}$, U' = U - T and $N_{U'}(u_i) = V_i$ for $1 \le i \le 4$. If G[T] contains $2K_2$ as a subgraph, then G contains a C_8 . Hence we assume that G[T] contains no $2K_2$. If $\Delta(G[T]) = 3$, then $G[T] = K_{1,3}$. By symmetry, we assume that $d_{G[T]}(u_1) = 3$. Let $V'_1 = V_1 \cup \{v_1\}$ and $V'_i = V_i$ for i = 2, 3, 4. Then $|V'_i| \ge 4$ for i = 1, 2, 3, 4. By Claim 4, $\alpha(V'_i) \ge 2$ for i = 1, 2, 3, 4. By (1), V'_1 , V'_2 , V'_3 , and V'_4 have Property B, a contradiction. If $\Delta(G[T]) = 2$, then $G[T] = P_3 \cup \{v_4\}$ or $G[T] = K_3 \cup \{v_4\}$. In this case $|V_i| \ge 4$ and $\alpha(V_i) \ge 2$ for $1 \le i \le 4$. By (1), V_1 , V_2 , V_3 , and V_4 have Property B, a contradiction.

Now we have $|E(G[T])| \le 1$. So $|V_i| \ge 5$ for $1 \le i \le 4$. By Claim 5, $\alpha(V_i) \ge 2$ for i = 1, 2, 3, 4. By (1), $E(V_i, V_j) = \emptyset$ for $1 \le i < j \le 4$. If $V_i \cap V_j = \emptyset$ for $1 \le i < j \le 4$, then V_1, V_2, V_3, V_4 have Property B, a contradiction. So there exist V_i and V_j , say V_1 and V_2 , such that $V_1 \cap V_2 \ne \emptyset$. If $V_1 \cap V_2 \cap V_3 \ne \emptyset$, let $Z = V_1 \cap V_2 \cap V_3$ and $V_i' = V_i - Z$ for i = 1, 2, 3, 4. By (1) we have |Z| = 1. So $|V_i'| \ge 4$ for $1 \le i \le 4$. By Claim 5, $\alpha(V_i') \ge 2$ for $1 \le i \le 4$. By (1), V_1', V_2', V_3' , and V_4' have Property B, a contradiction. So $V_1 \cap V_2 \cap V_3 = \emptyset$. By symmetry, $V_1 \cap V_2 \cap V_4 = \emptyset$. Set $V_i' = V_i \setminus (V_1 \cap V_2)$ for i = 1, 2. By (1), $V_1 \cap V_2$ is an independent set, $E(V_i', V_1 \cap V_2) = \emptyset$ for i = 1, 2, $(V_1 \cup V_2) \cap (V_3 \cup V_4) = \emptyset$, and $E(V_i, V_j) = \emptyset$ for $1 \le i < j \le 4$. So we can get $\alpha(V_1 \cup V_2) = \alpha(V_1') + \alpha(V_2') + |V_1 \cap V_2| \ge 4$. By symmetry, $\alpha(V_3 \cup V_4) \ge 4$, which implies that $\alpha(V_1 \cup V_2 \cup V_3 \cup V_4) \ge 8$, a contradiction.

Let H_1 and H_2 be the graphs in Fig. 1. Let $I = \{1, ..., 6\}$, $S = \{v_i \mid i \in I\}$. Set U = V(G) - S and $U_i = N_U(v_i)$ for $1 \in I$. It is clear that $|U_i| \ge 2$, for $i \in I$. If $U_i \cap U_j \ne \emptyset$ for some $i, j \in I$, let $v_7 \in U_i \cap U_j$. Set $I' = I \cup \{7\}$,

Fig. 1.

 $X = S \cup \{v_7\}, Y = V(G) - X$ and $Y_i = N_Y(v_i)$ for $i \in I'$. By (3), $Y_i \neq \emptyset$ for $i \in I'$. For each $i \in I'$, let z_i be any vertex in Y_i and let $Z_i = N_Y(z_i)$.

Claim 8. G contains no H_1 .

Proof. Suppose, to the contrary, that G contains H_1 .

If $U_1 \cap U_2 \neq \emptyset$. By (1), $Y_4 \cap Y_i = \emptyset$ for $i \neq 1, 4$, $Y_6 \cap Y_i = \emptyset$ for $i \neq 1, 2, 6$, $Y_7 \cap Y_i = \emptyset$ for $i \neq 7$ and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{4, 6, 7\}$ and $i \neq j$. Then $|Z_i| \geq 5$ for i = 4, 7 and $|Z_6| \geq 4$. By Claims 3 and 7, $\alpha(Z_i) \geq 3$ for i = 4, 7 and $\alpha(Z_6) \geq 2$. By (1), Z_4 , Z_6 , and Z_7 have Property B, a contradiction. Thus $U_1 \cap U_2 = \emptyset$. By symmetry, $U_1 \cap U_4 = U_3 \cap U_2 = U_3 \cap U_4 = \emptyset$.

If $U_2 \cap U_5 \neq \emptyset$. By (1), $Y_1 \cap Y_i = \emptyset$ for $i \neq 1, 5, Y_6 \cap Y_i = \emptyset$ for $i \neq 6, Y_7 \cap Y_i = \emptyset$ for $i \neq 7$ and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{1, 6, 7\}$ and $i \neq j$. Then $|Z_i| \geq 5$ for i = 1, 6, 7. By Claims 3 and 7, $\alpha(Z_i) \geq 3$ for i = 1, 6, 7. By (1), Z_1, Z_6 , and Z_7 have Property B, a contradiction. Thus $U_2 \cap U_5 = \emptyset$. By symmetry, $U_2 \cap U_6 = U_4 \cap U_5 = U_4 \cap U_6 = \emptyset$.

If $U_2 \cap U_4 \neq \emptyset$. By (1) and $U_6 \cap (U_2 \cup U_4) = \emptyset$, we have $Y_1 \cap Y_i = \emptyset$ for $i \neq 1, 3, 6, Y_6 \cap Y_i = \emptyset$ for $i \neq 1, 6, Y_7 \cap Y_i = \emptyset$ for $i \neq 7$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{1, 6, 7\}$ and $i \neq j$. By Claim 7, $v_1v_7 \notin E(G)$. By (3), $Y_1 \geq 2$, so we can choose z_1 , such that $z_1 \neq z_6$. Then by the argument above, $|Z_i| \geq 5$ for i = 6, 7 and $|Z_1| \geq 4$. By Claims 3 and 7, $\alpha(Z_i) \geq 3$ for i = 6, 7 and $\alpha(Z_1) \geq 2$. By (1), Z_1, Z_6 , and Z_7 have Property B, a contradiction. Thus $U_2 \cap U_4 = \emptyset$.

If $U_1 \cap U_5 \neq \emptyset$. By (1), $Y_2 \cap Y_i = \emptyset$ for $i \neq 2, 5$, $Y_6 \cap Y_i = \emptyset$ for $i \neq 1, 6$, and $Y_7 \cap Y_i = \emptyset$ for $i \neq 3, 7$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{2, 6, 7\}$ and $i \neq j$. Then $|Z_i| \geq 5$ for i = 2, 6, 7. By Claims 3 and 7, $\alpha(Z_i) \geq 3$ for i = 2, 6, 7. By (1), Z_2, Z_6 , and Z_7 have Property B, a contradiction. Thus $U_1 \cap U_5 = \emptyset$. By symmetry, $U_3 \cap U_6 = \emptyset$. If $U_1 \cap U_3 \neq \emptyset$. By $U_2 \cap U_i = \emptyset$ for i = 1, 3, 4, 5, 6, we have $Y_2 \cap Y_i = \emptyset$ for i = 1, 3, 4, 5, 6. By $U_6 \cap (U_2 \cup U_3 \cup U_4) = \emptyset$, we have $Y_6 \cap (Y_2 \cup Y_3 \cup Y_4) = \emptyset$. By (1), $Y_7 \cap Y_i = \emptyset$ for $i \neq 1, 3, 7$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{2, 6, 7\}$ and $i \neq j$. Then $|Z_2| \geq 6$, $|Z_6| \geq 4$ and $|Z_7| \geq 4$. By Claims 3 and 7, $\alpha(Z_2) \geq 3$ and $\alpha(Z_i) \geq 2$ for i = 6, 7. By (1), $\{v_4\}, Z_2, Z_6$, and Z_7 have Property B, a contradiction. Thus $U_1 \cap U_3 = \emptyset$.

Thus $U_1 \cap U_i = \emptyset$ for $i \neq 1, 6, U_2 \cap U_i = \emptyset$ for $i \neq 2$, and $U_6 \cap U_i = \emptyset$ for $i \neq 1, 5, 6$. Take $u_i \in U_i$ for i = 1, 2, 6. Since $|U_i| \geq 2$, we can choose u_1 , such that $u_1 \neq u_6$. Let $T = \{u_1, u_2, u_6\}$, U' = U - T, $V_i = N_{U'}(u_i)$. By (1), $\Delta(G[A]) \leq 1$. Then $|V_1| \geq 4$, $|V_2| \geq 5$ and $|V_6| \geq 3$. By Claims 3 and 7, $\alpha(V_1) \geq 2$, $\alpha(V_2) \geq 3$ and $\alpha(V_6) \geq 2$. By (1), $\{v_5\}$, V_1 , V_2 , and V_6 have Property B, a contradiction.

Claim 9. G contains no H_2 .

Proof. Suppose, to the contrary, that G contains H_2 .

If $U_1 \cap U_2 \neq \emptyset$. By (1), $Y_5 \cap Y_i = \emptyset$ for $i \neq 2, 4, 5$, $Y_6 \cap Y_i = \emptyset$ for $i \neq 3, 6$, $Y_7 \cap Y_i = \emptyset$ for $i \neq 7$, and $E(Y_i, Y_j) = \emptyset$ for $1 \leq i \leq 7$. Then $|Z_i| \geq 5$ for $1 \leq i \leq 7$ and $|Z_5| \geq 4$. By Claims 3 and 7, $\alpha(Z_i) \geq 3$ for $1 \leq i \leq 7$ and $\alpha(Z_5) \geq 2$. By (1), $1 \leq i \leq 7$ and $1 \leq 3$ for $1 \leq 3$ for 1

If $U_1 \cap U_3 \neq \emptyset$. By (1), $Y_2 \cap Y_i = \emptyset$ for $i \neq 2, 3$, $Y_6 \cap Y_i = \emptyset$ for $i \neq 1, 3, 6$, $Y_7 \cap Y_i = \emptyset$ for $i \neq 7$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{2, 6, 7\}$ and $i \neq j$. Then $|Z_i| \geq 5$ for i = 2, 7 and $|Z_6| \geq 4$. By Claims 3 and 7, $\alpha(Z_i) \geq 3$ for i = 2, 7 and $\alpha(Z_6) \geq 2$. By (1), Z_2, Z_6 , and Z_7 have Property B, a contradiction. Thus $U_1 \cap U_3 = \emptyset$.

If $U_1 \cap U_5 \neq \emptyset$. By (1), $Y_2 \cap Y_i = \emptyset$ for $i \neq 2, 4, 5, Y_6 \cap Y_i = \emptyset$ for $i \neq 6, Y_7 \cap Y_i = \emptyset$ for $i \neq 7$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{2, 6, 7\}$ and $i \neq j$. Then $|Z_i| \geq 6$ for i = 6, 7 and $|Z_2| \geq 3$. By Claims 3 and 7, $\alpha(Z_i) \geq 3$ for i = 6, 7 and $\alpha(Z_2) \geq 2$. By (1), Z_2 , Z_6 , and Z_7 have Property B, a contradiction. Thus $U_1 \cap U_5 = \emptyset$.

If $U_2 \cap U_3 \neq \emptyset$. By (1), $Y_1 \cap Y_i = \emptyset$ for $i \neq 1, 3$, $Y_6 \cap Y_i = \emptyset$ for $i \neq 2, 3, 6$, $Y_7 \cap Y_i = \emptyset$ for $i \neq 4, 7$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{1, 6, 7\}$ and $i \neq j$. Then $|Z_i| \geq 5$ for i = 1, 7 and $|Z_6| \geq 4$. By Claims 3 and 7, $\alpha(Z_i) \geq 3$ for i = 1, 7 and $\alpha(Z_6) \geq 2$. By (1), Z_1, Z_6 , and Z_7 have Property B, a contradiction. Thus $U_2 \cap U_3 = \emptyset$.

If $U_3 \cap U_5 \neq \emptyset$. By (1), $Y_2 \cap Y_i = \emptyset$ for $i \neq 2, 4, 5, Y_6 \cap Y_i = \emptyset$ for $i \neq 6, Y_7 \cap Y_i = \emptyset$ for $i \neq 7$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{2, 6, 7\}$ and $i \neq j$. Then $|Z_i| \geq 5$ for i = 2, 6, 7. By Claims 3 and 7, $\alpha(Z_i) \geq 3$ for i = 2, 6, 7. By (1), Z_2, Z_6 , and Z_7 have Property B, a contradiction. Thus $U_3 \cap U_5 = \emptyset$.

If $U_3 \cap U_4 \neq \emptyset$. By $U_1 \cap U_i = \emptyset$ for i = 2, 3, 4, we have $Y_1 \cap Y_i = \emptyset$ for i = 2, 3, 4. By (1), $Y_1 \cap Y_i = \emptyset$ for $i = 5, 6, 7, Y_6 \cap Y_i = \emptyset$ for $i \neq 3, 4, 5, Y_7 \cap Y_i = \emptyset$ for $i \neq 3, 4, 7$, and $E(Y_i, Y_j) = \emptyset$ for $i, j \in \{1, 6, 7\}$ and $i \neq j$. Then $|Z_1| \geq 6$, $|Z_6| \geq 4$ and $|Z_7| \geq 4$. By Claims 3 and 7, $\alpha(Z_1) \geq 3$ and $\alpha(Z_i) \geq 2$ for i = 6, 7. By (1), $\{v_2\}, Z_1, Z_6, A$ and $\{v_3\}, \{v_4\}, \{v_5\}, \{v_6\}, \{v_6\},$

By the argument as above, $U_1 \cap U_i = \emptyset$ for $i \neq 1, 6$, $U_3 \cap U_i = \emptyset$ for $i \neq 3, 6$, and $U_5 \cap U_i = \emptyset$ for $i \neq 2, 4, 5, 6$. For each i = 1, 3, 5, let u_i be any vertex in U_i and let $V_i = N_U(u_i)$. Then $|V_i| \geq 5$ for i = 1, 3, and $|V_5| \geq 3$. By Claims 3 and 7, $\alpha(V_i) \geq 3$ for i = 1, 3, and $\alpha(V_5) \geq 2$. By (1), V_1, V_3 , and V_5 have Property B, a contradiction.

Claim 10. G contains no $K_1 + P_4$.

Proof. Suppose, to the contrary, that G contains $K_1 + P_4$. By Claim 5, $U_0 \cap (U_1 \cup U_4) = \emptyset$. By Claim 6, $U_1 \cap U_4 = \emptyset$. By Claim 9, $U_1 \cap U_2 = U_1 \cap U_3 = U_2 \cap U_4 = U_3 \cap U_4 = \emptyset$. For each i = 0, 1, 4, let u_i be any vertex in U_i . Set $T = \{u_0, u_1, u_4\}$, U' = U - T and $N_{U'}(u_i) = V_i$ for i = 0, 1, 4. By (1), $\Delta(G[T]) \leq 1$. By the argument above, $|V_i| \geq 5$ for i = 1, 4 and $|V_0| \geq 3$. By Claims 3 and 7, $\alpha(V_i) \geq 3$ for i = 1, 4, and $\alpha(V_0) \geq 2$. By (1), V_0 , V_1 , and V_4 have Property B, a contradiction.

Claim 11. G contains no B_3 .

Proof. Assume, to the contrary, that *G* contains a *B*₃. By Claim 9, $U_3 \cap U_4 = U_3 \cap U_5 = U_4 \cap U_5 = \emptyset$. By Claim 10, $(U_1 \cup U_2) \cap (U_3 \cup U_4 \cup U_5) = \emptyset$. Take $u_i \in Y_i$ for i = 3, 4, 5. Set $T = \{u_3, u_4, u_5\}$, U' = U - T and $N_{U'}(u_i) = V_i$ for i = 3, 4, 5. By (1), $\Delta(G[T]) \le 1$. Thus $|V_i| \ge 5$ for i = 3, 4, 5. By Claims 3 and 7, $\alpha(V_i) \ge 3$ for i = 3, 4, 5. By (1), V_3, V_4 , and V_5 have Property B, a contradiction.

Claim 12. G contains no W_{Λ}^{-} .

Proof. Suppose, to the contrary, that G contains a W_4^- . It is clear that $|U_i| \ge 3$. By Claim 8, $U_1 \cap U_2 = U_1 \cap U_4 = \emptyset$. By Claim 9, $U_1 \cap U_0 = U_1 \cap U_3 = \emptyset$. By Claim 10, $(U_0 \cup U_3) \cap (U_2 \cup U_4) = \emptyset$. By Claim 11, $U_0 \cap U_3 = \emptyset$. For each i = 1, 2, 3, let u_i be any vertex in Y_i . Set $T = \{u_1, u_2, u_3\}$, U' = U - T and $N_{U'}(u_i) = V_i$ for i = 1, 2, 3. By (1), $\Delta(G[T]) \le 1$. Then $|V_i| \ge 5$ for i = 1, 3 and $|V_2| \ge 4$. By Claims 3 and 7, $\alpha(V_i) \ge 3$ for i = 1, 3, and $\alpha(V_4) \ge 2$. By (1), V_1, V_2 , and V_3 have Property B, a contradiction.

Claim 13. G contains no B_2 .

Proof. Suppose, to the contrary, that G contains a B_2 . By Claim 10, $(U_1 \cup U_2) \cap (U_3 \cup U_4) = \emptyset$. By Claim 11, $U_1 \cap U_2 = \emptyset$. By Claim 12, $U_3 \cap U_4 = \emptyset$. By Claim 8, $E(U_3, U_4) = \emptyset$. By Claim 9, $E(U_1 \cup U_2, U_3 \cup U_4) = \emptyset$. For each i = 2, 3, 4, let u_i be any vertex in U_i and let $V_i = N_U(u_i)$. Then $|V_i| \ge 6$ for $0 \le i \le 4$. By Claims 3 and 7, $\alpha(V_i) \ge 3$ for $0 \le i \le 4$. By (1), $\alpha(V_i) \ge 3$ for $0 \le i \le 4$. By (1), $\alpha(V_i) \ge 3$ for $0 \le i \le 4$.

If $V_2 \cap V_3 \cap V_4 \neq \emptyset$, then $|V_2 \cap V_3 \cap V_4| = 1$ by (1). Let $V_i' = V_i - (V_2 \cap V_3 \cap V_4)$ for i = 2, 3, 4, then $|V_i'| \geq 5$ for i = 2, 3, 4. By Claims 3 and 7, $\alpha(V_i') \geq 3$ for i = 2, 3, 4. By (1), V_2' , V_3' , and V_4' have Property B, a contradiction. So $V_2 \cap V_3 \cap V_4 = \emptyset$. If $V_2 \cap V_3 \neq \emptyset$, let $A = V_2 \cap V_3$, and $V_i' = V_i - A$ for i = 2, 3. By (1), A is an independent set, and V_2' , V_3' , V_4 , and A have Property B, a contradiction. So $V_2 \cap V_3 = \emptyset$. By symmetry, $V_2 \cap V_4 = \emptyset$. If $V_3 \cap V_4 \neq \emptyset$, let $A = V_3 \cap V_4$, and $V_i' = V_i - A$ for i = 3, 4. By (1), A is an independent set, and V_2, V_3' , V_4' and A have Property B, a contradiction. Now $V_i \cap V_j = \emptyset$ for $2 \leq i \leq 4$, which implies that $\alpha(\bigcup_{i=1}^3 V_i) \geq 9$, a contradiction.

We now begin to prove Theorem 1.

If there is some vertex v, such that $d(v) \leq 15$, then G' = G - N[v] is a graph of order at least 34. By Lemma 3 and Claim 13, $\alpha(G') \geq 7$, which implies that $\alpha(G) \geq 8$, a contradiction. Hence $\delta(G) \geq 16$. Let $v_0 \in V(G)$. Since $d(v_0) \geq 16$, $G[N(v_0)]$ contains no P_3 by Claim 13. Thus, $G[N(v_0)]$ contains only independent edges and independent vertices, which implies that $\alpha(G[N(v_0)]) \geq 8$, a contradiction. Thus, $R(C_8, K_8) \leq 50$. On the other hand, since $7K_7$ contains no K_8 and its complement contains no K_8 , we have $R(C_8, K_8) \geq 50$ and hence $R(C_8, K_8) = 50$.

References

- [1] B. Bollobás, C.J. Jayawardene, J.S. Yang, Y.R. Huang, C.C. Rousseau, K.M. Zhang, On a conjecture involving cycle-complete graph Ramsey numbers, Australasian Journal of Combinatorics 22 (2000) 63–71.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
- [3] Y.J. Chen, T.C.E. Cheng, Y.Q. Zhang, The Ramsey numbers $R(C_m, K_7)$ and $R(C_7, K_8)$, European Journal of Combinatorics (in press).
- [4] T.C. Edwin Cheng, Y.J. Chen, Y.Q. Zhang, C.T. Ng, The Ramsey numbers for a cycle of length six or seven versus a clique of order seven, Discrete Mathematics 307 (2007) 1047–1053.
- [5] P. Erdös, R.J. Faudree, C.C. Rousseau, R.H. Schelp, On cycle-complete graph Ramsey numbers, Journal of Graph Theory 2 (1978) 53-64.
- [6] R.J. Faudree, R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Mathematics 8 (1974) 313–329.
- [7] S.P. Radziszowski, Small Ramsey numbers, Electronic Journal of Combinatorics 1 (2004) DS1.10.
- [8] V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdös, I & II, Journal of Combinatorial Theory, Series B 15 (1973) 94–120.
- [9] I. Schiermeyer, All cycle-complete graph Ramsey numbers $r(C_m, K_6)$, Journal of Graph Theory 44 (2003) 251–260.
- [10] J.S. Yang, Y.R. Huang, K.M. Zhang, The value of the Ramsey number $R(C_n, K_4)$ is 3(n-1)+1, Australasian Journal of Combinatorics 20 (1999) 205–206.