DISCRETE

MATHEMATICS

The Ramsey number $R\left(C_{8}, K_{8}\right)^{\hbar}$

Yunqing Zhang*, Ke Min Zhang
Department of Mathematics, Nanjing University, Nanjing 210093, China

Received 27 October 2005; accepted 29 November 2007
Available online 9 January 2008

Abstract

For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer n such that for any graph G of order n, either G contains G_{1} or the complement of G contains G_{2}. Let C_{m} denote a cycle of length m and K_{n} a complete graph of order n. We show that $R\left(C_{8}, K_{8}\right)=50$.

© 2007 Elsevier B.V. All rights reserved.
Keywords: Ramsey number; Cycle; Complete graph

1. Introduction

All graphs considered in this paper are simple graphs without loops. For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer n such that for any graph G of order n, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. The neighborhood $N(v)$ of a vertex v is the set of vertices adjacent to v in G and $N[v]=N(v) \cup\{v\}$. The maximum and minimum degree of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. Let $V_{1}, V_{2} \subseteq V(G)$. We use $E\left(V_{1}, V_{2}\right)$ to denote the set of the edges between V_{1} and V_{2}. The independence number of a graph G is denoted by $\alpha(G)$. For $U \subseteq V(G)$, we write $\alpha(U)$ for $\alpha(G[U])$, where $G[U]$ is the subgraph induced by U in G. A cycle and a path of order n are denoted by C_{n} and P_{n}, respectively. A clique or a complete graph of order n is denoted by K_{n}. We use $m K_{n}$ to denote the union of m vertex disjoint K_{n}. Let G_{1} and G_{2} be two given graphs, $G_{1}+G_{2}$ is a graph with vertex set $V=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. A Wheel of order $n+1$ is $W_{n}=K_{1}+C_{n}$ and W_{n}^{-}is a graph obtained from W_{n} by deleting a spoke from W_{n}. A Book $B_{n}=K_{2}+\overline{K_{n}}$ is a graph of order $n+2$. For notations not defined here, we follow [2].

In 1978, Erdös et al. posed the following conjecture.
Conjecture (Erdös et al. [5]). $R\left(C_{m}, K_{n}\right)=(m-1)(n-1)+1$ for $m \geq n \geq 3$ and $(m, n) \neq(3,3)$.
The conjecture was confirmed for $n=3$ in early works on Ramsey theory [6,8]. Yang et al. [10] proved the conjecture for $n=4$. Bollobás et al. [1] showed that the conjecture is true for $n=5$. Schiermeyer [9] confirmed the conjecture for $n=6$. Recently, Cheng et al. [3,4] solved the conjecture for $n=7$. All the results as above support

[^0]that the conjecture is true. In this paper, we calculate the value of the Ramsey number $R\left(C_{8}, K_{8}\right)$. The main result is the following.

Theorem 1. $R\left(C_{8}, K_{8}\right)=50$.

2. Some lemmas

In order to prove Theorem 1, we need the following lemmas.
Lemma 1 ([3]). Let G be a graph of order $7 n-6(n \geq 7)$ with $\alpha(G) \leq 7$. If G contains no C_{n}, then $\delta(G) \geq n-1$.
Lemma 2 ([3]). Let G be a graph of order $7 n-6(n \geq 7)$ with $\alpha(G) \leq 7$. If G contains no C_{n}, then G contains no W_{n-2}.

Lemma 3 ([7]). $R\left(B_{2}, K_{7}\right) \leq 34$.

3. Proof of Theorem 1

Proof of Theorem 1. Let G be a graph of order 50. Suppose to the contrary that neither G contains a C_{8} nor \bar{G} contains a K_{8}. By Lemma 1 , we have $\delta(G) \geq 7$. That is
G contains no C_{8}.

$$
\begin{equation*}
1 \leq \alpha(G) \leq 7 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\delta(G) \geq 7 \tag{2}
\end{equation*}
$$

Let $k \in \mathbf{N}$ and $4 \leq k \leq 6$. If G contains $K_{1}+P_{k}$ as a subgraph, let $P_{k}=v_{1} \cdots v_{k}$ and $V\left(P_{k}\right) \subseteq N\left(v_{0}\right)$. If G contains W_{k} or W_{k}^{-}, let $C=v_{1} \cdots v_{k}, W_{k}=\left\{v_{0}\right\}+C$ and $W_{k}^{-}=\left\{v_{0}\right\}+C-\left\{v_{0} v_{1}\right\}$. In both cases, let $I=\{0,1, \ldots, k\}$ and $S=\left\{v_{i} \mid i \in I\right\}$. If G contains K_{k} as a subgraph, let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a clique. If G contains a B_{k-2}, let $v_{1} v_{2} \in E(G)$ and $v_{3}, \ldots, v_{k} \in N\left(v_{1}\right) \cap N\left(v_{2}\right)$. In both cases, let $I=\{1, \ldots, k\}$ and $S=\left\{v_{i} \mid i \in I\right\}$. In all cases, set $U=V(G)-S$ and $U_{i}=N_{U}\left(v_{i}\right)$ for $i \in I$. By (3), $\left|U_{i}\right| \neq \emptyset$ for $i \in I$. If $U_{i} \cap U_{j} \neq \emptyset$ for some $i, j \in I$, let $v_{k+1} \in U_{i} \cap U_{j}$. Set $I^{\prime}=I \cup\{k+1\}, X=S \cup\left\{v_{k+1}\right\}, Y=V(G)-X$ and $Y_{i}=N_{Y}\left(v_{i}\right)$ for $i \in I^{\prime}$. If $k \leq 5$, then $Y_{i} \neq \emptyset$ for $i \in I^{\prime}$. If $Y_{i} \neq \emptyset$, then for each $i \in I^{\prime}$, let z_{i} be an arbitrary vertex in Y_{i} and let $Z_{i}=N_{Y}\left(z_{i}\right)$.

Let I be an index set, $A_{i} \subseteq V(G)$ for $i \in I$, and $I_{1}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq I$. We say that $A_{i_{1}}, \ldots, A_{i_{k}}$ have Property A if

$$
A_{i} \cap A_{j}=\emptyset \quad \text { for } i \in I_{1}, j \in I \text { and } j \neq i,
$$

and $E\left(A_{i}, A_{j}\right)=\emptyset \quad$ for $i, j \in I_{1}$ and $i \neq j$.
We say that $A_{i_{1}}, \ldots, A_{i_{k}}$ have Property \mathbf{B} if
$A_{i} \cap A_{j}=\emptyset \quad$ and $\quad E\left(A_{i}, A_{j}\right)=\emptyset \quad$ for $i, j \in I_{1}$ and $i \neq j$,
and $\quad \alpha\left(\bigcup_{i \in I_{1}} A_{i}\right)=\sum_{i \in I_{1}} \alpha\left(A_{i}\right) \geq 8$.
These notations will be used throughout the proof of Theorem 1.
In order to prove Theorem 1, we need the following claims.
Claim 1. G contains no $K_{1}+P_{6}$.
Proof. Suppose, to the contrary, that G contains $K_{1}+P_{6}$. By (1), we have $U_{2} \cap U_{3}=U_{4} \cap U_{5}=\emptyset$ and $U_{i} \cap U_{j}=\emptyset$ for $i=1,6, j \in I$ and $j \neq i$.

If $U_{2} \cap U_{5} \neq \emptyset$. By (1), we have $v_{1} v_{6}, v_{3} v_{7} \notin E(G)$. By (3), $Y_{i} \neq \emptyset$ for $i=1,3,6,7$. By (1), we have Y_{1}, Y_{3}, Y_{6}, and Y_{7} have Property A, thus $\left|Z_{i}\right| \geq 6$ and $\alpha\left(Z_{i}\right) \geq 2$ for $i=1,3,6,7$ by Lemma 2. By (1), Z_{1}, Z_{3}, Z_{6}, and Z_{7} have Property B, a contradiction. Hence $U_{2} \cap U_{5}=\emptyset$.

If $U_{0} \cap U_{5} \neq \emptyset$. By Lemma 2, $v_{1} v_{6}, v_{1} v_{7} \notin E(G)$. By (3), $Y_{1}, Y_{6}, Y_{7} \neq \emptyset$. If $Y_{2}=\emptyset$, then $N\left[v_{2}\right]=X$. By (1), $v_{3} v_{6} \notin E(G)$, which implies that $Y_{3} \neq \emptyset$. It is clear that Y_{1}, Y_{3}, Y_{6}, and Y_{7} have Property A, thus $\left|Z_{i}\right| \geq 6$ and
$\alpha\left(Z_{i}\right) \geq 2$ for $i=1,3,6,7$ by Lemma 2. By (1), Z_{1}, Z_{3}, Z_{6}, and Z_{7} have Property B, a contradiction. Now we can assume that $Y_{2} \neq \emptyset$. Since $U_{2} \cap U_{5}=\emptyset$, we have $Y_{2} \cap Y_{5}=\emptyset$. If $Y_{2} \cap Y_{0}=\emptyset$ and $Y_{2} \cap Y_{4}=\emptyset$, then Y_{1}, Y_{2}, Y_{6}, and Y_{7} have Property A by (1), thus $\left|Z_{i}\right| \geq 6$ and $\alpha\left(Z_{i}\right) \geq 2$ for $i=1,2,6,7$ by Lemma 2. By (1), Z_{1}, Z_{2}, Z_{6}, and Z_{7} have Property B, a contradiction. Now we assume that $Y_{2} \cap Y_{0} \neq \emptyset$ or $Y_{2} \cap Y_{4} \neq \emptyset$, say $v_{8} \in Y_{2} \cap Y_{0}$ or $Y_{2} \cap Y_{4}$. Let $X^{\prime}=X \cup\left\{v_{8}\right\}$ and $Y^{\prime}=V(G)-X^{\prime}$. Set $Y_{i}^{\prime}=N_{Y^{\prime}}\left(v_{i}\right), z_{i}^{\prime} \in Y_{i}^{\prime}$ and $N_{Y^{\prime}}\left(z_{i}^{\prime}\right)=Z_{i}^{\prime}$ for $0 \leq i \leq 8$. By (1), $\left\{v_{1}, v_{6}, v_{7}, v_{8}\right\}$ is an independent set. Thus $Y_{i}^{\prime} \neq \emptyset$ for $i=1,6,7,8$. By (1), $Y_{1}^{\prime}, Y_{6}^{\prime}, Y_{7}^{\prime}$, and Y_{8}^{\prime} have Property A, thus $\left|Z_{i}^{\prime}\right| \geq 6$ and $\alpha\left(Z_{i}^{\prime}\right) \geq 2$ for $i=1,6,7,8$ by Lemma 2. By (1), $Z_{1}^{\prime}, Z_{6}^{\prime}, Z_{7}^{\prime}$, and Z_{8}^{\prime} have Property B, a contradiction. Thus $U_{0} \cap U_{5}=\emptyset$. By symmetry, $U_{0} \cap U_{2}=\emptyset$.

If $U_{3} \cap U_{5} \neq \emptyset$. By (1), $v_{2} v_{7}, v_{1} v_{6} \notin E(G)$. By (3), $Y_{i} \neq \emptyset$ for $i=1,2,6,7$. By (1), Y_{1}, Y_{2}, Y_{6}, and Y_{7} have Property A, so $\left|Z_{i}\right| \geq 6$ and $\alpha\left(Z_{i}\right) \geq 2$ for $i=1,2,6,7$. Thus Z_{1}, Z_{2}, Z_{6}, and Z_{7} have Property B, a contradiction. So $U_{3} \cap U_{5}=\emptyset$. By symmetry, $U_{2} \cap U_{4}=\emptyset$.

By the argument above, U_{1}, U_{2}, U_{5}, and U_{6} have Property A. For each $i=1,2,5,6$, let u_{i} be an arbitrary vertex in U_{i} and let $V_{i}=N_{U}\left(u_{i}\right)$. Then $\left|V_{i}\right| \geq 6$ and $\alpha\left(V_{i}\right) \geq 2$ for each $i=1,2,5,6$. By (1), V_{1}, V_{2}, V_{5}, and V_{6} have Property B, a contradiction.

Claim 2. G contains no W_{6}^{-}.
Proof. Suppose, to the contrary, that G contains a W_{6}^{-}. By (1), U_{0}, U_{1}, U_{3}, and U_{5} have Property A. For each $i=0,1,3,5$, let u_{i} be any vertex in U_{i} and let $V_{i}=N_{U}\left(u_{i}\right)$. Then $\left|V_{i}\right| \geq 6$. By Lemma $2, \alpha\left(V_{i}\right) \geq 2$ for $i=0,1,3,5$. By (1), V_{0}, V_{1}, V_{3}, and V_{5} have Property B, a contradiction.

Claim 3. G contains no W_{5}.
Proof. Suppose, to the contrary, that G contains a W_{5}. By Claim $1, U_{0} \cap U_{i}=\emptyset$ for $1 \leq i \leq 5$. By Claim 2, $U_{1} \cap U_{2}=U_{2} \cap U_{3}=U_{3} \cap U_{4}=U_{4} \cap U_{5}=U_{5} \cap U_{1}=\emptyset$. If $U_{1} \cap U_{3} \neq \emptyset$, then $U_{4} \cap\left(U_{1} \cup U_{2}\right)=\emptyset$ and $U_{5} \cap\left(U_{2} \cup U_{3}\right)=\emptyset$ by (1). So we can assume that $U_{3} \cap\left(U_{1} \cup U_{5}\right)=\emptyset$ and $U_{4} \cap\left(U_{1} \cup U_{2}\right)=\emptyset$. By (1), U_{0}, U_{1}, U_{3}, and U_{4} have Property A. For each $i=0,1,3,4$, let u_{i} be any vertex in U_{i} and let $V_{i}=N_{U}\left(u_{i}\right)$. Then $\left|V_{i}\right| \geq 6$ and so $\alpha\left(V_{i}\right) \geq 2$ for $i=0,1,3,4$. By (1), V_{0}, V_{1}, V_{3}, and V_{4} have Property B, a contradiction.

Claim 4. G contains no K_{5}.
Proof. Suppose, to the contrary, that G contains a K_{5}. If there are U_{i} and U_{j} with $i \neq j$ such that $U_{i} \cap U_{j} \neq \emptyset$, we assume, without loss of generality, that $U_{4} \cap U_{5} \neq \emptyset$. By Claim 1, $\left(Y_{4} \cup Y_{5}\right) \cap\left(Y_{1} \cup Y_{2} \cup Y_{3} \cup Y_{6}\right)=\emptyset$. By Claim 2, $Y_{6} \cap\left(Y_{1} \cup Y_{2} \cup Y_{3}\right)=\emptyset$. If $Y_{1} \cap Y_{2} \neq \emptyset$, then $Y_{1} \cap Y_{3}=\emptyset$ by (1). So we may assume that $Y_{1} \cap Y_{2}=\emptyset$. By (1), $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{1,2,5,6\}$ and $j \neq i$. By the argument as above, $\left|Z_{i}\right| \geq 5$ for $i=1,2,5,6$. By Claim 3, $\alpha\left(Z_{i}\right) \geq 2$. By (1), Z_{1}, Z_{2}, Z_{5}, and Z_{6} have Property B, a contradiction. Hence $U_{i} \cap U_{j}=\emptyset$ for $1 \leq i<j \leq 5$. For each $1 \leq i \leq 5$, let u_{i} be an arbitrary vertex in U_{i}. Let $T=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}, U^{\prime}=U-T$ and $N_{U^{\prime}}\left(u_{i}\right)=V_{i}$ for $1 \leq i \leq 5$. By (1), $\Delta(G[T]) \leq 1$, thus $\left|V_{i}\right| \geq 5$ and so $\alpha\left(V_{i}\right) \geq 2$ for $1 \leq i \leq 5$. Thus V_{1}, \ldots, V_{5} have Property B by (1), a contradiction.

Claim 5. G contains no $K_{1}+P_{5}$.
Proof. Suppose, to the contrary, that G contains $K_{1}+P_{5}$. By Claim 1, $U_{0} \cap\left(U_{1} \cup U_{5}\right)=\emptyset$. By Claim 2, $U_{1} \cap U_{5}=\emptyset$.
If $U_{4} \cap U_{5} \neq \emptyset$. By (1), $Y_{1} \cap Y_{i}=\emptyset$ for $i \neq 1, Y_{2} \cap Y_{i}=\emptyset$ for $i \neq 0,2,4, Y_{3} \cap Y_{i}=\emptyset$ for $i \neq 0,3, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 6$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{1,2,3,6\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 4$ for $i=1,2,3,6$. By Claim $4, \alpha\left(Z_{i}\right) \geq 2$ for $i=1,2,3,6$. By (1), Z_{1}, Z_{2}, Z_{3}, and Z_{6} have Property B, a contradiction. Hence $U_{4} \cap U_{5}=\emptyset$. By symmetry, $U_{1} \cap U_{2}=\emptyset$.

If $U_{2} \cap U_{5} \neq \emptyset$. By (1), $Y_{1} \cap Y_{i}=\emptyset$ for $i \neq 1, Y_{3} \cap Y_{i}=\emptyset$ for $i \neq 2,3, Y_{4} \cap Y_{i}=\emptyset$ for $i \neq 0,2,4, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 6$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{1,3,4,6\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 4$ for $i=1,3,4,6$. By Claim $4, \alpha\left(Z_{i}\right) \geq 2$ for $i=1,3,4,6$. By (1), Z_{1}, Z_{3}, Z_{4}, and Z_{6} have Property B, a contradiction. Hence $U_{2} \cap U_{5}=\emptyset$. By symmetry, $U_{1} \cap U_{4}=\emptyset$.

If $U_{3} \cap U_{2} \neq \emptyset$. By (1), $Y_{1} \cap Y_{i}=\emptyset$ for $i \neq 1,3, Y_{4} \cap Y_{i}=\emptyset$ for $i \neq 0,2,4, Y_{5} \cap Y_{i}=\emptyset$ for $i \neq 2,5$, $Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 0,6$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{1,4,5,6\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 4$ for $i=1,4,5,6$. By Claim 4, $\alpha\left(Z_{i}\right) \geq 2$ for $i=1,4,5,6$. By (1), Z_{1}, Z_{4}, Z_{5}, and Z_{6} have Property B, a contradiction. So $U_{3} \cap U_{2}=\emptyset$. By symmetry, $U_{3} \cap U_{4}=\emptyset$.

If $U_{3} \cap U_{5} \neq \emptyset$. By (1), $Y_{i} \cap Y_{j}=\emptyset$ for $i=1,6$ and $j \neq i, Y_{2} \cap Y_{i}=\emptyset$ for $i \neq 0,2, Y_{4} \cap Y_{i}=\emptyset$ for $i \neq 3,4$ and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{1,2,4,6\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 5$ for $i=1,2,4,6$. By Claim 4, $\alpha\left(Z_{i}\right) \geq 2$ for $i=1,2,4,6$. By (1), Z_{1}, Z_{2}, Z_{4}, and Z_{6} have Property B, a contradiction. So $U_{3} \cap U_{5}=\emptyset$. By symmetry, $U_{1} \cap U_{3}=\emptyset$.

By (1), $E\left(U_{i}, U_{j}\right)=\emptyset$ for $i, j \in\{1,3,4,5\}$ and $i \neq j$. For each $i=1,3,4,5$, let u_{i} be an arbitrary vertex in U_{i} and let $V_{i}=N_{U}\left(u_{i}\right)$. By the argument above, $\left|V_{i}\right| \geq 4$ for $i=1,3,4,5$. By Claim $4, \alpha\left(V_{i}\right) \geq 2$ for $i=1,3,4,5$. By (1), V_{1}, V_{3}, V_{4}, and V_{5} have Property B, a contradiction.

Claim 6. G contains no W_{5}^{-}.
Proof. Suppose, to the contrary, that G contains a W_{5}^{-}.
If $U_{0} \cap U_{1} \neq \emptyset$. By (1), $Y_{2} \cap Y_{i}=\emptyset$ for $i \neq 2, Y_{3} \cap Y_{i}=\emptyset$ for $i \neq 0,1,3, Y_{4} \cap Y_{i}=\emptyset$ for $i \neq 0,1,4, Y_{5} \cap Y_{i}=\emptyset$ for $i \neq 5$ and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{2,3,4,5\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 4$ for $i=2,3,4,5$. By Claim 4, $\alpha\left(Z_{i}\right) \geq 2$ for $i=2,3,4,5$. By (1), Z_{2}, Z_{3}, Z_{4}, and Z_{5} have Property B, a contradiction. Hence $U_{0} \cap U_{1}=\emptyset$.

If $U_{0} \cap U_{3} \neq \emptyset$. By (1), $Y_{1} \cap Y_{i}=\emptyset$ for $i \neq 0,1,3, Y_{2} \cap Y_{i}=\emptyset$ for $i \neq 2,5, Y_{4} \cap Y_{i}=\emptyset$ for $i \neq 4, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 6$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{1,2,4,6\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 4$ for $i=1,2,4,6$. By Claim 4, $\alpha\left(Z_{i}\right) \geq 2$ for $i=1,2,4,6$. By (1), Z_{1}, Z_{2}, Z_{4}, and Z_{6} have Property B, a contradiction. Hence $U_{0} \cap U_{3}=\emptyset$. By symmetry, $U_{0} \cap U_{4}=\emptyset$.

If $U_{1} \cap U_{3} \neq \emptyset$. By $U_{0} \cap U_{1}=\emptyset, U_{0} \cap U_{3} \neq \emptyset$ and (1), Y_{0}, Y_{2}, Y_{4}, and Y_{5} have Property A, then $\left|Z_{i}\right| \geq 6$ and $\alpha\left(Z_{i}\right) \geq 2$ for $i=0,2,4,5$. By (1), Z_{0}, Z_{2}, Z_{4}, and Z_{5} have Property B, a contradiction. Hence $U_{1} \cap U_{3}=\emptyset$. By symmetry, $U_{1} \cap U_{4}=\emptyset$.

If $U_{3} \cap U_{4} \neq \emptyset$. By (1), $Y_{i} \cap Y_{j}=\emptyset$ for $i=0,1,6$ and $j \neq i$, and $Y_{2} \cap Y_{i}=\emptyset$ for $i \neq 2,5$. For the same reason, $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{0,1,2,6\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 5$ for $i=0,1,2,6$. By Claim 4, $\alpha\left(Z_{i}\right) \geq 2$ for $i=0,1,2,6$. By (1), Z_{0}, Z_{1}, Z_{2}, and Z_{6} have Property B, a contradiction. Thus $U_{3} \cap U_{4}=\emptyset$.

By (1), $E\left(U_{i}, U_{j}\right)=\emptyset$ for $i, j \in\{0,1,3,4\}$ and $i \neq j$. For each $i=0,1,3,4$, let u_{i} be any vertex in U_{i} and let $V_{i}=N_{U}\left(u_{i}\right)$. Then $\left|V_{i}\right| \geq 4$. By Claim 4, $\alpha\left(V_{i}\right) \geq 2$ for $i=0,1,3,4$. By (1), V_{0}, V_{1}, V_{3}, and V_{4} have Property B, a contradiction.
Claim 7. G contains no K_{4}.
Proof. Suppose, to the contrary, that G contains a K_{4}. By (3), $\left|U_{i}\right| \geq 4$. If there are U_{i} and U_{j} with $i \neq j$ such that $U_{i} \cap U_{j} \neq \emptyset$, we assume, without loss of generality, that $U_{3} \cap U_{4} \neq \emptyset$. By (3), $\left|Y_{i}\right| \geq 3$. By Claim 5, $\left(Y_{3} \cup Y_{4}\right) \cap\left(Y_{1} \cup Y_{2} \cup Y_{5}\right)=\emptyset$. By Claim 6, $Y_{5} \cap\left(Y_{1} \cup Y_{2}\right)=\emptyset$. Let $z_{i} \in Y_{i}$ for $i=1,2,3$, 5. Since $\left|Y_{i}\right| \geq 3$, we may choose z_{1} such that $z_{1} \neq z_{2}$. Set $A=\left\{z_{1}, z_{2}, z_{3}, z_{5}\right\}, Y^{\prime}=Y-A$ and $Z_{i}^{\prime}=N_{Y^{\prime}}\left(z_{i}\right)$ for $i=1,2,3,5$. By (1), we have $\Delta(G[A]) \leq 1$. Then $\left|Z_{i}^{\prime}\right| \geq 4$ for $i=1,2,3,5$. By Claim 5, $\alpha\left(Z_{i}^{\prime}\right) \geq 2$ for $i=1,2,3,5$. By (1), $Z_{1}^{\prime}, Z_{2}^{\prime}, Z_{3}^{\prime}$, and Z_{5}^{\prime} have Property B , a contradiction. Hence $U_{i} \cap U_{j}=\emptyset$ for $1 \leq i<j \leq 4$.

For each $i=1,2,3,4$, let u_{i} be any vertex in U_{i}. Set $T=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, U^{\prime}=U-T$ and $N_{U^{\prime}}\left(u_{i}\right)=V_{i}$ for $1 \leq i \leq 4$. If $G[T]$ contains $2 K_{2}$ as a subgraph, then G contains a C_{8}. Hence we assume that $G[T]$ contains no $2 K_{2}$. If $\Delta(G[T])=3$, then $G[T]=K_{1,3}$. By symmetry, we assume that $d_{G[T]}\left(u_{1}\right)=3$. Let $V_{1}^{\prime}=V_{1} \cup\left\{v_{1}\right\}$ and $V_{i}^{\prime}=V_{i}$ for $i=2,3,4$. Then $\left|V_{i}^{\prime}\right| \geq 4$ for $i=1,2,3,4$. By Claim 4, $\alpha\left(V_{i}^{\prime}\right) \geq 2$ for $i=1,2,3,4$. By (1), $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$, and V_{4}^{\prime} have Property B, a contradiction. If $\Delta(G[T])=2$, then $G[T]=P_{3} \cup\left\{v_{4}\right\}$ or $G[T]=K_{3} \cup\left\{v_{4}\right\}$. In this case $\left|V_{i}\right| \geq 4$ and $\alpha\left(V_{i}\right) \geq 2$ for $1 \leq i \leq 4$. By (1), V_{1}, V_{2}, V_{3}, and V_{4} have Property B, a contradiction.

Now we have $|E(G[T])| \leq 1$. So $\left|V_{i}\right| \geq 5$ for $1 \leq i \leq 4$. By Claim $5, \alpha\left(V_{i}\right) \geq 2$ for $i=1,2,3,4$. By (1), $E\left(V_{i}, V_{j}\right)=\emptyset$ for $1 \leq i<j \leq 4$. If $V_{i} \cap V_{j}=\emptyset$ for $1 \leq i<j \leq 4$, then $V_{1}, V_{2}, V_{3}, V_{4}$ have Property B, a contradiction. So there exist V_{i} and V_{j}, say V_{1} and V_{2}, such that $V_{1} \cap V_{2} \neq \emptyset$. If $V_{1} \cap V_{2} \cap V_{3} \neq \emptyset$, let $Z=V_{1} \cap V_{2} \cap V_{3}$ and $V_{i}^{\prime}=V_{i}-Z$ for $i=1,2,3$, 4. By (1) we have $|Z|=1$. So $\left|V_{i}^{\prime}\right| \geq 4$ for $1 \leq i \leq 4$. By Claim 5, $\alpha\left(V_{i}^{\prime}\right) \geq 2$ for $1 \leq i \leq 4$. By (1), $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$, and V_{4}^{\prime} have Property B, a contradiction. So $V_{1} \cap V_{2} \cap V_{3}=\emptyset$. By symmetry, $V_{1} \cap V_{2} \cap V_{4}=\emptyset$. Set $V_{i}^{\prime}=V_{i} \backslash\left(V_{1} \cap V_{2}\right)$ for $i=1$, 2. By (1), $V_{1} \cap V_{2}$ is an independent set, $E\left(V_{i}^{\prime}, V_{1} \cap V_{2}\right)=\emptyset$ for $i=1,2,\left(V_{1} \cup V_{2}\right) \cap\left(V_{3} \cup V_{4}\right)=\emptyset$, and $E\left(V_{i}, V_{j}\right)=\emptyset$ for $1 \leq i<j \leq 4$. So we can get $\alpha\left(V_{1} \cup V_{2}\right)=\alpha\left(V_{1}^{\prime}\right)+\alpha\left(V_{2}^{\prime}\right)+\left|V_{1} \cap V_{2}\right| \geq 4$. By symmetry, $\alpha\left(V_{3} \cup V_{4}\right) \geq 4$, which implies that $\alpha\left(V_{1} \cup V_{2} \cup V_{3} \cup V_{4}\right) \geq 8$, a contradiction.

Let H_{1} and H_{2} be the graphs in Fig. 1. Let $I=\{1, \ldots, 6\}, S=\left\{v_{i} \mid i \in I\right\}$. Set $U=V(G)-S$ and $U_{i}=N_{U}\left(v_{i}\right)$ for $1 \in I$. It is clear that $\left|U_{i}\right| \geq 2$, for $i \in I$. If $U_{i} \cap U_{j} \neq \emptyset$ for some $i, j \in I$, let $v_{7} \in U_{i} \cap U_{j}$. Set $I^{\prime}=I \cup\{7\}$,

Fig. 1.
$X=S \cup\left\{v_{7}\right\}, Y=V(G)-X$ and $Y_{i}=N_{Y}\left(v_{i}\right)$ for $i \in I^{\prime}$. By (3), $Y_{i} \neq \emptyset$ for $i \in I^{\prime}$. For each $i \in I^{\prime}$, let z_{i} be any vertex in Y_{i} and let $Z_{i}=N_{Y}\left(z_{i}\right)$.

Claim 8. G contains no H_{1}.
Proof. Suppose, to the contrary, that G contains H_{1}.
If $U_{1} \cap U_{2} \neq \emptyset$. By (1), $Y_{4} \cap Y_{i}=\emptyset$ for $i \neq 1,4, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 1,2,6, Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 7$ and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{4,6,7\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 5$ for $i=4,7$ and $\left|Z_{6}\right| \geq 4$. By Claims 3 and $7, \alpha\left(Z_{i}\right) \geq 3$ for $i=4,7$ and $\alpha\left(Z_{6}\right) \geq 2$. By (1), Z_{4}, Z_{6}, and Z_{7} have Property B, a contradiction. Thus $U_{1} \cap U_{2}=\emptyset$. By symmetry, $U_{1} \cap U_{4}=U_{3} \cap U_{2}=U_{3} \cap U_{4}=\emptyset$.

If $U_{2} \cap U_{5} \neq \emptyset$. By (1), $Y_{1} \cap Y_{i}=\emptyset$ for $i \neq 1,5, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 6, Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 7$ and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{1,6,7\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 5$ for $i=1,6,7$. By Claims 3 and $7, \alpha\left(Z_{i}\right) \geq 3$ for $i=1,6,7$. By (1), Z_{1}, Z_{6}, and Z_{7} have Property B, a contradiction. Thus $U_{2} \cap U_{5}=\emptyset$. By symmetry, $U_{2} \cap U_{6}=U_{4} \cap U_{5}=U_{4} \cap U_{6}=\emptyset$.

If $U_{2} \cap U_{4} \neq \emptyset$. By (1) and $U_{6} \cap\left(U_{2} \cup U_{4}\right)=\emptyset$, we have $Y_{1} \cap Y_{i}=\emptyset$ for $i \neq 1,3,6, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 1,6$, $Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 7$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{1,6,7\}$ and $i \neq j$. By Claim 7, $v_{1} v_{7} \notin E(G)$. By (3), $Y_{1} \geq 2$, so we can choose z_{1}, such that $z_{1} \neq z_{6}$. Then by the argument above, $\left|Z_{i}\right| \geq 5$ for $i=6,7$ and $\left|Z_{1}\right| \geq 4$. By Claims 3 and $7, \alpha\left(Z_{i}\right) \geq 3$ for $i=6,7$ and $\alpha\left(Z_{1}\right) \geq 2$. By (1), Z_{1}, Z_{6}, and Z_{7} have Property B , a contradiction. Thus $U_{2} \cap U_{4}=\emptyset$.

If $U_{1} \cap U_{5} \neq \emptyset$. By (1), $Y_{2} \cap Y_{i}=\emptyset$ for $i \neq 2,5, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 1,6$, and $Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 3,7$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{2,6,7\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 5$ for $i=2,6,7$. By Claims 3 and $7, \alpha\left(Z_{i}\right) \geq 3$ for $i=2,6,7$. By (1), Z_{2}, Z_{6}, and Z_{7} have Property B, a contradiction. Thus $U_{1} \cap U_{5}=\emptyset$. By symmetry, $U_{3} \cap U_{6}=\emptyset$.

If $U_{1} \cap U_{3} \neq \emptyset$. By $U_{2} \cap U_{i}=\emptyset$ for $i=1,3,4,5,6$, we have $Y_{2} \cap Y_{i}=\emptyset$ for $i=1,3,4,5,6$. By $U_{6} \cap\left(U_{2} \cup U_{3} \cup U_{4}\right)=\emptyset$, we have $Y_{6} \cap\left(Y_{2} \cup Y_{3} \cup Y_{4}\right)=\emptyset$. By (1), $Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 1,3,7$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{2,6,7\}$ and $i \neq j$. Then $\left|Z_{2}\right| \geq 6,\left|Z_{6}\right| \geq 4$ and $\left|Z_{7}\right| \geq 4$. By Claims 3 and $7, \alpha\left(Z_{2}\right) \geq 3$ and $\alpha\left(Z_{i}\right) \geq 2$ for $i=6$, 7. By (1), $\left\{v_{4}\right\}, Z_{2}, Z_{6}$, and Z_{7} have Property B , a contradiction. Thus $U_{1} \cap U_{3}=\emptyset$.

Thus $U_{1} \cap U_{i}=\emptyset$ for $i \neq 1,6, U_{2} \cap U_{i}=\emptyset$ for $i \neq 2$, and $U_{6} \cap U_{i}=\emptyset$ for $i \neq 1,5,6$. Take $u_{i} \in U_{i}$ for $i=1,2,6$. Since $\left|U_{i}\right| \geq 2$, we can choose u_{1}, such that $u_{1} \neq u_{6}$. Let $T=\left\{u_{1}, u_{2}, u_{6}\right\}, U^{\prime}=U-T, V_{i}=N_{U^{\prime}}\left(u_{i}\right)$. By (1), $\Delta(G[A]) \leq 1$. Then $\left|V_{1}\right| \geq 4,\left|V_{2}\right| \geq 5$ and $\left|V_{6}\right| \geq 3$. By Claims 3 and $7, \alpha\left(V_{1}\right) \geq 2, \alpha\left(V_{2}\right) \geq 3$ and $\alpha\left(V_{6}\right) \geq 2$. By (1), $\left\{v_{5}\right\}, V_{1}, V_{2}$, and V_{6} have Property B , a contradiction.

Claim 9. G contains no H_{2}.
Proof. Suppose, to the contrary, that G contains H_{2}.
If $U_{1} \cap U_{2} \neq \emptyset$. By (1), $Y_{5} \cap Y_{i}=\emptyset$ for $i \neq 2,4,5, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 3,6, Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 7$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $5 \leq i<j \leq 7$. Then $\left|Z_{i}\right| \geq 5$ for $i=6,7$ and $\left|Z_{5}\right| \geq 4$. By Claims 3 and $7, \alpha\left(Z_{i}\right) \geq 3$ for $i=6,7$ and $\alpha\left(Z_{5}\right) \geq 2$. By (1), Z_{5}, Z_{6}, and Z_{7} have Property B, a contradiction. Thus $U_{1} \cap U_{2}=\emptyset$.

If $U_{1} \cap U_{3} \neq \emptyset$. By (1), $Y_{2} \cap Y_{i}=\emptyset$ for $i \neq 2,3, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 1,3,6, Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 7$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{2,6,7\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 5$ for $i=2,7$ and $\left|Z_{6}\right| \geq 4$. By Claims 3 and $7, \alpha\left(Z_{i}\right) \geq 3$ for $i=2,7$ and $\alpha\left(Z_{6}\right) \geq 2$. By (1), Z_{2}, Z_{6}, and Z_{7} have Property B, a contradiction. Thus $U_{1} \cap U_{3}=\emptyset$.

If $U_{1} \cap U_{4} \neq \emptyset$. By (1), $Y_{5} \cap Y_{i}=\emptyset$ for $i \neq 1,2,4,5, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 3,6, Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 7$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $5 \leq i<j \leq 7$. Then $\left|Z_{i}\right| \geq 5$ for $i=6,7$ and $\left|Z_{5}\right| \geq 3$. By Claims 3 and $7, \alpha\left(Z_{i}\right) \geq 3$ for $i=6,7$ and $\alpha\left(Z_{5}\right) \geq 2$. By (1), Z_{5}, Z_{6}, and Z_{7} have Property B, a contradiction. Thus $U_{1} \cap U_{2}=\emptyset$.

If $U_{1} \cap U_{5} \neq \emptyset$. By (1), $Y_{2} \cap Y_{i}=\emptyset$ for $i \neq 2,4,5, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 6, Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 7$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{2,6,7\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 6$ for $i=6,7$ and $\left|Z_{2}\right| \geq 3$. By Claims 3 and $7, \alpha\left(Z_{i}\right) \geq 3$ for $i=6,7$ and $\alpha\left(Z_{2}\right) \geq 2$. By (1), Z_{2}, Z_{6}, and Z_{7} have Property B , a contradiction. Thus $U_{1} \cap U_{5}=\emptyset$.

If $U_{2} \cap U_{3} \neq \emptyset$. By (1), $Y_{1} \cap Y_{i}=\emptyset$ for $i \neq 1,3, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 2,3,6, Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 4$, 7, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{1,6,7\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 5$ for $i=1,7$ and $\left|Z_{6}\right| \geq 4$. By Claims 3 and $7, \alpha\left(Z_{i}\right) \geq 3$ for $i=1,7$ and $\alpha\left(Z_{6}\right) \geq 2$. By (1), Z_{1}, Z_{6}, and Z_{7} have Property B, a contradiction. Thus $U_{2} \cap U_{3}=\emptyset$.

If $U_{3} \cap U_{5} \neq \emptyset$. By (1), $Y_{2} \cap Y_{i}=\emptyset$ for $i \neq 2,4,5, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 6, Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 7$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{2,6,7\}$ and $i \neq j$. Then $\left|Z_{i}\right| \geq 5$ for $i=2,6,7$. By Claims 3 and $7, \alpha\left(Z_{i}\right) \geq 3$ for $i=2,6,7$. By (1), Z_{2}, Z_{6}, and Z_{7} have Property B, a contradiction. Thus $U_{3} \cap U_{5}=\emptyset$.

If $U_{3} \cap U_{4} \neq \emptyset$. By $U_{1} \cap U_{i}=\emptyset$ for $i=2,3,4$, we have $Y_{1} \cap Y_{i}=\emptyset$ for $i=2,3,4$. By (1), $Y_{1} \cap Y_{i}=\emptyset$ for $i=5,6,7, Y_{6} \cap Y_{i}=\emptyset$ for $i \neq 3,4,5, Y_{7} \cap Y_{i}=\emptyset$ for $i \neq 3,4,7$, and $E\left(Y_{i}, Y_{j}\right)=\emptyset$ for $i, j \in\{1,6,7\}$ and $i \neq j$. Then $\left|Z_{1}\right| \geq 6,\left|Z_{6}\right| \geq 4$ and $\left|Z_{7}\right| \geq 4$. By Claims 3 and $7, \alpha\left(Z_{1}\right) \geq 3$ and $\alpha\left(Z_{i}\right) \geq 2$ for $i=6,7$. By (1), $\left\{v_{2}\right\}, Z_{1}, Z_{6}$, and Z_{7} have Property B, a contradiction. Thus $U_{3} \cap U_{4}=\emptyset$.

By the argument as above, $U_{1} \cap U_{i}=\emptyset$ for $i \neq 1,6, U_{3} \cap U_{i}=\emptyset$ for $i \neq 3,6$, and $U_{5} \cap U_{i}=\emptyset$ for $i \neq 2,4,5,6$. For each $i=1,3,5$, let u_{i} be any vertex in U_{i} and let $V_{i}=N_{U}\left(u_{i}\right)$. Then $\left|V_{i}\right| \geq 5$ for $i=1,3$, and $\left|V_{5}\right| \geq 3$. By Claims 3 and $7, \alpha\left(V_{i}\right) \geq 3$ for $i=1,3$, and $\alpha\left(V_{5}\right) \geq 2$. By (1), V_{1}, V_{3}, and V_{5} have Property B, a contradiction.

Claim 10. G contains no $K_{1}+P_{4}$.
Proof. Suppose, to the contrary, that G contains $K_{1}+P_{4}$. By Claim 5, $U_{0} \cap\left(U_{1} \cup U_{4}\right)=\emptyset$. By Claim 6, $U_{1} \cap U_{4}=\emptyset$. By Claim $9, U_{1} \cap U_{2}=U_{1} \cap U_{3}=U_{2} \cap U_{4}=U_{3} \cap U_{4}=\emptyset$. For each $i=0,1,4$, let u_{i} be any vertex in U_{i}. Set $T=\left\{u_{0}, u_{1}, u_{4}\right\}, U^{\prime}=U-T$ and $N_{U^{\prime}}\left(u_{i}\right)=V_{i}$ for $i=0,1,4$. By (1), $\Delta(G[T]) \leq 1$. By the argument above, $\left|V_{i}\right| \geq 5$ for $i=1,4$ and $\left|V_{0}\right| \geq 3$. By Claims 3 and $7, \alpha\left(V_{i}\right) \geq 3$ for $i=1,4$, and $\alpha\left(V_{0}\right) \geq 2$. By (1), V_{0}, V_{1}, and V_{4} have Property B, a contradiction.

Claim 11. G contains no B_{3}.
Proof. Assume, to the contrary, that G contains a B_{3}. By Claim 9, $U_{3} \cap U_{4}=U_{3} \cap U_{5}=U_{4} \cap U_{5}=\emptyset$. By Claim 10, $\left(U_{1} \cup U_{2}\right) \cap\left(U_{3} \cup U_{4} \cup U_{5}\right)=\emptyset$. Take $u_{i} \in Y_{i}$ for $i=3,4,5$. Set $T=\left\{u_{3}, u_{4}, u_{5}\right\}, U^{\prime}=U-T$ and $N_{U^{\prime}}\left(u_{i}\right)=V_{i}$ for $i=3,4,5$. By (1), $\Delta(G[T]) \leq 1$. Thus $\left|V_{i}\right| \geq 5$ for $i=3,4,5$. By Claims 3 and $7, \alpha\left(V_{i}\right) \geq 3$ for $i=3,4,5$. By (1), V_{3}, V_{4}, and V_{5} have Property B, a contradiction.

Claim 12. G contains no W_{4}^{-}.
Proof. Suppose, to the contrary, that G contains a W_{4}^{-}. It is clear that $\left|U_{i}\right| \geq 3$. By Claim $8, U_{1} \cap U_{2}=U_{1} \cap U_{4}=\emptyset$. By Claim $9, U_{1} \cap U_{0}=U_{1} \cap U_{3}=\emptyset$. By Claim 10, $\left(U_{0} \cup U_{3}\right) \cap\left(U_{2} \cup U_{4}\right)=\emptyset$. By Claim 11, $U_{0} \cap U_{3}=\emptyset$. For each $i=1,2,3$, let u_{i} be any vertex in Y_{i}. Set $T=\left\{u_{1}, u_{2}, u_{3}\right\}, U^{\prime}=U-T$ and $N_{U^{\prime}}\left(u_{i}\right)=V_{i}$ for $i=1,2,3$. By (1), $\Delta(G[T]) \leq 1$. Then $\left|V_{i}\right| \geq 5$ for $i=1,3$ and $\left|V_{2}\right| \geq 4$. By Claims 3 and $7, \alpha\left(V_{i}\right) \geq 3$ for $i=1,3$, and $\alpha\left(V_{4}\right) \geq 2$. By (1), V_{1}, V_{2}, and V_{3} have Property B, a contradiction.

Claim 13. G contains no B_{2}.
Proof. Suppose, to the contrary, that G contains a B_{2}. By Claim $10,\left(U_{1} \cup U_{2}\right) \cap\left(U_{3} \cup U_{4}\right)=\emptyset$. By Claim 11, $U_{1} \cap U_{2}=\emptyset$. By Claim 12, $U_{3} \cap U_{4}=\emptyset$. By Claim 8, $E\left(U_{3}, U_{4}\right)=\emptyset$. By Claim 9, $E\left(U_{1} \cup U_{2}, U_{3} \cup U_{4}\right)=\emptyset$. For each $i=2,3,4$, let u_{i} be any vertex in U_{i} and let $V_{i}=N_{U}\left(u_{i}\right)$. Then $\left|V_{i}\right| \geq 6$ for $2 \leq i \leq 4$. By Claims 3 and 7, $\alpha\left(V_{i}\right) \geq 3$ for $2 \leq i \leq 4$. By (1), $E\left(V_{i}, V_{j}\right)=\emptyset$ for $2 \leq i<j \leq 4$.

If $V_{2} \cap V_{3} \cap V_{4} \neq \emptyset$, then $\left|V_{2} \cap V_{3} \cap V_{4}\right|=1$ by (1). Let $V_{i}^{\prime}=V_{i}-\left(V_{2} \cap V_{3} \cap V_{4}\right)$ for $i=2,3,4$, then $\left|V_{i}^{\prime}\right| \geq 5$ for $i=2,3,4$. By Claims 3 and $7, \alpha\left(V_{i}^{\prime}\right) \geq 3$ for $i=2,3,4$. By (1), $V_{2}^{\prime}, V_{3}^{\prime}$, and V_{4}^{\prime} have Property B, a contradiction. So $V_{2} \cap V_{3} \cap V_{4}=\emptyset$. If $V_{2} \cap V_{3} \neq \emptyset$, let $A=V_{2} \cap V_{3}$, and $V_{i}^{\prime}=V_{i}-A$ for $i=2,3$. By (1), A is an independent set, and $V_{2}^{\prime}, V_{3}^{\prime}, V_{4}$, and A have Property B, a contradiction. So $V_{2} \cap V_{3}=\emptyset$. By symmetry, $V_{2} \cap V_{4}=\emptyset$. If $V_{3} \cap V_{4} \neq \emptyset$, let $A=V_{3} \cap V_{4}$, and $V_{i}^{\prime}=V_{i}-A$ for $i=3,4$. By (1), A is an independent set, and $V_{2}, V_{3}^{\prime}, V_{4}^{\prime}$ and A have Property B, a contradiction. Now $V_{i} \cap V_{j}=\emptyset$ for $2 \leq i \leq 4$, which implies that $\alpha\left(\cup_{i=1}^{3} V_{i}\right) \geq 9$, a contradiction.

We now begin to prove Theorem 1.
If there is some vertex v, such that $d(v) \leq 15$, then $G^{\prime}=G-N[v]$ is a graph of order at least 34 . By Lemma 3 and Claim 13, $\alpha\left(G^{\prime}\right) \geq 7$, which implies that $\alpha(G) \geq 8$, a contradiction. Hence $\delta(G) \geq 16$. Let $v_{0} \in V(G)$. Since $d\left(v_{0}\right) \geq 16, G\left[N\left(v_{0}\right)\right]$ contains no P_{3} by Claim 13. Thus, $G\left[N\left(v_{0}\right)\right]$ contains only independent edges and independent vertices, which implies that $\alpha\left(G\left[N\left(v_{0}\right)\right]\right) \geq 8$, a contradiction. Thus, $R\left(C_{8}, K_{8}\right) \leq 50$. On the other hand, since $7 K_{7}$ contains no C_{8} and its complement contains no K_{8}, we have $R\left(C_{8}, K_{8}\right) \geq 50$ and hence $R\left(C_{8}, K_{8}\right)=50$.

References

[1] B. Bollobás, C.J. Jayawardene, J.S. Yang, Y.R. Huang, C.C. Rousseau, K.M. Zhang, On a conjecture involving cycle-complete graph Ramsey numbers, Australasian Journal of Combinatorics 22 (2000) 63-71.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[3] Y.J. Chen, T.C.E. Cheng, Y.Q. Zhang, The Ramsey numbers $R\left(C_{m}, K_{7}\right)$ and $R\left(C_{7}, K_{8}\right)$, European Journal of Combinatorics (in press).
[4] T.C. Edwin Cheng, Y.J. Chen, Y.Q. Zhang, C.T. Ng, The Ramsey numbers for a cycle of length six or seven versus a clique of order seven, Discrete Mathematics 307 (2007) 1047-1053.
[5] P. Erdös, R.J. Faudree, C.C. Rousseau, R.H. Schelp, On cycle-complete graph Ramsey numbers, Journal of Graph Theory 2 (1978) 53-64.
[6] R.J. Faudree, R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Mathematics 8 (1974) 313-329.
[7] S.P. Radziszowski, Small Ramsey numbers, Electronic Journal of Combinatorics 1 (2004) DS1.10.
[8] V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdös, I \& II, Journal of Combinatorial Theory, Series B 15 (1973) 94-120.
[9] I. Schiermeyer, All cycle-complete graph Ramsey numbers $r\left(C_{m}, K_{6}\right)$, Journal of Graph Theory 44 (2003) 251-260.
[10] J.S. Yang, Y.R. Huang, K.M. Zhang, The value of the Ramsey number $R\left(C_{n}, K_{4}\right)$ is $3(n-1)+1$, Australasian Journal of Combinatorics 20 (1999) 205-206.

[^0]: ${ }^{*}$ This project was supported by NSFC under grant number 10671090.

 * Corresponding author.

 E-mail address: yunqingzh@nju.edu.cn (Y. Zhang).

