

European Journal of Combinatorics

European Journal of Combinatorics I (IIII) III-III

www.elsevier.com/locate/ejc

The Ramsey numbers for stars of even order versus a wheel of order nine[☆]

Yunqing Zhang, Yaojun Chen, Kemin Zhang

Department of Mathematics, Nanjing University, Nanjing 210093, PR China

Received 13 April 2007; accepted 26 July 2007

Abstract

For two given graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest positive integer *n* such that for any graph *G* of order *n*, either *G* contains G_1 or the complement of *G* contains G_2 . Let S_n denote a star of order *n* and W_m a wheel of order m + 1. In this paper, we show that $R(S_n, W_8) = 2n + 2$ for $n \ge 6$ and $n \equiv 0 \pmod{2}$.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

All graphs considered in this paper are finite simple graph without loops. For two given graphs G_1 and G_2 , the *Ramsey number* $R(G_1, G_2)$ is the smallest integer n such that for any graph G of order n, either G contains G_1 or \overline{G} contains G_2 , where \overline{G} is the complement of G. The *neighborhood* N(v) of a vertex v is the set of vertices adjacent to v in G and $N[v] = N(v) \cup \{v\}$. The *minimum degree, maximum degree, independence number* and *connectivity* of G are denoted by $\delta(G)$, $\Delta(G)$, $\alpha(G)$ and $\kappa(G)$, respectively. The edge number of a graph G is e(G). Let $V_1, V_2 \subseteq V(G)$. We use $E(V_1, V_2)$ to denote the set of the edges between V_1 and V_2 , and $e(V_1, V_2) = |E(V_1, V_2)|$. For $U \subseteq V(G)$, G[U] is the subgraph induced by U in G. A cycle and a path of order n are denoted by C_n and P_n , respectively. We use mG to denote the union of m vertex disjoint G. A wheel of order n + 1 is $W_n = K_1 + C_n$. A book of order n + 2 is $B_n = K_2 + \overline{K_n}$. Let c(G) be the *circumference* of G, that is, the length of a longest cycle, and g(G), the girth, that is, the length of a shortest cycle. A graph on n vertices is *pancyclic* if it contains cycles of every length $l, 3 \leq l \leq n$. A graph is weakly pancyclic if it contains cycles of every length from the girth to the circumference. Let C be a cycle. For a given orientation

[☆] This project supported by NSFC under grant number 10671090. *E-mail address*: yaojunc@nju.edu.cn (Y. Chen).

^{0195-6698/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2007.07.005

Please cite this article in press as: Y. Zhang, Y. Chen, K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.07.005

of *C*, we use u^+ to denote the successor of *u* and u^- to denote its predecessor. If $A \subset V(C)$ then $A^+ = \{a^+ \mid a \in A\}$ and $A^- = \{a^- \mid a \in A\}$. Let $u, v \in V(G)$ and s, t with $s \leq t$ be integers. If *G* contains a (u, v)-path of order *l* for each *l* with $s \leq l \leq t$, then we say *u* and *v* are (s, t)-connected in *G*. A *linear forest* is a forest with maximum degree not more than two. For notations which are not defined here, we follow [3].

For the Ramsey number of a star versus a wheel, Chen et al. determined all values of $R(S_n, W_m)$ for odd *m* and $n \ge m - 1 \ge 2$, and obtained the following.

Theorem 1 (*Chen et al.* [6]). $R(S_n, W_m) = 3n - 2$ for *m* odd and $n \ge m - 1 \ge 2$.

Obviously, Theorem 1 shows that the Ramsey number $R(S_n, W_m)$ for m odd and $n \ge m-1 \ge 2$ is determined by n. However, it is not the case when m is even. In fact, as pointed in [6], the Ramsey number $R(S_n, W_m)$ for even m and $n \ge m-1 \ge 2$ cannot be determined by n alone and is a function related to both m and n. In the case when m is even, only the values of $R(S_n, W_4)$ and $R(S_n, W_6)$ are known by now, and it seems difficult to calculate the values of $R(S_n, W_m)$.

In [8], Surahmat et al. determined the value for $R(S_n, W_4)$, and got the following.

Theorem 2 (*Surahmat and Baskoro* [8]). $R(S_n, W_4) = 2n - 1$ for $n \ge 3$ and $n \equiv 1 \pmod{2}$ and $R(S_n, W_4) = 2n + 1$ for $n \ge 4$ and $n \equiv 0 \pmod{2}$.

By using induction on *n*, Chen et al. established the following.

Theorem 3 (*Chen et al.* [6]). $R(S_n, W_6) = 2n + 1$ for $n \ge 3$.

In this paper, we consider the value of $R(S_n, W_8)$. Our main result is the following.

Theorem 4. $R(S_n, W_8) = 2n + 2$ for $n \ge 6$ and $n \equiv 0 \pmod{2}$.

2. Some lemmas

In order to prove Theorem 4, we need the following lemmas.

Lemma 1 (Bondy [1]). Let G be a graph of order n. If $\delta(G) \ge n/2$, then either G is pancyclic or n is even and $G = K_{n/2,n/2}$.

Lemma 2 (Brandt et al. [4]). Every non-bipartite graph G with $\delta(G) \ge (n+2)/3$ is weakly pancyclic and has girth 3 or 4.

Lemma 3 (*Dirac* [7]). Let G be a 2-connected graph of order $n \ge 3$ with $\delta(G) = \delta$. Then $c(G) \ge \min\{2\delta, n\}$.

Lemma 4 (*Zhang* [9]). If G is a Hamiltonian graph of order n and there exists a vertex x such that $d(x) + d(y) \ge n$ for each y not adjacent to x, then either G is pancyclic or n is even and $G = K_{n/2,n/2}$.

Given a graph G of order n, repeat the following recursive operation as long as possible: For each pair of nonadjacent vertices a and b, if $d(a) + d(b) \ge n + 1$ then add the edge ab to G. We denote by cl(G) the resulting graph and call it the closure of G.

Lemma 5 (Bondy and Chvátal [2]). A graph G of order $n \ge 3$ is Hamilton-connected if and only if its closure cl(G) is Hamilton-connected.

Lemma 6. If F is a linear forest of order 6, then \overline{F} is (4, 6)-connected.

Y. Zhang et al. / European Journal of Combinatorics I (IIII) III-III

Proof. Let $u, v \in V(F)$. Since $cl(\overline{P_6}) = K_7$, by Lemma 5, \overline{F} has a Hamilton (u, v)-path $P = v_1v_2\cdots v_6$, where $u = v_1$ and $v = v_6$. If \overline{F} contains no (u, v)-path of order 5, then $v_iv_{i+2} \in E(F)$ for $1 \le i \le 4$. Since $\Delta(F) \le 2$, we have $v_1v_4 \in E(\overline{F})$, which implies $v_2v_6 \in E(F)$. In this case, F contains a triangle $v_2v_4v_6$, a contradiction. If \overline{F} contains no (u, v)-path of order 4, then $v_iv_{i+3} \in E(F)$ for $1 \le i \le 3$. If $v_1v_3 \in E(\overline{F})$, then $v_2v_6, v_4v_6 \in E(F)$, which contradicts $\Delta(F) \le 2$. Thus by symmetry we have $v_1v_3, v_4v_6 \in E(F)$, which implies F contains a C_4 , a contradiction.

Lemma 7 (*Chen et al.* [5]). Let G be a connected graph and C a maximal cycle of G. Suppose that $v \in V(G - C)$ and $d_C(v) \ge 2$. Then for any two distinct vertices x, y in $N_C^+(v)$ or $N_C^-(v)$, $xy \notin E(G)$ and $N(x) \cap N(y) \cap V(G - C) = \emptyset$.

Lemma 8. Let $G = K_{4,4}$ and $E_0 \subseteq E(G)$. If $G[E_0]$ is a linear forest, then $G - E_0$ contains a C_8 .

Lemma 9. Let $G = (V_1, V_2)$ be a bipartite graph with $|V_1| \ge 4$ and $4 + k \le |V_2| \le 6 + 2k$, where $k \ge 0$ is an integer. If $d(a) \ge 4 + k$ for each $a \in V_1$, then G contains $a C_8$.

Proof. We need only to consider the case in which $|V_1| = 4$. Let $P = v_1 v_2 \cdots v_l$ be a longest path of *G*. Obviously, $l \leq 9$. If $v_1 \in V_1$, then by the maximality of *P*, we have $N(v_1) \subseteq \{v_i \mid i \equiv 0 \pmod{2}\}$. Since $d(v_1) \geq 4 + k$, we have k = 0, l = 8 and $v_1 v_l \in E(G)$, which implies *G* contains a C_8 . Thus we may assume $v_1 \notin V_1$. By symmetry, $v_l \notin V_1$. In this case, we have $l \equiv 1 \pmod{2}, \{v_i \mid i \equiv 1 \pmod{2}\} \subseteq V_2$ and $\{v_i \mid i \equiv 0 \pmod{2}\} \subseteq V_1$. Since $d(a) \geq 4 + k$ for each $a \in V_1$ and $|V_2| \leq 6 + 2k$, we have $|N(a_i) \cap N(a_j)| \geq 2$ for $a_i, a_j \in V_1$, which implies $l \geq 5$. By the maximality of *P*, we have $N(v_2) \cap N(a) \cap (V_2 - V(P)) = \emptyset$ for each $a \in V_1 - V(P)$. If $l \neq 9$, then we may assume $a \in V_1 - V(P)$ since $|V_1| = 4$. By the maximality of *P*, we have $v_1, v_l \notin N(a)$. Thus we have $d_P(a) \leq 2$, which implies $|N(a) \cap (V_2 - V(P))| \geq 2 + k$. If $N_P(a) = \emptyset$, then $|N(a) \cap (V_2 - V(P))| \geq 4 + k$. Noting that $N(v_2) \cap N(a) \cap (V_2 - V(P)) = \emptyset$, we have $d(v_2) \leq 2 + k$, a contradiction. Since l = 5 or 7, by symmetry we assume $v_3a \in E(G)$. By the maximality of *P*, $v_2v_l \notin E(G)$. Thus, noting that $N(v_2) \cap N(a) \cap (V_2 - V(P)) = \emptyset$, we have $d(v_2) \leq 3 + k$, a contradiction. Therefore, l = 9.

Let $U = V_2 - V(P)$ and $X = \{v_3, v_5, v_7\}$. If G contains no C_8 , then we have $d_U(v_2) + d_U(v_8) \le |U| \le 1 + 2k$ and $v_1v_8, v_2v_9 \notin E(G)$. Since $d(v_2) + d(v_8) \ge 8 + 2k$, we assume $d_X(v_2) = 3$ and $d_X(v_8) \ge 2$. For $v_i \in \{v_3, v_5\}$, if $v_iv_8 \in E(G)$, then $v_1, v_9 \notin N(v_{i+1})$ for otherwise G contains a C_8 . Since $v_{i+1}v_i P v_2v_{i+2}P v_8$ is a path of order 7, we have $d_U(v_{i+1}) + d_U(v_8) \le 1 + 2k$ and $v_9v_{i+1}, v_1v_{i+1} \notin E(G)$. Thus, noting that $d(v_{i+1}) + d(v_8) \ge 8 + 2k$, we have $X \subseteq N(v_8)$. Now, consider $d(v_4) + d(v_6)$. Since $X \subseteq N(v_2) \cap N(v_8)$, we have $v_1, v_9 \notin N(v_4) \cap N(v_6)$. Noting that $v_4v_3v_2v_5v_8v_7v_6$ is a path of order 7, we have $d_U(v_4) + d_U(v_6) \le 1 + 2k$. Thus, we have $d(v_4) + d(v_6) \le 7 + 2k$, a contradiction. So G contains a C_8 .

Lemma 10. Let G be a 2-connected graph of order 11 and $\delta(G) \ge 4$. If c(G) = 9 or 10, then G contains a C_8 .

Proof. Let $C = t_1 t_2 \cdots t_l$ be a longest cycle of G and H = G - C. If $h \in V(H)$ and $d_C(h) \ge 4$, then by Lemma 7, G contains a bipartite graph G_0 between $\{h\} \cup N_C^+(h)$ and $V(G) - (\{h\} \cup N_C^+(h))$, which satisfies the conditions of Lemma 9, and hence G contains a C_8 . If $d_C(h) \le 3$ for any $h \in V(H)$, then we have l = 9 and $H = K_2$. Let $E(H) = \{h_1 h_2\}$ and $t_1 h_1 \in E(G)$. By the maximality of C, we have $t_2, t_3, t_8, t_9 \notin N(h_2)$. If G contains no C_8 ,

then we have $t_5, t_6 \notin N(h_2)$ and $|N(h_2) \cap \{t_1, t_4, t_7\}| \le 1$, which implies $d_C(h_2) \le 1$, and hence $d(h_2) \le 2$, a contradiction.

Lemma 11. Let G be a graph of order at least n + 3 and $\Delta(G) \leq n - 2$. Suppose (U, X) is a partition of V(G) with |U| = 6 and $\overline{G}[U]$ is (5, 6)-connected. If \overline{G} contains no C_8 , then $e(U, X) \geq \min\{5|X| - 5, \frac{9}{2}|X|\}$.

Proof. Let $x_0 \in X$ and $d_U(x_0) = \min\{d_U(x) \mid x \in X\}$. If $d_U(x_0) \le 2$, then $\overline{G}[U \cup \{x_0\}]$ is Hamilton-connected, which implies $d_U(x) \ge 5$ for any $x \in X - \{x_0\}$. In this case, $e(U, X) \ge 5(|X| - 1) = 5|X| - 5$. If $d_U(x_0) \ge 3$, we let $X_0 = \{x \mid x \in X \text{ and } d_U(x) \le 4\}$ and x any vertex in X_0 . Since $|X| \ge n - 3$ and $\Delta(G) \le n - 2$, there is some $x' \in X$ such that $xx' \notin E(G)$. If $d_U(x') \le 5$, then noting that $\overline{G}[U]$ is (5, 6)-connected, we see that $\overline{G}[U \cup \{x, x'\}]$ contains a C_8 , and hence we have $d_U(x') = 6$. If $x_1, x_2 \in X_0$ and there is some vertex $x \in X$ such that $x_1, x_2 \notin N(x)$, then since $\overline{G}[U]$ is (5, 6)-connected, \overline{G} contains a C_8 , a contradiction. Thus we have $|X_0| \le \frac{1}{2}|X|$, and hence $e(U, X) \ge (3+6)|X_0| + 5(|X|-2|X_0|) = 5|X| - |X_0| \ge \frac{9}{2}|X|$.

Lemma 12. Let G be a graph of order $2n + 2 \ge 22$ and $\Delta(G) \le n - 2$. Suppose H is a graph of order 7 and \overline{H} is Hamilton-connected. If G contains an induced $K_1 \cup H$, then \overline{G} contains a W_8 .

Proof. Let $v \in V(G) - V(H)$, N(v) = Q and $N_H(v) = \emptyset$. Set B = V(G) - V(H) - N[v]. If $b \in B$ and $d_H(b) \le 5$, then since \overline{H} is Hamilton-connected, $\overline{G}[V(H) \cup \{v, b\}]$ contains a W_8 with the hub v. Hence we may assume that $e(H, B) \ge 6|B|$.

Assume $e(H) \leq 2$. If $q \in Q$ and $d_H(q) \leq 2$, then it is not difficult to see that $G[V(H) \cup \{v, q\}]$ contains a W_8 with the hub h for some $h \in V(H)$. Thus we have $d_H(q) \ge 3$ for any $q \in Q$, which implies $e(H, Q) \geq 3|Q|$. In this case, $7(n-2) \geq \sum_{h \in H} d(h) \geq 2$ $3|Q| + 6|B| = 3|B| + 3(2n - 6) \ge 9n - 30 \ge 7n - 10$, a contradiction. Therefore, we have $e(H) \ge 3$. If e(H) = 3, we assume $h_0 \in V(H)$ with $d_H(h_0) = 0$ and $F = H - \{h_0\}$. Since e(F) = 3, it is easy to see \overline{F} contains a C_6 , which implies $\overline{G}[\{v\} \cup V(F)]$ is Hamiltonconnected. Thus, if $q \in Q$ such that $d_H(q) = 0$ or $qh_0 \notin E(G)$ and $d_F(q) \leq 4$, then $\overline{G}[V(H) \cup \{v, q\}]$ contains a W_8 with the hub h_0 . Hence we may assume $d_H(q) \ge 1$ and if $qh_0 \notin E(G)$, then $d_H(q) \ge 5$ for any $q \in Q$. If $q', q'' \in Q$ and $q', q'' \notin N(h_0)$, then we have $e(H, Q) \ge |Q| + 8$, which implies $7(n-2) \ge \sum_{h \in H} d(h) \ge |Q| + 8 + 6|B| + 2e(H) \ge 7n - 12$, a contradiction. Thus we have $d_Q(h_0) \ge |Q| - 1$. If $q', q'' \in N_Q(h_0)$ such that $d_H(q') \le 2$ and $d_H(q'') \leq 2$, then $e(V(F), \{v, h_0, q', q''\}) \leq 2$. Since e(F) = 3, F contains some h such that $d_H(h) \leq 1$ and $q', q'' \notin N(h)$. Let U = V(F) - N[h] and |U| = 4. By Lemma 8, we see that $\overline{G}[U \cup \{h, v, h_0, q', q''\}]$ contains a W_8 with the hub h. Thus we may assume $e(H, Q) \ge 1$ 3(|Q|-2)+2, which implies $7(n-2) \ge \sum_{h \in H} d(h) \ge 3|Q|-4+6|B|+2e(H) \ge 7n-8$, a contradiction. Therefore, we have $e(H) \ge 4$.

If $e(H, Q) \ge 2|Q| - 3$, then $7(n-2) \ge \sum_{h \in H} d(h) \ge 2|Q| - 3 + 6|B| + 2e(H) \ge 8n - 23 \ge 7n - 13$, and hence we have $e(H, Q) \le 2|Q| - 4$.

If $|Q| \leq 2$, then $7(n-2) \geq \sum_{h \in H} d(h) \geq 6|B| \geq 6(2n-8) \geq 7n+2$, a contradiction. Thus we may assume $q_1, q_2, q_3 \in Q$ such that $d_H(q_1) \leq d_H(q_2) \leq d_H(q_3)$ and $d_H(q_3) \leq d_H(q)$ for any $q \in Q - \{q_1, q_2, q_3\}$. Set $X = \{v, q_1, q_2, q_3\}$. If $d_H(q_3) = 0$, then since |H| = 7 and \overline{H} is Hamilton-connected, we have $\delta(H) \leq 2$, which implies $|V(H) - N(h)| \geq 4$ for $h \in H$ and $d_H(h) = \delta(H)$, and hence \overline{G} contains a W_8 with the hub h. Thus we have $d_H(q_3) \geq 1$. If $d_H(q_3) \geq 3$, then we have $e(H, Q) \geq 3|Q| - 6 > 2|Q| - 4$, a contradiction. Hence we have $1 \leq d_H(q_3) \leq 2$. Since $\Delta(G) \leq n-2$, we have $2e(H) \leq 7(n-2) - (e(H, Q) + e(H, B)) \leq 2$

Please cite this article in press as: Y. Zhang, Y. Chen, K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.07.005

Y. Zhang et al. / European Journal of Combinatorics I (IIII) III-III

5

7(n-2) - (|Q| - 2 + 6|B|) = 7(n-2) - (5|B| + 2n - 6 - 2) < 14, that is, e(H) < 7. Let $U = \{h \mid h \in V(H) \text{ and } d_H(h) \leq 2\}$. Then we have $|U| \geq 3$. If $d_H(q_2) = 0$, then since $d_H(q_3) \leq 2$, there is some $u \in U$ such that $d_X(u) = 0$. Let $Y \subseteq V(H) - N[u]$ and |Y| = 4. By Lemma 8, we see that $\overline{G}[X \cup Y \cup \{u\}]$ contains a W_8 with hub u. Thus we may assume $d_H(q_2) \ge 1$. In this case, we have $d_H(q_3) = 1$ for otherwise $e(H, Q) \ge 2|Q| - 3$, and $e(H, Q) \ge |Q| - 1$, which implies $e(H) \leq 6$. If |U| = 3, then $H = 3K_1 \cup K_4$, which contradicts that \overline{H} is Hamiltonconnected. Hence we have $|U| \ge 4$. Define $Q_1 = \{q \mid q \in Q \text{ and } d_H(q) \le 1\}$. Obviously, $|Q_1| \ge 3$. If $d_H(q_1) = 0$ or $|N_H(Q_1)| \ge 2$, say $|N_H(X)| \ge 2$, then since $|U| \ge 4$, there is some $u \in U$ such that $d_X(u) = 0$. Let $Y \subseteq V(H) - N[u]$ and |Y| = 4. By Lemma 8, $\overline{G}[X \cup Y \cup \{u\}]$ contains a W_8 with the hub u. Thus we have $|N_H(Q_1)| = 1$ and $d_H(q_1) = 1$. If $h \in V(H) - N_H(Q_1)$ and $d_H(h) \leq 1$, then \overline{G} contains a W_8 with the hub h, and hence we have $d_H(h) = 2$ for any $h \in V(H) - N_H(Q_1)$. This implies $H = K_1 \cup C_6$ or $K_1 \cup 2K_3$. Let $N_H(Q_1) = \{h'\}$, then we have $d_H(h') = 0$. Noting that e(H) = 6, we have $d_H(q) = 1$ for any $q \in Q$ and |Q| = n-2 for otherwise $\Delta(G) \ge n-1$. In this case, Q contains at least two vertices, say q_1, q_2 such that $q_1q_2 \notin E(G)$. Let $h_1 \in V(H) - \{h'\}$ and $h_2, h_3, h_4 \in V(H) - \{h'\} \cup N_H[h_1]$. Then $vh'h_2q_1q_2h_3q_3h_4$ is a C_8 in \overline{G} , and hence \overline{G} contains a W_8 with the hub h_1 .

Lemma 13. Let G be a graph of order $2n + 2 \ge 22$ and $\Delta(G) \le n - 2$. Suppose H is a linear forest with |H| = 6, $e(H) \le 3$ and $H \ne K_1 \cup K_2 \cup P_3$. If G contains an induced $K_1 \cup H$, then \overline{G} contains a W_8 .

Proof. Let $v \in V(G) - V(H)$, N(v) = Q and $N_H(v) = \emptyset$. Set X = V(G) - V(H) - N[v]. By Lemma 12, we may assume $d_H(q) \ge 3$ if $e(H) \le 1$ and $d_H(q) \ge 2$ if e(H) = 2 for any $q \in Q$. By Lemmas 6 and 11, we may assume $e(H, X) \ge 4|X|+2$. Thus we have $\sum_{h\in H} d(h) \ge 3|Q|+4|X|+2 \ge 6n-6$ if $e(H) \le 1$ and $\sum_{h\in H} d(h) \ge 2|Q|+4|X|+2+4 \ge 6n-10$ if e(H) = 2, which implies $\Delta(G) \ge n-1$, a contradiction. If e(H) = 3, then $H = 3K_2$ or $2K_1 \cup P_4$. By Lemma 12, Q has at most one vertex which has no neighbors in H. If $e(H, Q) \ge 2|Q|-3$, then by Lemmas 6 and 11, we have $\sum_{h\in H} d(h) \ge 2|Q|-3+4|X|+2+6 \ge 6n-11$, a contradiction. Thus there exists $q_1, q_2, q_3 \in Q$ such that $\sum_{i=1}^{3} d_H(q_i) \le 3$. Let $Y = \{v, q_1, q_2, q_3\}$ and $U = \bigcup_{i=1}^{3} N_H(q_i)$. If $|U| \ge 2$, then since $\sum_{i=1}^{3} d_H(q_i) \le 3$, there is some $h \in V(H) - U$ such that $d_H(h) \le 1$. Let $U' \subseteq V(H) - N[h]$ and |U'| = 4. Obviously, the subgraph induced by E(U', Y) is a linear forest, which implies $\overline{G}[\{h\} \cup U' \cup Y]$ contains a W_8 with the hub h by Lemma 8. If |U| = 1, then there is some $h \in V(H) - U$ such that $N(h) \cap (V(H) - U) = \emptyset$. Since $|V(H) - U \cup \{h\}| = 4$ and $E(V(H) - (U \cup \{h\}), Y) = \emptyset$, we see that \overline{G} contains a W_8 with the hub h. ■

3. Proof of Theorem 4

Proof of Theorem 4. Obviously, the graph $K_{n-1} \cup \overline{H}$ shows that $R(S_n, W_8) \ge 2n + 2$, where $H = \frac{n-4}{4}K_4 \cup K_{3,3}$ if $n \equiv 0 \pmod{4}$ and $H = \frac{n+2}{4}K_4$ if $n \equiv 2 \pmod{4}$. In the following proof, we need only to show that $R(S_n, W_8) \le 2n + 2$.

Let G be a graph of order 2n + 2. Suppose to the contrary that neither G contains an S_n nor \overline{G} contains a W_8 .

We first consider the case in which $n \leq 8$. Let v_0 be a vertex of degree $\Delta(G)$. Set $H = \overline{G}[N_{\overline{G}}(v_0)]$, $B = V(G) - N_{\overline{G}}[v_0]$ and $F = \overline{G}[B]$. Since G contains no S_n , we have $\delta(\overline{G}) \geq (2n+1) - (n-2) = n+3$. Assume $d_{\overline{G}}(v_0) = n+3+l$, where $l \geq 0$ is an integer. Since |B| = n-2-l, we have $\delta(H) \geq (n+3) - [(n-2-l)+1] = 4+l$.

6

ARTICLE IN PRESS

Y. Zhang et al. / European Journal of Combinatorics I (IIII) III-III

Since G contains no W_8 , we see that H contains no C_8 .

If n = 6, then |H| = 9 + l. If $l \ge 1$ or l = 0 and $\delta(H) \ge 5$, then we have $\delta(H) \ge |H|/2$, which implies H contains a C_8 by Lemma 1, a contradiction. If l = 0 and $\delta(H) = 4$, then His connected and \overline{G} is 9-regular. If $\kappa(H) = 1$, say u_0 is a cut-vertex, then it is easy to see that $H = \{u_0\} + 2K_4$. Since \overline{G} is 9-regular, we have $N_{\overline{G}}(u_0) \cap B = \emptyset$. For each $h \in V(H) - \{u_0\}$, since $d_H(h) = 4$ and $d_{\overline{G}}(h) = 9$, we have $B \subseteq N_{\overline{G}}(h)$, which implies $F = 2K_2$ since \overline{G} is 9-regular. Thus $\overline{G} = 3K_2 + 2K_4$, and hence \overline{G} contains a W_8 , a contradiction. If $\kappa(H) \ge 2$ and H is bipartite, then $H = K_{4,5}$, a contradiction. If $\kappa(H) \ge 2$ and H is non-bipartite, then by Lemmas 2 and 3, H contains a C_8 , a contradiction. Hence $R(S_6, W_8) \le 14$.

If n = 8, then |H| = 11 + l. If $l \ge 3$, then we have $\delta(H) \ge |H|/2$, which implies H contains a C_8 by Lemma 1, a contradiction. Thus we have l < 2. Suppose $l \neq 0$. If $\kappa(H) > 2$ and H is bipartite, then since $\delta(H) \ge 4+l$ and |H| = 11+l, H contains a C_8 by Lemma 9, a contradiction. If $\kappa(H) \ge 2$ and H is non-bipartite, then since $\delta(H) \ge 4 + l \ge \lfloor (11+l) + 2 \rfloor/3$, by Lemmas 2 and 3, H contains a C_8 , a contradiction. If $\kappa(H) \leq 1$, then it is not difficult to see that H contains a subgraph H_1 such that $H_1 = K_5$ and $d_H(h) = 4 + l$ for each $h \in V(H_1)$. Since $\delta(\overline{G}) \ge n + 3$, we have $B \subseteq N_{\overline{G}}(h)$ for each $h \in V(H_1)$. Thus, H_1 together with v_0 and any three vertices of B produce a W_8 in \overline{G} , a contradiction. Therefore we have l = 0. If H is disconnected, then H contains a component $H_1 = K_5$. Thus, this H_1 together with v_0 and any three vertices of B produce a W_8 in \overline{G} , a contradiction. If $\kappa(H) = 1$, we let v_1 be a cut-vertex of H. Since $\delta(H) \ge 4$, $H - v_1$ contains exactly two components H_1 , H_2 such that $|H_1| = |H_2| = 5$ or $|H_1| = 4$ and $|H_2| = 6$. If $|H_1| = 5$, then since $\delta(H_1) \ge 3$ and the number of vertices of odd degree is even, H_1 contains a vertex v such that $V(H_1) \subseteq N_{\overline{G}}[v]$. Obviously, $d_H(v) \leq 5$. Since $\delta(\overline{G}) \geq 11$, we may assume $B' \subseteq N_{\overline{G}}(v) \cap B$ and |B'| = 5. For each $h \in N_{H_1}(v)$, we have $|N_{\overline{G}}(h) \cap B'| \ge 4$. Thus \overline{G} contains a W_8 with the hub v by Lemma 9, a contradiction. If $|H_1| = 4$, then $V(H_1) \cup \{v_1\}$ is a clique and $B \subseteq N_{\overline{G}}(h)$ for each $h \in V(H_1)$. Since $\delta(\overline{G}) \ge 11$ and |H| = 11, we see that either $N_{\overline{G}}(v_1) \cap B \neq \emptyset$ or F is not an independent set. If $N_{\overline{G}}(v_1) \cap B \neq \emptyset$, say $b_1 \in N_{\overline{G}}(v_1) \cap B$, then H_1 together with v_0, v_1, b_1 and any two vertices of $B - \{b_1\}$ form a W_8 in \overline{G} , a contradiction. If F is not an independent set, say $b_1b_2 \in E(F)$, then H_1 together with v_0, v_1, b_1, b_2 and any vertex of $B - \{b_1, b_2\}$ form a W_8 in \overline{G} , a contradiction. If $\kappa(H) \ge 2$, then $c(H) \ge 8$ by Lemma 3. By Lemma 10, c(H) = 11, that is, H is Hamiltonian. If $\delta(H) \ge 5$, then by Lemmas 2 and 3, H contains a C_8 , a contradiction. Thus we have $\delta(H) = 4$. Let $v \in V(H)$ and $d_H(v) = 4$. Since $\delta(\overline{G}) \geq 11$, we have $B \subseteq N_{\overline{G}}(v)$. If $\Delta(H) \leq 6$, then $|N_{\overline{G}}(u) \cap B| \geq 4$ for each $u \in N_H(v)$. Thus G contains a W_8 with the hub v by Lemma 9, a contradiction. If $\Delta(H) \geq 7$, then noting that $\delta(H) = 4$, H contains a C_8 by Lemma 4, a contradiction. Thus $R(S_8, W_8) \le 18$.

Now, we consider the case in which $n \ge 10$.

Let *I* be a maximum independent set of *G*. If $|I| \leq 2$, then *G* contains an S_n , and hence we have $|I| \geq 3$. By Lemma 13, we have $|I| \leq 6$ and if |I| = 6, then $d_I(v) \geq 3$ for any $v \in V(G) - I$. Suppose |I| = 6. Since $\sum_{a \in I} d(a) \leq 6(n-2)$ and |V(G) - I| = 2n - 4, we have $d_I(v) = 3$ for any $v \in V(G) - I$ and d(a) = n - 2 for each $a \in I$. Let $a \in I$, N(a) = Qand X = V(G) - I - N[a]. Obviously, |X| = n - 2. Let $u \in X$. Since *G* contains no S_n and $d_I(u) = 3$, there exists $v, w \in X - \{u\}$ such that $v, w \notin N(u)$. Noting that $d_I(v) = d_I(w) = 3$, we see that $\overline{G}[I \cup \{u, v, w\} - \{a\}]$ contains a C_8 , and hence \overline{G} contains a W_8 with the hub *a*, a contradiction. Thus we have $3 \leq |I| \leq 5$.

In order to consider the cases when $3 \le |I| \le 5$, we need the following claim. *Claim* 1. Let $H \in \{K_3 \cup K_4, K_3 \cup B_2, P_3 \cup B_2\}$. If $\alpha(G) = \alpha(H) + 1$, then G contains no induced $K_1 \cup H$.

Proof. Let $v \in V(G) - V(H)$, $d_H(v) = 0$, N(v) = Q, R = V(G) - N[v] and U = R - V(H). Assume $V(H) = A \cup B$ with $G[A] = K_3$ or P_3 , $G[B] = K_4$ or B_2 and $E(A, B) = \emptyset$. Set $A = \{a_1, a_2, a_3\}$, $B = \{b_1, b_2, b_3, b_4\}$. Choose H such that e(H, U) is as large as possible.

We first show that $e(H, U) \ge 6|U|$. Since \overline{G} contains no W_8 , we can see that $\overline{G}[R]$ contains no C_8 . Define $X = \{u \mid u \in U, A \subseteq N(u) \text{ and } B \not\subseteq N(u)\}$, $Y = \{u \mid u \in U \text{ and } A \cup B \subseteq N(u)\}$ and $Z = \{u \mid u \in U, B \subseteq N(u) \text{ and } A \not\subseteq N(u)\}$. If there is some vertex $u \in U$ such that $d_A(u) \le 2$ and $d_B(u) \le 3$, then since $\alpha(G) = \alpha(H) + 1$, we have $\alpha(G) \ge 4$, and hence $G[B] = B_2$. In this case, since \overline{H} contains an (a, b)-path of order 7 for any $a \in A$ and $b \in B$, we see $\overline{G}[R]$ contains a C_8 , a contradiction. Thus, (X, Y, Z) is a partition of U.

If $d_B(u) \le 2$ for some $u \in U$, say $b_1, b_2 \notin N(u)$, then $a_1b_1ub_2a_2b_3a_3b_4$ is a C_8 in $\overline{G}[R]$. If $xz \notin E(G)$ for some $x \in X$ and $z \in Z$, then since \overline{H} contains an (a, b)-path of order 6 for any $a \in A$ and $b \in B$, we see $\overline{G}[R]$ contains a C_8 . Thus we have $d_B(u) \ge 3$ for each $u \in U$ and $X \subseteq N(z)$ for each $z \in Z$. If $Z = \emptyset$, then we have $e(H, U) \ge 6|U|$. Hence we may assume $Z \neq \emptyset$. Define $Z_i = \{z \mid z \in Z \text{ and } d_A(z) = i\}$ for i = 0, 1, 2.

Let $z \in Z_0$. If there is some $z' \in Z$ such that $zz' \notin E(G)$, then we have $\alpha(G) \ge 4$, and hence $G[B] = B_2$. Assume without loss of generality that $b_1b_2, z'a_1 \notin E(G)$. Then $a_1z'za_2b_1b_2a_3b_3$ is a C_8 in $\overline{G}[R]$, and thus we have $Z \subseteq N[z]$. Since G contains no S_n , we have $|Q| \le n - 2$ and $|U| \ge n - 4$. Thus $d_Y(z) \le |Y| - 1$. If $d_Y(z) = |Y| - 1$, then we must have |Q| = n - 2, |U| = n - 4 and $d_R(z) = n - 2$. By the choice of H, we have $d_R(b_1) = d_R(b_2) = n - 2$, where $d_B(b_1) = d_B(b_2) = 3$. Assume $d_A(a_1) = 2$. Since $d_Q(a_1) + d_Q(b_3) \le 2(n - 2) - [(|U| + 1) + 2 + 2] = n - 5$, there exists $q_1, q_2, q_3 \in Q$ such that $q_1, q_2, q_3 \notin N(a_1) \cup N(b_3)$. In this case, $\overline{G}[\{a_1, v, q_1, q_2, q_3, b_1, b_2, b_3, z\}]$ contains a W_8 with the hub a_1 , a contradiction. Hence we have $d_Y(z) \le |Y| - 2$ for any $z \in Z_0$.

Let $z \in Z_1$. If $d_Y(z) = |Y|$, then there exists $z_1 \in Z - \{z\}$ such that $z_1 \notin N(z)$ since $\Delta(G) \leq n-2$. Assume $a_1z_1, a_2z \notin E(G)$. If $G[B] = B_2$, say $b_1b_2 \notin E(G)$, then $a_1z_1za_2b_1b_2a_3b_3$ is a C_8 in $\overline{G}[R]$, and hence we have $\alpha(G) = 3$. In this case, we have $a_2, a_3 \notin N(z)$ and $a_2, a_3 \in N(z_1)$. If $z_2 \in Z - \{z, z_1\}$ and $z_1z_2 \notin E(G)$, then since $\alpha(G) = 3$, we have $a_2 \notin N(z_2)$ or $a_3 \notin N(z_2)$, which implies $a_1b_1a_2z_2z_1za_3b_2$ or $a_1b_1a_3z_2z_1za_2b_2$ is a C_8 in $\overline{G}[R]$, and hence we have $Z - \{z\} \subseteq N[z_1]$. Since $d(z_1) \leq n-2, z_1 \in Z_2$ and $X \subseteq N(z_1)$, we have $Y \notin N(z_1)$. Thus there is some $y \in Y$ and $z' \in Z - \{z\}$ such that $y, z \notin N(z')$ if $z \in Z_1$ and $d_Y(z) = |Y|$.

Let $z \in Z_0 \cup Z_1$. Define $N^*(z) = \{y \mid y \in Y \text{ and } yz \notin E(G)\}$ if $d_Y(z) \leq |Y| - 1$ and $N^*(z) = \{y \mid y \in Y \text{ and } y, z \notin N(z') \text{ for some } z' \in Z\}$ if $d_Y(z) = |Y|$. By the argument above, we have $|N^*(z)| \geq 2$ if $z \in Z_0$ and $|N^*(z)| \geq 1$ if $z \in Z_1$. Assume $z_1, z_2 \in Z_0 \cup Z_1$ and $y \in N^*(z_1) \cap N^*(z_2) \neq \emptyset$. If $d_Y(z_1) \leq |Y| - 1$, then there is some $z'_1 \in Z - \{z_1\}$ such that $z_1, z'_1 \notin N(y)$. Thus we can choose two vertices, say $a_1, a_2 \in A$ such that $z_1a_1, z'_1a_2 \notin E(G)$, which implies $a_1z_1yz'_1a_2b_1a_3b_2$ is a C_8 in $\overline{G}[R]$, a contradiction. Hence by symmetry we have $d_Y(z_1) = d_Y(z_2) = |Y|$, and thus $z_1, z_2 \in Z_1$. Assume $z'_i \in Z$ and $z_iz'_i, yz'_i \notin E(G)$ for i = 1, 2. Since $z'_1z_2, z'_2z_1 \in E(G)$, we have $z'_1 \neq z'_2$. Since $z_1, z_2 \in Z_1$, we can choose two vertices, say $a_1, a_2 \in A$ such that $z_1a_1, z_2a_2 \notin E(G)$, which implies $a_1z_1z'_1yz'_2z_2a_2b_1$ is a C_8 in $\overline{G}[R]$, a contradiction. Hence we have $N^*(z_1) \cap N^*(z_2) = \emptyset$ for any $z_1, z_2 \in Z_0 \cup Z_1$. Let $Y_0 = \bigcup_{z \in Z_0} N^*(z), Y_1 = \bigcup_{z \in Z_1} N^*(z)$ and $Y_2 = Y - Y_0 - Y_1$, then $|Y_0| \geq 2|Z_0|$ and $|Y_1| \geq |Z_1|$. Thus $e(H, U) = e(H, X \cup Y_2 \cup Z_2) + (e(H, Z_0) + e(H, Y_0)) + (e(H, Z_1) + e(H, Y_1)) \geq 6|U|$.

If $|Q| \le 2$, then $7(n-2) \ge \sum_{h \in H} d(h) \ge 6|U| \ge 6(2n-8) \ge 7n+2$, and hence $|Q| \ge 3$. If $q_1, q_2, q_3 \in Q$ and $d_H(q_1) + d_H(q_2) + d_H(q_3) \le 1$, then since |A| = 3, there is some $a \in A$ such that $q_1, q_2, q_3 \notin N(a)$. By Lemma 8, $\overline{G}[B \cup \{v, q_1, q_2, q_3\}]$ contains a C_8 , and hence \overline{G} contains a W_8 with the hub a, a contradiction. Thus we have $e(H, Q) \ge |Q| - 1$, which

Y. Zhang et al. / European Journal of Combinatorics I (IIII) III-III

implies $7(n-2) \ge \sum_{h \in H} d(h) \ge e(H, Q) + e(H, U) + 2e(H) \ge (|Q| - 1) + 6|U| + 14 = 5|U| + (2n-6) + 13 \ge 5(n-4) + (2n-6) + 13 = 7n - 13$, a contradiction.

We now consider the following three cases separately.

Case 1. $\alpha(G) = 3$

If G contains an induced $3K_2$, we assume $U = \{u_i \mid 1 \le i \le 6\}$ and $E(G[U]) = \{u_1u_2, u_3u_4, u_5u_6\}$. Set V(G) - U = X. Since G contains no S_n , we have $e(U, X) \le 6(n - 3)$. Since $\alpha(G) = 3$, we have $d_U(x) \ge 2$ for each $x \in X$ and if $d_U(x) = 2$, then $G[N_U(x)] = K_2$. Since |X| = 2n - 4 and $e(U, X) \le 6(n - 3)$, X contains at least four vertices, say x_i $(1 \le i \le 4)$ such that $d_U(x_i) = 2$. This implies G contains an induced $2K_2 \cup K_4$. Assume $Y = \{u_i \mid 1 \le i \le 8\}$ and $E(G[Y]) = \{u_1u_2, u_3u_4\} \cup \{u_iu_j \mid 5 \le i < j \le 8\}$. Set V(G) - Y = Z. Since G contains no S_n , we have $e(Y, Z) \le 8(n - 2) - 16 = 8n - 32$. Since |Z| = 2n - 6, it follows that Z contains at least four vertices, say z_i $(1 \le i \le 4)$ such that $d_Y(z_i) \le 3$. Since $\alpha(G) = 3$, we have $|N(z_i) \cap \{u_5, u_6, u_7, u_8\}| \le 1$ for $1 \le i \le 4$ and either $u_1, u_2 \in N(z_i)$ or $u_3, u_4 \in N(z_i)$. Assume without loss of generality that $u_1, u_2 \in N(z_i)$ for i = 1, 2. By Claim 1, we have $|N(z_i) \cap \{u_5, u_6, u_7, u_8\}| = 1$ for i = 1, 2. By Lemma 8, $\overline{G}[Y \cup \{z_1, z_2\} - \{u_4\}]$ contains a W_8 with the hub u_3 , a contradiction. Therefore, G contains no induced $3K_2$.

Since G contains no S_n , V(G) - I contains a vertex v such that $d_I(v) = 1$, which implies G contains an induced $2K_1 \cup K_2$. Let $G_0 = 2K_1 \cup K_2$. For the same reason, $V(G) - V(G_0)$ contains a vertex v such that $d_{G_0}(v) = 1$, which implies G contains an induced $K_1 \cup 2K_2$ since $\alpha(G) = 3$. Let $U = \{u_i \mid 1 \le i \le 4\}$ and $E(G[U \cup \{u_0\}]) = \{u_1u_2, u_3u_4\}$. Set $N(u_0) = X$ and $Y = V(G) - U - N[u_0]$. Since G contains no induced $3K_2$, we have $e(U, X) \ge |X|$. If $d_U(y) \ge 3$ for each $y \in Y$, then $4(n-2) \ge \sum_{i=1}^{4} d(u_i) = e(U, X) + e(U, Y) + 2e(G[U]) \ge 4n - 1$, and hence there is some $u_5 \in Y$ such that $d_U(u_5) \leq 2$. Since $\alpha(G) = 3$, we may assume without loss of generality that $N_U(u_5) = \{u_3, u_4\}$. Let $A = \{u_i \mid 0 \le i \le 5\}$ and B = V(G) - A. Obviously, $G[A] = K_1 \cup K_2 \cup K_3$. Since $\alpha(G) = 3$ and G contains no induced $3K_2$, we have $d_A(b) \ge 2$ for each $b \in B$. Set $B_0 = \{b \mid b \in B \text{ and } d_A(b) = 2\}$. Since $\sum_{i=0}^5 d_B(u_i) \le 6(n-2) - 8 = 6n - 20$ and 3|B| = 6n - 12, we have $|B_0| \ge 8$. If $b_1, b_2 \in B_0 - N(u_0)$, then since $\alpha(G) = 3$, we have $N_A(b_1) = N_A(b_2) = \{u_1, u_2\}$ and $b_1b_2 \in E(G)$, which contradicts Claim 1. Thus we have $d_{B_0}(u_0) \ge 7$. Since G contains no induced $3K_2$, we have $N_A(b) \subseteq \{u_0, u_1, u_2\}$ for any $b \in N_{B_0}(u_0)$. Assume without loss of generality that $b_i \in N_{B_0}(u_0)$ for $1 \le i \le 3$ and $N_A(b_i) = \{u_0, u_1\}$. Since $\alpha(G) = 3$, we have $b_i b_j \in E(G)$ for $1 \le i < j \le 3$, which contradicts Claim 1.

Case 2. $\alpha(G) = 4$

If G has an induced $2K_1 \cup K_2 \cup K_4$, we let $V(H) = X \cup Y$, $X = \{x_1, x_2, x_3, x_4\}$, $E(G[X]) = \{x_3x_4\}$, $G[Y] = K_4$ and $E(X, Y) = \emptyset$. Set Z = V(G) - V(H). By Lemma 13, $d_H(z) \ge 2$ for any $z \in Z$. Let $Z_0 = \{z \mid z \in Z \text{ and } d_H(z) \le 3\}$. Since $\Delta(G) \le n - 2$, we have $e(H, Z) \le 8(n - 2) - 14 = 8n - 30$, which implies $|Z_0| \ge 3$. Let $z \in Z_0$. Since $\alpha(G) = 4$, we have $d_Y(z) \le 2$. If $x_1z \notin E(G)$, then $\overline{G}[V(H) \cup \{z\}]$ contains a W_8 with the hub x_1 by Lemma 8, and hence we have $x_1, x_2 \in N(z)$ for any $z \in Z_0$. Since $|Z_0| \ge 3$, Z_0 contains two vertices, say z_1, z_2 , such that $z_1, z_2 \notin N(x_3)$ or $z_1, z_2 \notin N(x_4)$, and hence \overline{G} contains a W_8 with the hub x_3 or x_4 by Lemma 8, a contradiction. Therefore G contains no induced $2K_1 \cup K_2 \cup K_4$.

If G contains an induced $K_1 \cup K_2 \cup P_4$, we assume $U = \{u_i \mid 1 \le i \le 6\}$ and $E(G[U \cup \{u_0\}]) = \{u_i u_{i+1} \mid i = 1, 3, 4, 5\}$. Set $N(u_0) = Q$ and $X = V(G) - U - N[u_0]$. By Lemma 11, $e(U, X) \ge 4|X| + 2$. If $e(U, Q) \ge 2|Q| - 4$, then $6(n-2) \ge \sum_{i=1}^{6} d(u_i) \ge 2|Q| - 4 + 4|X| + 2 + 8 = 2|X| + 2(2n-5) + 6 \ge 6n - 10$, a contradiction. Thus there exists

Please cite this article in press as: Y. Zhang, Y. Chen, K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.07.005

8

 $q_1, q_2, q_3 \in Q$ such that $\sum_{i=1}^3 d_U(q_i) \leq 3$. Let $Y = \{u_0, q_1, q_2, q_3\}$ and $Z = \bigcup_{i=1}^3 N_U(q_i)$. If $|Z| \geq 2$ or $\sum_{i=1}^3 d_U(q_i) \leq 2$, then there exists $u \in U - \{u_4, u_5\}$ such that $u \notin Z$. By Lemma 8, $\overline{G}[(U - N(u)) \cup Y]$ contains a W_8 with the hub u, a contradiction. Thus we have $\sum_{i=1}^3 d_U(q_i) = 3$ and |Z| = 1. If $u_3, u_6 \notin Z$, then there is some $u \in U - \{u_4, u_5\}$ such that $u \notin Z$ and $E(U - N[u], Y) = \emptyset$, and hence \overline{G} contains a W_8 with the hub u, a contradiction. Thus by symmetry we may assume $Z = \{u_6\}$. Since $\alpha(G) = 4$, we have $q_i q_j \in E(G)$ for $1 \leq i < j \leq 3$, which implies G contains an induced $2K_1 \cup K_2 \cup K_4$, a contradiction. Hence Gcontains no induced $K_1 \cup K_2 \cup P_4$.

If G has an induced $2K_1 \cup 2K_2$, we let $U = \{u_i \mid 1 \leq i \leq 5\}$ and $E(G[U \cup \{u_0\}]) =$ $\{u_2u_3, u_4u_5\}$. Set $X = V(G) - U \cup \{u_0\}, N(u_0) = Y$ and X - Y = Z. Since $\alpha(G) = 4$ and G contains no induced $K_1 \cup 3K_2$ by Lemma 13, we have $d_U(z) \ge 2$ for any $z \in Z$. Define $Z_i = \{z \mid z \in Z \text{ and } d_U(z) = i\}$ for $2 \le i \le 5$. Let $z \in Z_3$. Since $\Delta(G) \le n-2$, we have $|Z| \ge n-2$, and hence there exists $z', z'' \in Z - N[z]$. If $\{z', z''\} \cap Z_5 = \emptyset$, then $z', z'' \in Z_4$ for otherwise $\overline{G}[U \cup \{z, z', z''\}]$ contains a C_8 since $\overline{G}[U] = W_4$ is Hamiltonconnected, which implies \overline{G} contains a W_8 with the hub u_0 , a contradiction. For the same reason, we have $N_{\overline{G}}(z') \cap Z_5 \neq \emptyset$. Let $N^*(z) = N_{\overline{G}}(z) \cap Z_5$ if $N_{\overline{G}}(z) \cap Z_5 \neq \emptyset$ and $N^*(z) = \{x \mid x \in Z_5 \text{ and } z, x \notin N(x') \text{ for some } x' \in Z_4\} \text{ if } N_{\overline{G}}(z) \cap Z_5 = \emptyset. \text{ By the argument}$ above, $N^*(z) \neq \emptyset$ for any $z \in Z_3$. If $z_1, z_2 \in Z_3$ and $z_0 \in N^*(z_1) \cap N^*(z_2)$, then $\overline{G}[Z]$ contains a (z_1, z_2) -path of order k with $3 \le k \le 5$. Note that $\overline{G}[U]$ is (3, 5)-connected, we see that \overline{G} contains a W_8 with the hub u_0 , and hence $N^*(z_1) \cap N^*(z_2) = \emptyset$, which implies $|Z_3| \leq |Z_5|$. Therefore we have $e(U, Z) \ge 4|Z| - 2|Z_2|$. By Lemma 13, $e(U, Y) \ge |Y|$. Since G contains no S_n , we have $5(n-2) \ge \sum_{i=1}^{5} d(u_i) \ge |Y| + 4|Z| - 2|Z_2| + 4 = 3|Z| + (2n-4) - 2|Z_2| + 4 \ge 3|Z| + (2n-4) - 3|Z| + (2n-4$ $5n-6-2|Z_2|$, and hence $|Z_2| \ge 2$. Because G contains no induced $K_1 \cup K_2 \cup P_4$ and $\alpha(G) = 4$, $N_U(z) = \{u_2, u_3\}$ or $\{u_4, u_5\}$ for any $z \in Z_2$. Note that G contains no induced $2K_1 \cup K_2 \cup K_4$ and $\alpha(G) = 4$, there exists $z_1, z_2 \in Z_2$ such that $N_U(z_1) = \{u_2, u_3\}$ and $N_U(z_2) = \{u_4, u_5\}$. In this case, $cl(\overline{G}[U \cup \{z_1, z_2\}]) = K_7$. By Lemma 5, $\overline{G}[U \cup \{z_1, z_2\}]$ is Hamilton-connected, which contradicts Lemma 12. Thus G contains no induced $2K_1 \cup 2K_2$.

If G has an induced $3K_1 \cup K_3$, we let $U = \{u_i \mid 1 \le i \le 6\}$ and $E(G[U]) = \{u_4u_5, u_5u_6, u_4u_6\}$. Set X = V(G) - U. Since $\alpha(G) = 4$ and G contains no induced $2K_1 \cup 2K_2$, we have $d_U(x) \ge 2$ for each $x \in X$. Let $X_0 = \{x \mid x \in X \text{ and } d_U(x) = 2\}$. Since $\sum_{u \in U} d(u) \le 6(n-2)$ and |X| = 2n-4, we have $|X_0| \ge 6$. Let $x \in X_0$. Note that $\alpha(G) = 4$ and G contains no induced $2K_1 \cup 2K_2$, we have $N(x) \subseteq \{u_1, u_2, u_3\}$. Thus, since $|X_0| \ge 6$, there exists $x_1, x_2 \in X_0$ such that $N_U(x_1) = N_U(x_2)$. Assume without loss of generality that $N_U(x_1) = N_U(x_2) = \{u_2, u_3\}$. By Claim 1, we have $x_1x_2 \notin E(G)$. In this case, $cl(\overline{G}[U \cup \{x_1, x_2\} - \{u_1\}]) = K_7$. By Lemma 5, $\overline{G}[U \cup \{x_1, x_2\} - \{u_1\}]$ is Hamilton-connected, which contradicts Lemma 12. Thus G contains no induced $3K_1 \cup K_3$.

Let $I = \{u_0, u_1, u_2, u_3\}$, V(G) - I = X and $X_1 = \{x \mid x \in X \text{ and } d_I(x) = 1\}$. Since |X| = 2n - 2 and $\Delta(G) \le n - 2$, we have $|X_1| \ge 4$. If $|X_1| \ge 5$ or $d_{X_1}(u_i) \ge 2$ for some i with $0 \le i \le 3$, then G contains an induced $3K_1 \cup K_3$ since $\alpha(G) = 4$, a contradiction. Thus we have $|X_1| = 4$ and $d_{X_1}(u_i) = 1$ for $0 \le i \le 3$, which implies $d_I(x) = 2$ for any $x \in X - X_1$ and $d(u_i) = n - 2$ for $0 \le i \le 3$. Let $N(u_0) = Y$ and Z = X - Y, then |Z| = n. Assume $Z_0 = \{v_i \mid 1 \le i \le 3\} \subseteq X_1$ and $u_i v_i \in E(G)$. Set $Z_{ij} = \{z \mid z \in Z \text{ and } N_U(z) = \{u_i, u_j\}\}$ for $1 \le i < j \le 3$. By the arguments above, we see that $(Z_0, Z_{12}, Z_{23}, Z_{13})$ is a partition of Z. If $z \in Z - Z_0$ and $d_{Z_0}(z) = 0$, then $cl(\overline{G}[Z_0 \cup I \cup \{z\} - \{u_0\}]) = K_7$. By Lemma 5, $\overline{G}[Z_0 \cup I \cup \{z\} - \{u_0\}]$ is Hamilton-connected, which contradicts Lemma 12. Thus $d_{Z_0}(z) \ge 1$ for any $z \in Z - Z_0$. Since G contains no induced $2K_1 \cup 2K_2$, we have $G[Z_0] = K_3$. Since

Y. Zhang et al. / European Journal of Combinatorics [(1111) 111-111

|Z| = n, there exists $u \in Z$ such that $v_1 u \notin E(G)$. Obviously, $u \notin Z_0$. Since $d_I(u) = 2$, |Z| = nand $d_{Z_0}(u) \ge 1$, there exists $v \in Z - Z_0 \cup \{u\}$ such that $uv \notin E(G)$. If $v \in Z_{12} \cup Z_{13}$, then $v_1 uv u_3 v_2 u_1 v_3 u_2$ or $v_1 uv u_2 v_3 u_1 v_2 u_3$ is a C_8 in $\overline{G} - N[u_0]$, a contradiction. If $v \in Z_{23}$, then $v_2, v_3 \in N(v)$ for otherwise $v_1 u_2 v_3 u_1 u_3 v_2 vu$ or $v_1 u_3 v_2 u_1 u_2 v_3 vu$ is a C_8 in $\overline{G} - N[u_0]$, and hence there exists $w \in Z - Z_0 \cup \{u, v\}$ such that $wv \notin E(G)$. In this case, $v_1 u_2 v_3 u_1 u_3 wv u$ or $v_1 u_3 v_2 u_1 u_2 wv u$ or $v_1 u_3 u_2 v_3 u_1 wv u$ is a C_8 in $\overline{G} - N[u_0]$, also a contradiction.

Case 3. $\alpha(G) = 5$

If G has an induced $2K_1 \cup K_2 \cup P_3$ or $2K_1 \cup P_5$, we let $H \in \{K_1 \cup K_2 \cup P_3, K_1 \cup P_5\}$, $v \in V(G) - V(H)$ and $N_H(v) = \emptyset$. Set N(v) = Q and X = V(G) - V(H) - N[v]. Let $h_0 \in V(H)$ and $d_H(h_0) = 0$. If $q \in Q$, then by Lemmas 5 and 12, $d_H(q) \ge 1$ and if $d_H(q) = 1$, then $N_H(q) = \{h_0\}$. If $q_i \in Q$ and $d_H(q_i) = 1$ for $1 \le i \le 3$, then we may assume $q_1q_2 \in E(G)$ since $\alpha(G) = 5$, which contradicts Claim 1. Thus we have $e(H, Q) \ge 2|Q| - 2$. By Lemma 11, we have $6(n-2) \ge \sum_{h \in H} d(h) \ge e(H, Q) + e(H, X) + 2e(H) \ge 2|Q| - 2 + 4|X| + 2 + 6 \ge 6n - 10$, a contradiction. Thus G contains no induced $2K_1 \cup K_2 \cup P_3$ and $2K_1 \cup P_5$.

If G has an induced $4K_1 \cup K_2$, we let $U = \{u_i \mid 1 \le i \le 6\}$ and $E(G[U]) = \{u_5u_6\}$. Set X = V(G) - U. By Lemma 13, $d_U(x) \ge 2$ for any $x \in X$. Since |X| = 2n - 4and $\sum_{u \in U} d_X(u) \le 6(n - 2) - 2$, X contains at least two vertices, say x_1, x_2 such that $d_U(x_1) = d_U(x_2) = 2$. By Lemma 13, G contains no induced $3K_1 \cup P_4$. Thus noting that G contains no induced $2K_1 \cup K_2 \cup P_3$, we have $N_U(x_1) = N_U(x_2) = \{u_5, u_6\}$. Since $\alpha(G) = 5$, we have $x_1x_2 \in E(G)$. Now, let $U' = U \cup \{x_1, x_2\}$ and X' = V(G) - U'. Since $\sum_{u \in U'} d(u) \le 8(n - 2)$, e(G[U']) = 6 and |X'| = 2n - 6, X' contains a vertex x such that $d_{U'}(x) \le 3$. Since $\alpha(G) = 5$, we have $|N(x) \cap \{u_5, u_6, x_1, x_2\}| \le 2$. By Lemma 8, \overline{G} contains a W_8 with the hub u_i for some $u_i \in U - \{u_5, u_6\}$, a contradiction. Hence G contains an induced $4K_1 \cup K_2$ is impossible.

If G has an induced $3K_1 \cup P_3$, we let $U = \{u_i \mid 1 \le i \le 6\}$ and $E(G[U]) = \{u_4u_5, u_5u_6\}$. Set X = V(G) - U. Since $\alpha(G) = 5$ and G contains no induced $4K_1 \cup K_2$, we have $d_U(x) \ge 2$ for any $x \in X$. Let $X_0 = \{x \mid x \in X \text{ and } d_U(x) = 2\}$. Since e(G[U]) = 2, |X| = 2n - 4 and $\Delta(G) \le n - 2$, we have $|X_0| \ge 4$. Since G contains no induced $2K_1 \cup P_5$ and $4K_1 \cup K_2$, we have $N_U(x) \subseteq \{u_1, u_2, u_3\}$ or $\{u_4, u_5, u_6\}$ for any $x \in X_0$. Let $x_1 \in X_0$. If $N_U(x_1) \subseteq \{u_4, u_5, u_6\}$, then $N_U(x_1) = \{u_4, u_6\}$ since G contains no induced $4K_1 \cup K_2$. Let $x_2 \in X_0 - \{x_1\}$. By Lemmas 5 and 12, we have $N_U(x_2) \subseteq \{u_4, u_5, u_6\}$, and hence $N_U(x_2) = \{u_4, u_6\}$. Since $\alpha(G) = 5$, we have $x_1x_2 \in E(G)$, which contradicts that G contains no induced $4K_1 \cup K_2$. Thus we have $N_U(x) \subseteq \{u_1, u_2, u_3\}$ for each $x \in X_0$. Noting that $|X_0| \ge 4$, there exists $x_1, x_2 \in X_0$ such that $N_U(x_1) = N_U(x_2)$. Assume $N_U(x_1) = N_U(x_2) = \{u_2, u_3\}$. By Lemmas 5 and 12, we have $x_1x_2 \in E(G)$, which contradicts Claim 1. Thus G contains an induced $3K_1 \cup P_3$ is also impossible.

On the other hand, since $\Delta(G) \le n-2$, |I| = 5 and |V(G) - I| = 2n-3, V(G) - I contains a vertex v such that $d_I(v) \le 2$, which implies G contains an induced $4K_1 \cup K_2$ or $3K_1 \cup P_3$, a contradiction.

By now, we have shown $R(S_n, W_8) \le 2n + 2$. Therefore, we have $R(S_n, W_8) = 2n + 2$ for $n \ge 6$ and $n \equiv 0 \pmod{2}$. The proof of Theorem 4 is completed.

References

- [1] J.A. Bondy, Pancyclic graphs, Journal of Combinatorial Theory, Series B 11 (1971) 80-84.
- [2] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Mathematics 15 (1976) 111–135.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976, Elsevier, New York.

Y. Zhang et al. / European Journal of Combinatorics [(]]]

- [4] S. Brandt, R.J. Faudree, W. Goddard, Weakly pancyclic graphs, Journal of Graph Theory 27 (1998) 141–176.
- [5] Y.J. Chen, F. Tian, B. Wei, Degree sums and path-factors in graphs, Graphs and Combinatorics 17 (2001) 61–71.
- [6] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers of stars versus wheels, European Journal of Combinatorics 25 (2004) 1067–1075.
- [7] G.A. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathematical Society 2 (1952) 69-81.
- [8] Surahmat, E.T. Baskoro, On the Ramsey number of path or star versus W₄ or W₅, in: Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, 14–17 July 2001, pp. 174–179.
- [9] S.M. Zhang, Pansyslism and bipancyclism of hamiltonian graphs, Journal of Combinatorial Theory, Series B 60 (1994) 159–168.