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Abstract

For two given graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest positive integer n such
that for any graph G of order n, either G contains G1 or the complement of G contains G2. Let Sn denote a
star of order n and Wm a wheel of order m + 1. In this paper, we show that R(Sn, W8) = 2n + 2 for n ≥ 6
and n ≡ 0 (mod 2).
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

All graphs considered in this paper are finite simple graph without loops. For two given graphs
G1 and G2, the Ramsey number R(G1, G2) is the smallest integer n such that for any graph G
of order n, either G contains G1 or G contains G2, where G is the complement of G. The
neighborhood N (v) of a vertex v is the set of vertices adjacent to v in G and N [v] = N (v)∪{v}.
The minimum degree, maximum degree, independence number and connectivity of G are denoted
by δ(G), ∆(G), α(G) and κ(G), respectively. The edge number of a graph G is e(G). Let
V1, V2 ⊆ V (G). We use E(V1, V2) to denote the set of the edges between V1 and V2, and
e(V1, V2) = |E(V1, V2)|. For U ⊆ V (G), G[U ] is the subgraph induced by U in G. A cycle
and a path of order n are denoted by Cn and Pn , respectively. We use mG to denote the union
of m vertex disjoint G. A wheel of order n + 1 is Wn = K1 + Cn . A book of order n + 2 is
Bn = K2 + Kn . Let c(G) be the circumference of G, that is, the length of a longest cycle, and
g(G), the girth, that is, the length of a shortest cycle. A graph on n vertices is pancyclic if it
contains cycles of every length l, 3 ≤ l ≤ n. A graph is weakly pancyclic if it contains cycles
of every length from the girth to the circumference. Let C be a cycle. For a given orientation
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of C , we use u+ to denote the successor of u and u− to denote its predecessor. If A ⊂ V (C)

then A+ = {a+ | a ∈ A} and A− = {a− | a ∈ A}. Let u, v ∈ V (G) and s, t with s ≤ t be
integers. If G contains a (u, v)-path of order l for each l with s ≤ l ≤ t , then we say u and v are
(s, t)-connected in G. A linear forest is a forest with maximum degree not more than two. For
notations which are not defined here, we follow [3].

For the Ramsey number of a star versus a wheel, Chen et al. determined all values of
R(Sn, Wm) for odd m and n ≥ m − 1 ≥ 2, and obtained the following.

Theorem 1 (Chen et al. [6]). R(Sn, Wm) = 3n − 2 for m odd and n ≥ m − 1 ≥ 2.

Obviously, Theorem 1 shows that the Ramsey number R(Sn, Wm) for m odd and n ≥ m−1 ≥
2 is determined by n. However, it is not the case when m is even. In fact, as pointed in [6], the
Ramsey number R(Sn, Wm) for even m and n ≥ m−1 ≥ 2 cannot be determined by n alone and
is a function related to both m and n. In the case when m is even, only the values of R(Sn, W4)

and R(Sn, W6) are known by now, and it seems difficult to calculate the values of R(Sn, Wm).
In [8], Surahmat et al. determined the value for R(Sn, W4), and got the following.

Theorem 2 (Surahmat and Baskoro [8]). R(Sn, W4) = 2n − 1 for n ≥ 3 and n ≡ 1 (mod 2)

and R(Sn, W4) = 2n + 1 for n ≥ 4 and n ≡ 0 (mod 2).

By using induction on n, Chen et al. established the following.

Theorem 3 (Chen et al. [6]). R(Sn, W6) = 2n + 1 for n ≥ 3.

In this paper, we consider the value of R(Sn, W8). Our main result is the following.

Theorem 4. R(Sn, W8) = 2n + 2 for n ≥ 6 and n ≡ 0 (mod 2).

2. Some lemmas

In order to prove Theorem 4, we need the following lemmas.

Lemma 1 (Bondy [1]). Let G be a graph of order n. If δ(G) ≥ n/2, then either G is pancyclic
or n is even and G = Kn/2,n/2.

Lemma 2 (Brandt et al. [4]). Every non-bipartite graph G with δ(G) ≥ (n + 2)/3 is weakly
pancyclic and has girth 3 or 4.

Lemma 3 (Dirac [7]). Let G be a 2-connected graph of order n ≥ 3 with δ(G) = δ. Then
c(G) ≥ min{2δ, n}.

Lemma 4 (Zhang [9]). If G is a Hamiltonian graph of order n and there exists a vertex x such
that d(x) + d(y) ≥ n for each y not adjacent to x, then either G is pancyclic or n is even and
G = Kn/2,n/2.

Given a graph G of order n, repeat the following recursive operation as long as possible: For
each pair of nonadjacent vertices a and b, if d(a)+ d(b) ≥ n+ 1 then add the edge ab to G. We
denote by cl(G) the resulting graph and call it the closure of G.

Lemma 5 (Bondy and Chvátal [2]). A graph G of order n ≥ 3 is Hamilton-connected if and
only if its closure cl(G) is Hamilton-connected.

Lemma 6. If F is a linear forest of order 6, then F is (4, 6)-connected.
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Proof. Let u, v ∈ V (F). Since cl(P6) = K7, by Lemma 5, F has a Hamilton (u, v)-path
P = v1v2 · · · v6, where u = v1 and v = v6. If F contains no (u, v)-path of order 5, then
vivi+2 ∈ E(F) for 1 ≤ i ≤ 4. Since ∆(F) ≤ 2, we have v1v4 ∈ E(F), which implies
v2v6 ∈ E(F). In this case, F contains a triangle v2v4v6, a contradiction. If F contains no (u, v)-
path of order 4, then vivi+3 ∈ E(F) for 1 ≤ i ≤ 3. If v1v3 ∈ E(F), then v2v6, v4v6 ∈ E(F),
which contradicts ∆(F) ≤ 2. Thus by symmetry we have v1v3, v4v6 ∈ E(F), which implies F
contains a C4, a contradiction. �

Lemma 7 (Chen et al. [5]). Let G be a connected graph and C a maximal cycle of G. Suppose
that v ∈ V (G − C) and dC (v) ≥ 2. Then for any two distinct vertices x, y in N+C (v) or N−C (v),
xy 6∈ E(G) and N (x) ∩ N (y) ∩ V (G − C) = ∅.

Lemma 8. Let G = K4,4 and E0 ⊆ E(G). If G[E0] is a linear forest, then G − E0 contains a
C8.

Lemma 9. Let G = (V1, V2) be a bipartite graph with |V1| ≥ 4 and 4 + k ≤ |V2| ≤ 6 + 2k,
where k ≥ 0 is an integer. If d(a) ≥ 4+ k for each a ∈ V1, then G contains a C8.

Proof. We need only to consider the case in which |V1| = 4. Let P = v1v2 · · · vl be a
longest path of G. Obviously, l ≤ 9. If v1 ∈ V1, then by the maximality of P , we have
N (v1) ⊆ {vi | i ≡ 0 (mod 2)}. Since d(v1) ≥ 4 + k, we have k = 0, l = 8 and v1vl ∈ E(G),
which implies G contains a C8. Thus we may assume v1 6∈ V1. By symmetry, vl 6∈ V1. In this
case, we have l ≡ 1 (mod 2), {vi | i ≡ 1 (mod 2)} ⊆ V2 and {vi | i ≡ 0 (mod 2)} ⊆ V1. Since
d(a) ≥ 4+ k for each a ∈ V1 and |V2| ≤ 6+ 2k, we have |N (ai ) ∩ N (a j )| ≥ 2 for ai , a j ∈ V1,
which implies l ≥ 5. By the maximality of P , we have N (v2) ∩ N (a) ∩ (V2 − V (P)) = ∅

for each a ∈ V1 − V (P). If l 6= 9, then we may assume a ∈ V1 − V (P) since |V1| = 4.
By the maximality of P , we have v1, vl 6∈ N (a). Thus we have dP (a) ≤ 2, which implies
|N (a)∩ (V2 − V (P))| ≥ 2+ k. If NP (a) = ∅, then |N (a)∩ (V2 − V (P))| ≥ 4+ k. Noting that
N (v2) ∩ N (a) ∩ (V2 − V (P)) = ∅, we have d(v2) ≤ 2 + k, a contradiction. Since l = 5 or 7,
by symmetry we assume v3a ∈ E(G). By the maximality of P , v2vl 6∈ E(G). Thus, noting that
N (v2) ∩ N (a) ∩ (V2 − V (P)) = ∅, we have d(v2) ≤ 3+ k, a contradiction. Therefore, l = 9.

Let U = V2 − V (P) and X = {v3, v5, v7}. If G contains no C8, then we have dU (v2) +

dU (v8) ≤ |U | ≤ 1 + 2k and v1v8, v2v9 6∈ E(G). Since d(v2) + d(v8) ≥ 8 + 2k, we assume
dX (v2) = 3 and dX (v8) ≥ 2. For vi ∈ {v3, v5}, if viv8 ∈ E(G), then v1, v9 6∈ N (vi+1)

for otherwise G contains a C8. Since vi+1vi
←−P v2vi+2

−→P v8 is a path of order 7, we have
dU (vi+1)+ dU (v8) ≤ 1+ 2k and v9vi+1, v1vi+1 6∈ E(G). Thus, noting that d(vi+1)+ d(v8) ≥

8 + 2k, we have X ⊆ N (v8). Now, consider d(v4) + d(v6). Since X ⊆ N (v2) ∩ N (v8),
we have v1, v9 6∈ N (v4) ∩ N (v6). Noting that v4v3v2v5v8v7v6 is a path of order 7, we have
dU (v4) + dU (v6) ≤ 1 + 2k. Thus, we have d(v4) + d(v6) ≤ 7 + 2k, a contradiction. So G
contains a C8. �

Lemma 10. Let G be a 2-connected graph of order 11 and δ(G) ≥ 4. If c(G) = 9 or 10, then
G contains a C8.

Proof. Let C = t1t2 · · · tl be a longest cycle of G and H = G − C . If h ∈ V (H) and
dC (h) ≥ 4, then by Lemma 7, G contains a bipartite graph G0 between {h} ∪ N+C (h) and
V (G) − ({h} ∪ N+C (h)), which satisfies the conditions of Lemma 9, and hence G contains a
C8. If dC (h) ≤ 3 for any h ∈ V (H), then we have l = 9 and H = K2. Let E(H) = {h1h2}

and t1h1 ∈ E(G). By the maximality of C , we have t2, t3, t8, t9 6∈ N (h2). If G contains no C8,
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then we have t5, t6 6∈ N (h2) and |N (h2)∩ {t1, t4, t7}| ≤ 1, which implies dC (h2) ≤ 1, and hence
d(h2) ≤ 2, a contradiction. �

Lemma 11. Let G be a graph of order at least n + 3 and ∆(G) ≤ n − 2. Suppose (U, X) is
a partition of V (G) with |U | = 6 and G[U ] is (5, 6)-connected. If G contains no C8, then
e(U, X) ≥ min{5|X | − 5, 9

2 |X |}.

Proof. Let x0 ∈ X and dU (x0) = min{dU (x) | x ∈ X}. If dU (x0) ≤ 2, then G[U ∪ {x0}] is
Hamilton-connected, which implies dU (x) ≥ 5 for any x ∈ X − {x0}. In this case, e(U, X) ≥

5(|X | − 1) = 5|X | − 5. If dU (x0) ≥ 3, we let X0 = {x | x ∈ X and dU (x) ≤ 4} and x any
vertex in X0. Since |X | ≥ n− 3 and ∆(G) ≤ n− 2, there is some x ′ ∈ X such that xx ′ 6∈ E(G).
If dU (x ′) ≤ 5, then noting that G[U ] is (5, 6)-connected, we see that G[U ∪ {x, x ′}] contains
a C8, and hence we have dU (x ′) = 6. If x1, x2 ∈ X0 and there is some vertex x ∈ X such that
x1, x2 6∈ N (x), then since G[U ] is (5, 6)-connected, G contains a C8, a contradiction. Thus we
have |X0| ≤

1
2 |X |, and hence e(U, X) ≥ (3+6)|X0|+5(|X |−2|X0|) = 5|X |−|X0| ≥

9
2 |X |. �

Lemma 12. Let G be a graph of order 2n + 2 ≥ 22 and ∆(G) ≤ n − 2. Suppose H is a graph
of order 7 and H is Hamilton-connected. If G contains an induced K1 ∪ H, then G contains a
W8.

Proof. Let v ∈ V (G) − V (H), N (v) = Q and NH (v) = ∅. Set B = V (G) − V (H) − N [v].
If b ∈ B and dH (b) ≤ 5, then since H is Hamilton-connected, G[V (H) ∪ {v, b}] contains a W8
with the hub v. Hence we may assume that e(H, B) ≥ 6|B|.

Assume e(H) ≤ 2. If q ∈ Q and dH (q) ≤ 2, then it is not difficult to see that
G[V (H) ∪ {v, q}] contains a W8 with the hub h for some h ∈ V (H). Thus we have dH (q) ≥ 3
for any q ∈ Q, which implies e(H, Q) ≥ 3|Q|. In this case, 7(n − 2) ≥

∑
h∈H d(h) ≥

3|Q| + 6|B| = 3|B| + 3(2n − 6) ≥ 9n − 30 ≥ 7n − 10, a contradiction. Therefore, we
have e(H) ≥ 3. If e(H) = 3, we assume h0 ∈ V (H) with dH (h0) = 0 and F = H − {h0}.
Since e(F) = 3, it is easy to see F contains a C6, which implies G[{v} ∪ V (F)] is Hamilton-
connected. Thus, if q ∈ Q such that dH (q) = 0 or qh0 6∈ E(G) and dF (q) ≤ 4, then
G[V (H) ∪ {v, q}] contains a W8 with the hub h0. Hence we may assume dH (q) ≥ 1 and if
qh0 6∈ E(G), then dH (q) ≥ 5 for any q ∈ Q. If q ′, q ′′ ∈ Q and q ′, q ′′ 6∈ N (h0), then we have
e(H, Q) ≥ |Q|+8, which implies 7(n−2) ≥

∑
h∈H d(h) ≥ |Q|+8+6|B|+2e(H) ≥ 7n−12,

a contradiction. Thus we have dQ(h0) ≥ |Q| − 1. If q ′, q ′′ ∈ NQ(h0) such that dH (q ′) ≤ 2 and
dH (q ′′) ≤ 2, then e(V (F), {v, h0, q ′, q ′′}) ≤ 2. Since e(F) = 3, F contains some h such that
dH (h) ≤ 1 and q ′, q ′′ 6∈ N (h). Let U = V (F) − N [h] and |U | = 4. By Lemma 8, we see
that G[U ∪ {h, v, h0, q ′, q ′′}] contains a W8 with the hub h. Thus we may assume e(H, Q) ≥

3(|Q| − 2)+ 2, which implies 7(n− 2) ≥
∑

h∈H d(h) ≥ 3|Q| − 4+ 6|B| + 2e(H) ≥ 7n− 8, a
contradiction. Therefore, we have e(H) ≥ 4.

If e(H, Q) ≥ 2|Q|−3, then 7(n−2) ≥
∑

h∈H d(h) ≥ 2|Q|−3+6|B|+2e(H) ≥ 8n−23 ≥
7n − 13, and hence we have e(H, Q) ≤ 2|Q| − 4.

If |Q| ≤ 2, then 7(n− 2) ≥
∑

h∈H d(h) ≥ 6|B| ≥ 6(2n− 8) ≥ 7n+ 2, a contradiction. Thus
we may assume q1, q2, q3 ∈ Q such that dH (q1) ≤ dH (q2) ≤ dH (q3) and dH (q3) ≤ dH (q)

for any q ∈ Q − {q1, q2, q3}. Set X = {v, q1, q2, q3}. If dH (q3) = 0, then since |H | = 7 and
H is Hamilton-connected, we have δ(H) ≤ 2, which implies |V (H) − N (h)| ≥ 4 for h ∈ H
and dH (h) = δ(H), and hence G contains a W8 with the hub h. Thus we have dH (q3) ≥ 1. If
dH (q3) ≥ 3, then we have e(H, Q) ≥ 3|Q| − 6 > 2|Q| − 4, a contradiction. Hence we have
1 ≤ dH (q3) ≤ 2. Since ∆(G) ≤ n − 2, we have 2e(H) ≤ 7(n − 2) − (e(H, Q) + e(H, B)) ≤
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7(n − 2) − (|Q| − 2 + 6|B|) = 7(n − 2) − (5|B| + 2n − 6 − 2) ≤ 14, that is, e(H) ≤ 7.
Let U = {h | h ∈ V (H) and dH (h) ≤ 2}. Then we have |U | ≥ 3. If dH (q2) = 0, then since
dH (q3) ≤ 2, there is some u ∈ U such that dX (u) = 0. Let Y ⊆ V (H)− N [u] and |Y | = 4. By
Lemma 8, we see that G[X∪Y∪{u}] contains a W8 with hub u. Thus we may assume dH (q2) ≥ 1.
In this case, we have dH (q3) = 1 for otherwise e(H, Q) ≥ 2|Q| − 3, and e(H, Q) ≥ |Q| − 1,
which implies e(H) ≤ 6. If |U | = 3, then H = 3K1∪K4, which contradicts that H is Hamilton-
connected. Hence we have |U | ≥ 4. Define Q1 = {q | q ∈ Q and dH (q) ≤ 1}. Obviously,
|Q1| ≥ 3. If dH (q1) = 0 or |NH (Q1)| ≥ 2, say |NH (X)| ≥ 2, then since |U | ≥ 4, there
is some u ∈ U such that dX (u) = 0. Let Y ⊆ V (H) − N [u] and |Y | = 4. By Lemma 8,
G[X ∪ Y ∪ {u}] contains a W8 with the hub u. Thus we have |NH (Q1)| = 1 and dH (q1) = 1.
If h ∈ V (H) − NH (Q1) and dH (h) ≤ 1, then G contains a W8 with the hub h, and hence we
have dH (h) = 2 for any h ∈ V (H) − NH (Q1). This implies H = K1 ∪ C6 or K1 ∪ 2K3. Let
NH (Q1) = {h′}, then we have dH (h′) = 0. Noting that e(H) = 6, we have dH (q) = 1 for any
q ∈ Q and |Q| = n−2 for otherwise ∆(G) ≥ n−1. In this case, Q contains at least two vertices,
say q1, q2 such that q1q2 6∈ E(G). Let h1 ∈ V (H)−{h′} and h2, h3, h4 ∈ V (H)−{h′}∪NH [h1].
Then vh′h2q1q2h3q3h4 is a C8 in G, and hence G contains a W8 with the hub h1. �

Lemma 13. Let G be a graph of order 2n + 2 ≥ 22 and ∆(G) ≤ n − 2. Suppose H is a linear
forest with |H | = 6, e(H) ≤ 3 and H 6= K1 ∪ K2 ∪ P3. If G contains an induced K1 ∪ H, then
G contains a W8.

Proof. Let v ∈ V (G)− V (H), N (v) = Q and NH (v) = ∅. Set X = V (G)− V (H)− N [v]. By
Lemma 12, we may assume dH (q) ≥ 3 if e(H) ≤ 1 and dH (q) ≥ 2 if e(H) = 2 for any q ∈ Q.
By Lemmas 6 and 11, we may assume e(H, X) ≥ 4|X |+2. Thus we have

∑
h∈H d(h) ≥ 3|Q|+

4|X | + 2 ≥ 6n− 6 if e(H) ≤ 1 and
∑

h∈H d(h) ≥ 2|Q| + 4|X | + 2+ 4 ≥ 6n− 10 if e(H) = 2,
which implies ∆(G) ≥ n − 1, a contradiction. If e(H) = 3, then H = 3K2 or 2K1 ∪ P4. By
Lemma 12, Q has at most one vertex which has no neighbors in H . If e(H, Q) ≥ 2|Q| − 3, then
by Lemmas 6 and 11, we have

∑
h∈H d(h) ≥ 2|Q|−3+4|X |+2+6 ≥ 6n−11, a contradiction.

Thus there exists q1, q2, q3 ∈ Q such that
∑3

i=1 dH (qi ) ≤ 3. Let Y = {v, q1, q2, q3} and
U = ∪3

i=1 NH (qi ). If |U | ≥ 2, then since
∑3

i=1 dH (qi ) ≤ 3, there is some h ∈ V (H) − U
such that dH (h) ≤ 1. Let U ′ ⊆ V (H) − N [h] and |U ′| = 4. Obviously, the subgraph induced
by E(U ′, Y ) is a linear forest, which implies G[{h} ∪ U ′ ∪ Y ] contains a W8 with the hub h by
Lemma 8. If |U | = 1, then there is some h ∈ V (H) − U such that N (h) ∩ (V (H) − U ) = ∅.
Since |V (H) − U ∪ {h}| = 4 and E(V (H) − (U ∪ {h}), Y ) = ∅, we see that G contains a W8
with the hub h. �

3. Proof of Theorem 4

Proof of Theorem 4. Obviously, the graph Kn−1 ∪ H shows that R(Sn, W8) ≥ 2n + 2, where
H = n−4

4 K4∪K3,3 if n ≡ 0 (mod 4) and H = n+2
4 K4 if n ≡ 2 (mod 4). In the following proof,

we need only to show that R(Sn, W8) ≤ 2n + 2.
Let G be a graph of order 2n + 2. Suppose to the contrary that neither G contains an Sn nor

G contains a W8.
We first consider the case in which n ≤ 8. Let v0 be a vertex of degree ∆(G). Set

H = G[NG(v0)], B = V (G) − NG[v0] and F = G[B]. Since G contains no Sn , we have
δ(G) ≥ (2n + 1) − (n − 2) = n + 3. Assume dG(v0) = n + 3 + l, where l ≥ 0 is an integer.
Since |B| = n − 2− l, we have δ(H) ≥ (n + 3)− [(n − 2− l)+ 1] = 4+ l.
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Since G contains no W8, we see that H contains no C8.
If n = 6, then |H | = 9 + l. If l ≥ 1 or l = 0 and δ(H) ≥ 5, then we have δ(H) ≥ |H |/2,

which implies H contains a C8 by Lemma 1, a contradiction. If l = 0 and δ(H) = 4, then H
is connected and G is 9-regular. If κ(H) = 1, say u0 is a cut-vertex, then it is easy to see that
H = {u0} + 2K4. Since G is 9-regular, we have NG(u0) ∩ B = ∅. For each h ∈ V (H) − {u0},
since dH (h) = 4 and dG(h) = 9, we have B ⊆ NG(h), which implies F = 2K2 since G is
9-regular. Thus G = 3K2 + 2K4, and hence G contains a W8, a contradiction. If κ(H) ≥ 2 and
H is bipartite, then H = K4,5, a contradiction. If κ(H) ≥ 2 and H is non-bipartite, then by
Lemmas 2 and 3, H contains a C8, a contradiction. Hence R(S6, W8) ≤ 14.

If n = 8, then |H | = 11+ l. If l ≥ 3, then we have δ(H) ≥ |H |/2, which implies H contains
a C8 by Lemma 1, a contradiction. Thus we have l ≤ 2. Suppose l 6= 0. If κ(H) ≥ 2 and H is
bipartite, then since δ(H) ≥ 4+l and |H | = 11+l, H contains a C8 by Lemma 9, a contradiction.
If κ(H) ≥ 2 and H is non-bipartite, then since δ(H) ≥ 4+ l ≥ [(11+ l)+ 2]/3, by Lemmas 2
and 3, H contains a C8, a contradiction. If κ(H) ≤ 1, then it is not difficult to see that H contains
a subgraph H1 such that H1 = K5 and dH (h) = 4+ l for each h ∈ V (H1). Since δ(G) ≥ n + 3,
we have B ⊆ NG(h) for each h ∈ V (H1). Thus, H1 together with v0 and any three vertices
of B produce a W8 in G, a contradiction. Therefore we have l = 0. If H is disconnected, then
H contains a component H1 = K5. Thus, this H1 together with v0 and any three vertices of B
produce a W8 in G, a contradiction. If κ(H) = 1, we let v1 be a cut-vertex of H . Since δ(H) ≥ 4,
H − v1 contains exactly two components H1, H2 such that |H1| = |H2| = 5 or |H1| = 4 and
|H2| = 6. If |H1| = 5, then since δ(H1) ≥ 3 and the number of vertices of odd degree is even, H1
contains a vertex v such that V (H1) ⊆ NG[v]. Obviously, dH (v) ≤ 5. Since δ(G) ≥ 11, we may
assume B ′ ⊆ NG(v) ∩ B and |B ′| = 5. For each h ∈ NH1(v), we have |NG(h) ∩ B ′| ≥ 4. Thus
G contains a W8 with the hub v by Lemma 9, a contradiction. If |H1| = 4, then V (H1) ∪ {v1} is
a clique and B ⊆ NG(h) for each h ∈ V (H1). Since δ(G) ≥ 11 and |H | = 11, we see that either
NG(v1)∩ B 6= ∅ or F is not an independent set. If NG(v1)∩ B 6= ∅, say b1 ∈ NG(v1)∩ B, then
H1 together with v0, v1, b1 and any two vertices of B − {b1} form a W8 in G, a contradiction.
If F is not an independent set, say b1b2 ∈ E(F), then H1 together with v0, v1, b1, b2 and any
vertex of B−{b1, b2} form a W8 in G, a contradiction. If κ(H) ≥ 2, then c(H) ≥ 8 by Lemma 3.
By Lemma 10, c(H) = 11, that is, H is Hamiltonian. If δ(H) ≥ 5, then by Lemmas 2 and 3, H
contains a C8, a contradiction. Thus we have δ(H) = 4. Let v ∈ V (H) and dH (v) = 4. Since
δ(G) ≥ 11, we have B ⊆ NG(v). If ∆(H) ≤ 6, then |NG(u) ∩ B| ≥ 4 for each u ∈ NH (v).
Thus G contains a W8 with the hub v by Lemma 9, a contradiction. If ∆(H) ≥ 7, then noting
that δ(H) = 4, H contains a C8 by Lemma 4, a contradiction. Thus R(S8, W8) ≤ 18.

Now, we consider the case in which n ≥ 10.
Let I be a maximum independent set of G. If |I | ≤ 2, then G contains an Sn , and hence

we have |I | ≥ 3. By Lemma 13, we have |I | ≤ 6 and if |I | = 6, then dI (v) ≥ 3 for any
v ∈ V (G) − I . Suppose |I | = 6. Since

∑
a∈I d(a) ≤ 6(n − 2) and |V (G) − I | = 2n − 4, we

have dI (v) = 3 for any v ∈ V (G)− I and d(a) = n − 2 for each a ∈ I . Let a ∈ I , N (a) = Q
and X = V (G) − I − N [a]. Obviously, |X | = n − 2. Let u ∈ X . Since G contains no Sn and
dI (u) = 3, there exists v, w ∈ X − {u} such that v, w 6∈ N (u). Noting that dI (v) = dI (w) = 3,
we see that G[I ∪ {u, v, w} − {a}] contains a C8, and hence G contains a W8 with the hub a, a
contradiction. Thus we have 3 ≤ |I | ≤ 5.

In order to consider the cases when 3 ≤ |I | ≤ 5, we need the following claim.
Claim 1. Let H ∈ {K3∪K4, K3∪B2, P3∪B2}. If α(G) = α(H)+1, then G contains no induced
K1 ∪ H .
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Proof. Let v ∈ V (G)−V (H), dH (v) = 0, N (v) = Q, R = V (G)− N [v] and U = R−V (H).
Assume V (H) = A ∪ B with G[A] = K3 or P3, G[B] = K4 or B2 and E(A, B) = ∅. Set
A = {a1, a2, a3}, B = {b1, b2, b3, b4}. Choose H such that e(H, U ) is as large as possible.

We first show that e(H, U ) ≥ 6|U |. Since G contains no W8, we can see that G[R] contains
no C8. Define X = {u | u ∈ U, A ⊆ N (u) and B 6⊆ N (u)}, Y = {u | u ∈ U and A∪ B ⊆ N (u)}

and Z = {u | u ∈ U, B ⊆ N (u) and A 6⊆ N (u)}. If there is some vertex u ∈ U such that
dA(u) ≤ 2 and dB(u) ≤ 3, then since α(G) = α(H) + 1, we have α(G) ≥ 4, and hence
G[B] = B2. In this case, since H contains an (a, b)-path of order 7 for any a ∈ A and b ∈ B,
we see G[R] contains a C8, a contradiction. Thus, (X, Y, Z) is a partition of U .

If dB(u) ≤ 2 for some u ∈ U , say b1, b2 6∈ N (u), then a1b1ub2a2b3a3b4 is a C8 in G[R].
If xz 6∈ E(G) for some x ∈ X and z ∈ Z , then since H contains an (a, b)-path of order 6 for
any a ∈ A and b ∈ B, we see G[R] contains a C8. Thus we have dB(u) ≥ 3 for each u ∈ U
and X ⊆ N (z) for each z ∈ Z . If Z = ∅, then we have e(H, U ) ≥ 6|U |. Hence we may assume
Z 6= ∅. Define Zi = {z | z ∈ Z and dA(z) = i} for i = 0, 1, 2.

Let z ∈ Z0. If there is some z′ ∈ Z such that zz′ 6∈ E(G), then we have α(G) ≥ 4,
and hence G[B] = B2. Assume without loss of generality that b1b2, z′a1 6∈ E(G). Then
a1z′za2b1b2a3b3 is a C8 in G[R], and thus we have Z ⊆ N [z]. Since G contains no Sn , we
have |Q| ≤ n − 2 and |U | ≥ n − 4. Thus dY (z) ≤ |Y | − 1. If dY (z) = |Y | − 1, then
we must have |Q| = n − 2, |U | = n − 4 and dR(z) = n − 2. By the choice of H , we
have dR(b1) = dR(b2) = n − 2, where dB(b1) = dB(b2) = 3. Assume dA(a1) = 2. Since
dQ(a1) + dQ(b3) ≤ 2(n − 2) − [(|U | + 1) + 2 + 2] = n − 5, there exists q1, q2, q3 ∈ Q such
that q1, q2, q3 6∈ N (a1) ∪ N (b3). In this case, G[{a1, v, q1, q2, q3, b1, b2, b3, z}] contains a W8
with the hub a1, a contradiction. Hence we have dY (z) ≤ |Y | − 2 for any z ∈ Z0.

Let z ∈ Z1. If dY (z) = |Y |, then there exists z1 ∈ Z − {z} such that z1 6∈ N (z)
since ∆(G) ≤ n − 2. Assume a1z1, a2z 6∈ E(G). If G[B] = B2, say b1b2 6∈ E(G), then
a1z1za2b1b2a3b3 is a C8 in G[R], and hence we have α(G) = 3. In this case, we have
a2, a3 6∈ N (z) and a2, a3 ∈ N (z1). If z2 ∈ Z − {z, z1} and z1z2 6∈ E(G), then since α(G) = 3,
we have a2 6∈ N (z2) or a3 6∈ N (z2), which implies a1b1a2z2z1za3b2 or a1b1a3z2z1za2b2 is a C8
in G[R], and hence we have Z − {z} ⊆ N [z1]. Since d(z1) ≤ n − 2, z1 ∈ Z2 and X ⊆ N (z1),
we have Y 6⊆ N (z1). Thus there is some y ∈ Y and z′ ∈ Z −{z} such that y, z 6∈ N (z′) if z ∈ Z1
and dY (z) = |Y |.

Let z ∈ Z0 ∪ Z1. Define N∗(z) = {y | y ∈ Y and yz 6∈ E(G)} if dY (z) ≤ |Y | − 1 and
N∗(z) = {y | y ∈ Y and y, z 6∈ N (z′) for some z′ ∈ Z} if dY (z) = |Y |. By the argument above,
we have |N∗(z)| ≥ 2 if z ∈ Z0 and |N∗(z)| ≥ 1 if z ∈ Z1. Assume z1, z2 ∈ Z0 ∪ Z1 and
y ∈ N∗(z1) ∩ N∗(z2) 6= ∅. If dY (z1) ≤ |Y | − 1, then there is some z′1 ∈ Z − {z1} such that
z1, z′1 6∈ N (y). Thus we can choose two vertices, say a1, a2 ∈ A such that z1a1, z′1a2 6∈ E(G),
which implies a1z1 yz′1a2b1a3b2 is a C8 in G[R], a contradiction. Hence by symmetry we have
dY (z1) = dY (z2) = |Y |, and thus z1, z2 ∈ Z1. Assume z′i ∈ Z and zi z′i , yz′i 6∈ E(G) for
i = 1, 2. Since z′1z2, z′2z1 ∈ E(G), we have z′1 6= z′2. Since z1, z2 ∈ Z1, we can choose two
vertices, say a1, a2 ∈ A such that z1a1, z2a2 6∈ E(G), which implies a1z1z′1 yz′2z2a2b1 is a C8

in G[R], a contradiction. Hence we have N∗(z1) ∩ N∗(z2) = ∅ for any z1, z2 ∈ Z0 ∪ Z1. Let
Y0 = ∪z∈Z0 N∗(z), Y1 = ∪z∈Z1 N∗(z) and Y2 = Y −Y0−Y1, then |Y0| ≥ 2|Z0| and |Y1| ≥ |Z1|.
Thus e(H, U ) = e(H, X ∪ Y2 ∪ Z2)+ (e(H, Z0)+ e(H, Y0))+ (e(H, Z1)+ e(H, Y1)) ≥ 6|U |.

If |Q| ≤ 2, then 7(n − 2) ≥
∑

h∈H d(h) ≥ 6|U | ≥ 6(2n − 8) ≥ 7n + 2, and hence |Q| ≥ 3.
If q1, q2, q3 ∈ Q and dH (q1) + dH (q2) + dH (q3) ≤ 1, then since |A| = 3, there is some
a ∈ A such that q1, q2, q3 6∈ N (a). By Lemma 8, G[B ∪ {v, q1, q2, q3}] contains a C8, and
hence G contains a W8 with the hub a, a contradiction. Thus we have e(H, Q) ≥ |Q|− 1, which
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implies 7(n − 2) ≥
∑

h∈H d(h) ≥ e(H, Q) + e(H, U ) + 2e(H) ≥ (|Q| − 1) + 6|U | + 14 =
5|U | + (2n − 6)+ 13 ≥ 5(n − 4)+ (2n − 6)+ 13 = 7n − 13, a contradiction. �

We now consider the following three cases separately.
Case 1. α(G) = 3

If G contains an induced 3K2, we assume U = {ui | 1 ≤ i ≤ 6} and E(G[U ]) =
{u1u2, u3u4, u5u6}. Set V (G)−U = X . Since G contains no Sn , we have e(U, X) ≤ 6(n − 3).
Since α(G) = 3, we have dU (x) ≥ 2 for each x ∈ X and if dU (x) = 2, then G[NU (x)] = K2.
Since |X | = 2n − 4 and e(U, X) ≤ 6(n − 3), X contains at least four vertices, say xi
(1 ≤ i ≤ 4) such that dU (xi ) = 2. This implies G contains an induced 2K2 ∪ K4. Assume
Y = {ui | 1 ≤ i ≤ 8} and E(G[Y ]) = {u1u2, u3u4} ∪ {ui u j | 5 ≤ i < j ≤ 8}. Set
V (G) − Y = Z . Since G contains no Sn , we have e(Y, Z) ≤ 8(n − 2) − 16 = 8n − 32.
Since |Z | = 2n − 6, it follows that Z contains at least four vertices, say zi (1 ≤ i ≤ 4) such
that dY (zi ) ≤ 3. Since α(G) = 3, we have |N (zi ) ∩ {u5, u6, u7, u8}| ≤ 1 for 1 ≤ i ≤ 4 and
either u1, u2 ∈ N (zi ) or u3, u4 ∈ N (zi ). Assume without loss of generality that u1, u2 ∈ N (zi )

for i = 1, 2. By Claim 1, we have |N (zi ) ∩ {u5, u6, u7, u8}| = 1 for i = 1, 2. By Lemma 8,
G[Y ∪ {z1, z2} − {u4}] contains a W8 with the hub u3, a contradiction. Therefore, G contains no
induced 3K2.

Since G contains no Sn , V (G) − I contains a vertex v such that dI (v) = 1, which implies
G contains an induced 2K1 ∪ K2. Let G0 = 2K1 ∪ K2. For the same reason, V (G) − V (G0)

contains a vertex v such that dG0(v) = 1, which implies G contains an induced K1 ∪ 2K2 since
α(G) = 3. Let U = {ui | 1 ≤ i ≤ 4} and E(G[U ∪ {u0}]) = {u1u2, u3u4}. Set N (u0) = X and
Y = V (G)−U−N [u0]. Since G contains no induced 3K2, we have e(U, X) ≥ |X |. If dU (y) ≥ 3
for each y ∈ Y , then 4(n − 2) ≥

∑4
i=1 d(ui ) = e(U, X)+ e(U, Y )+ 2e(G[U ]) ≥ 4n − 1, and

hence there is some u5 ∈ Y such that dU (u5) ≤ 2. Since α(G) = 3, we may assume without loss
of generality that NU (u5) = {u3, u4}. Let A = {ui | 0 ≤ i ≤ 5} and B = V (G)− A. Obviously,
G[A] = K1∪ K2∪ K3. Since α(G) = 3 and G contains no induced 3K2, we have dA(b) ≥ 2 for
each b ∈ B. Set B0 = {b | b ∈ B and dA(b) = 2}. Since

∑5
i=0 dB(ui ) ≤ 6(n−2)−8 = 6n−20

and 3|B| = 6n − 12, we have |B0| ≥ 8. If b1, b2 ∈ B0 − N (u0), then since α(G) = 3,
we have NA(b1) = NA(b2) = {u1, u2} and b1b2 ∈ E(G), which contradicts Claim 1. Thus
we have dB0(u0) ≥ 7. Since G contains no induced 3K2, we have NA(b) ⊆ {u0, u1, u2} for
any b ∈ NB0(u0). Assume without loss of generality that bi ∈ NB0(u0) for 1 ≤ i ≤ 3 and
NA(bi ) = {u0, u1}. Since α(G) = 3, we have bi b j ∈ E(G) for 1 ≤ i < j ≤ 3, which
contradicts Claim 1.
Case 2. α(G) = 4

If G has an induced 2K1 ∪ K2 ∪ K4, we let V (H) = X ∪ Y , X = {x1, x2, x3, x4},
E(G[X ]) = {x3x4}, G[Y ] = K4 and E(X, Y ) = ∅. Set Z = V (G) − V (H). By Lemma 13,
dH (z) ≥ 2 for any z ∈ Z . Let Z0 = {z | z ∈ Z and dH (z) ≤ 3}. Since ∆(G) ≤ n − 2, we have
e(H, Z) ≤ 8(n − 2)− 14 = 8n − 30, which implies |Z0| ≥ 3. Let z ∈ Z0. Since α(G) = 4, we
have dY (z) ≤ 2. If x1z 6∈ E(G), then G[V (H)∪{z}] contains a W8 with the hub x1 by Lemma 8,
and hence we have x1, x2 ∈ N (z) for any z ∈ Z0. Since |Z0| ≥ 3, Z0 contains two vertices, say
z1, z2, such that z1, z2 6∈ N (x3) or z1, z2 6∈ N (x4), and hence G contains a W8 with the hub x3
or x4 by Lemma 8, a contradiction. Therefore G contains no induced 2K1 ∪ K2 ∪ K4.

If G contains an induced K1 ∪ K2 ∪ P4, we assume U = {ui | 1 ≤ i ≤ 6} and
E(G[U ∪ {u0}]) = {ui ui+1 | i = 1, 3, 4, 5}. Set N (u0) = Q and X = V (G) − U − N [u0].
By Lemma 11, e(U, X) ≥ 4|X | + 2. If e(U, Q) ≥ 2|Q| − 4, then 6(n − 2) ≥

∑6
i=1 d(ui ) ≥

2|Q| − 4+ 4|X | + 2+ 8 = 2|X | + 2(2n − 5)+ 6 ≥ 6n − 10, a contradiction. Thus there exists
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q1, q2, q3 ∈ Q such that
∑3

i=1 dU (qi ) ≤ 3. Let Y = {u0, q1, q2, q3} and Z = ∪3
i=1 NU (qi ).

If |Z | ≥ 2 or
∑3

i=1 dU (qi ) ≤ 2, then there exists u ∈ U − {u4, u5} such that u 6∈ Z . By
Lemma 8, G[(U − N (u)) ∪ Y ] contains a W8 with the hub u, a contradiction. Thus we have∑3

i=1 dU (qi ) = 3 and |Z | = 1. If u3, u6 6∈ Z , then there is some u ∈ U − {u4, u5} such that
u 6∈ Z and E(U − N [u], Y ) = ∅, and hence G contains a W8 with the hub u, a contradiction.
Thus by symmetry we may assume Z = {u6}. Since α(G) = 4, we have qi q j ∈ E(G) for
1 ≤ i < j ≤ 3, which implies G contains an induced 2K1 ∪ K2 ∪ K4, a contradiction. Hence G
contains no induced K1 ∪ K2 ∪ P4.

If G has an induced 2K1 ∪ 2K2, we let U = {ui | 1 ≤ i ≤ 5} and E(G[U ∪ {u0}]) =

{u2u3, u4u5}. Set X = V (G) − U ∪ {u0}, N (u0) = Y and X − Y = Z . Since α(G) = 4
and G contains no induced K1 ∪ 3K2 by Lemma 13, we have dU (z) ≥ 2 for any z ∈ Z .
Define Zi = {z | z ∈ Z and dU (z) = i} for 2 ≤ i ≤ 5. Let z ∈ Z3. Since ∆(G) ≤ n − 2,
we have |Z | ≥ n − 2, and hence there exists z′, z′′ ∈ Z − N [z]. If {z′, z′′} ∩ Z5 = ∅, then
z′, z′′ ∈ Z4 for otherwise G[U ∪ {z, z′, z′′}] contains a C8 since G[U ] = W4 is Hamilton-
connected, which implies G contains a W8 with the hub u0, a contradiction. For the same
reason, we have NG(z′) ∩ Z5 6= ∅. Let N∗(z) = NG(z) ∩ Z5 if NG(z) ∩ Z5 6= ∅ and
N∗(z) = {x | x ∈ Z5 and z, x 6∈ N (x ′) for some x ′ ∈ Z4} if NG(z) ∩ Z5 = ∅. By the argument
above, N∗(z) 6= ∅ for any z ∈ Z3. If z1, z2 ∈ Z3 and z0 ∈ N∗(z1)∩ N∗(z2), then G[Z ] contains
a (z1, z2)-path of order k with 3 ≤ k ≤ 5. Note that G[U ] is (3, 5)-connected, we see that G
contains a W8 with the hub u0, and hence N∗(z1) ∩ N∗(z2) = ∅, which implies |Z3| ≤ |Z5|.
Therefore we have e(U, Z) ≥ 4|Z | − 2|Z2|. By Lemma 13, e(U, Y ) ≥ |Y |. Since G contains no
Sn , we have 5(n− 2) ≥

∑5
i=1 d(ui ) ≥ |Y | + 4|Z | − 2|Z2| + 4 = 3|Z | + (2n− 4)− 2|Z2| + 4 ≥

5n−6−2|Z2|, and hence |Z2| ≥ 2. Because G contains no induced K1∪K2∪ P4 and α(G) = 4,
NU (z) = {u2, u3} or {u4, u5} for any z ∈ Z2. Note that G contains no induced 2K1 ∪ K2 ∪ K4
and α(G) = 4, there exists z1, z2 ∈ Z2 such that NU (z1) = {u2, u3} and NU (z2) = {u4, u5}.
In this case, cl(G[U ∪ {z1, z2}]) = K7. By Lemma 5, G[U ∪ {z1, z2}] is Hamilton-connected,
which contradicts Lemma 12. Thus G contains no induced 2K1 ∪ 2K2.

If G has an induced 3K1 ∪ K3, we let U = {ui | 1 ≤ i ≤ 6} and E(G[U ]) =
{u4u5, u5u6, u4u6}. Set X = V (G)−U . Since α(G) = 4 and G contains no induced 2K1∪2K2,
we have dU (x) ≥ 2 for each x ∈ X . Let X0 = {x | x ∈ X and dU (x) = 2}. Since∑

u∈U d(u) ≤ 6(n − 2) and |X | = 2n − 4, we have |X0| ≥ 6. Let x ∈ X0. Note that
α(G) = 4 and G contains no induced 2K1 ∪ 2K2, we have N (x) ⊆ {u1, u2, u3}. Thus, since
|X0| ≥ 6, there exists x1, x2 ∈ X0 such that NU (x1) = NU (x2). Assume without loss of
generality that NU (x1) = NU (x2) = {u2, u3}. By Claim 1, we have x1x2 6∈ E(G). In this case,
cl(G[U ∪ {x1, x2} − {u1}]) = K7. By Lemma 5, G[U ∪ {x1, x2} − {u1}] is Hamilton-connected,
which contradicts Lemma 12. Thus G contains no induced 3K1 ∪ K3.

Let I = {u0, u1, u2, u3}, V (G) − I = X and X1 = {x | x ∈ X and dI (x) = 1}. Since
|X | = 2n − 2 and ∆(G) ≤ n − 2, we have |X1| ≥ 4. If |X1| ≥ 5 or dX1(ui ) ≥ 2 for some i
with 0 ≤ i ≤ 3, then G contains an induced 3K1 ∪ K3 since α(G) = 4, a contradiction. Thus
we have |X1| = 4 and dX1(ui ) = 1 for 0 ≤ i ≤ 3, which implies dI (x) = 2 for any x ∈ X − X1
and d(ui ) = n − 2 for 0 ≤ i ≤ 3. Let N (u0) = Y and Z = X − Y , then |Z | = n. Assume
Z0 = {vi | 1 ≤ i ≤ 3} ⊆ X1 and uivi ∈ E(G). Set Zi j = {z | z ∈ Z and NU (z) = {ui , u j }}

for 1 ≤ i < j ≤ 3. By the arguments above, we see that (Z0, Z12, Z23, Z13) is a partition
of Z . If z ∈ Z − Z0 and dZ0(z) = 0, then cl(G[Z0 ∪ I ∪ {z} − {u0}]) = K7. By Lemma 5,
G[Z0 ∪ I ∪ {z} − {u0}] is Hamilton-connected, which contradicts Lemma 12. Thus dZ0(z) ≥ 1
for any z ∈ Z − Z0. Since G contains no induced 2K1 ∪ 2K2, we have G[Z0] = K3. Since
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|Z | = n, there exists u ∈ Z such that v1u 6∈ E(G). Obviously, u 6∈ Z0. Since dI (u) = 2, |Z | = n
and dZ0(u) ≥ 1, there exists v ∈ Z − Z0 ∪ {u} such that uv 6∈ E(G). If v ∈ Z12 ∪ Z13, then
v1uvu3v2u1v3u2 or v1uvu2v3u1v2u3 is a C8 in G − N [u0], a contradiction. If v ∈ Z23, then
v2, v3 ∈ N (v) for otherwise v1u2v3u1u3v2vu or v1u3v2u1u2v3vu is a C8 in G − N [u0], and
hence there exists w ∈ Z − Z0 ∪ {u, v} such that wv 6∈ E(G). In this case, v1u2v3u1u3wvu or
v1u3v2u1u2wvu or v1u3u2v3u1wvu is a C8 in G − N [u0], also a contradiction.

Case 3. α(G) = 5
If G has an induced 2K1 ∪ K2 ∪ P3 or 2K1 ∪ P5, we let H ∈ {K1 ∪ K2 ∪ P3, K1 ∪ P5},

v ∈ V (G) − V (H) and NH (v) = ∅. Set N (v) = Q and X = V (G) − V (H) − N [v]. Let
h0 ∈ V (H) and dH (h0) = 0. If q ∈ Q, then by Lemmas 5 and 12, dH (q) ≥ 1 and if dH (q) = 1,
then NH (q) = {h0}. If qi ∈ Q and dH (qi ) = 1 for 1 ≤ i ≤ 3, then we may assume q1q2 ∈ E(G)

since α(G) = 5, which contradicts Claim 1. Thus we have e(H, Q) ≥ 2|Q| − 2. By Lemma 11,
we have 6(n − 2) ≥

∑
h∈H d(h) ≥ e(H, Q)+ e(H, X)+ 2e(H) ≥ 2|Q| − 2+ 4|X | + 2+ 6 ≥

6n − 10, a contradiction. Thus G contains no induced 2K1 ∪ K2 ∪ P3 and 2K1 ∪ P5.
If G has an induced 4K1 ∪ K2, we let U = {ui | 1 ≤ i ≤ 6} and E(G[U ]) = {u5u6}.

Set X = V (G) − U . By Lemma 13, dU (x) ≥ 2 for any x ∈ X . Since |X | = 2n − 4
and

∑
u∈U dX (u) ≤ 6(n − 2) − 2, X contains at least two vertices, say x1, x2 such that

dU (x1) = dU (x2) = 2. By Lemma 13, G contains no induced 3K1 ∪ P4. Thus noting that
G contains no induced 2K1 ∪ K2 ∪ P3, we have NU (x1) = NU (x2) = {u5, u6}. Since
α(G) = 5, we have x1x2 ∈ E(G). Now, let U ′ = U ∪ {x1, x2} and X ′ = V (G) − U ′. Since∑

u∈U ′ d(u) ≤ 8(n − 2), e(G[U ′]) = 6 and |X ′| = 2n − 6, X ′ contains a vertex x such that
dU ′(x) ≤ 3. Since α(G) = 5, we have |N (x) ∩ {u5, u6, x1, x2}| ≤ 2. By Lemma 8, G contains a
W8 with the hub ui for some ui ∈ U − {u5, u6}, a contradiction. Hence G contains an induced
4K1 ∪ K2 is impossible.

If G has an induced 3K1 ∪ P3, we let U = {ui | 1 ≤ i ≤ 6} and E(G[U ]) = {u4u5, u5u6}.
Set X = V (G)−U . Since α(G) = 5 and G contains no induced 4K1 ∪ K2, we have dU (x) ≥ 2
for any x ∈ X . Let X0 = {x | x ∈ X and dU (x) = 2}. Since e(G[U ]) = 2, |X | = 2n − 4 and
∆(G) ≤ n−2, we have |X0| ≥ 4. Since G contains no induced 2K1∪ P5 and 4K1∪K2, we have
NU (x) ⊆ {u1, u2, u3} or {u4, u5, u6} for any x ∈ X0. Let x1 ∈ X0. If NU (x1) ⊆ {u4, u5, u6},
then NU (x1) = {u4, u6} since G contains no induced 4K1∪K2. Let x2 ∈ X0−{x1}. By Lemmas 5
and 12, we have NU (x2) ⊆ {u4, u5, u6}, and hence NU (x2) = {u4, u6}. Since α(G) = 5, we
have x1x2 ∈ E(G), which contradicts that G contains no induced 4K1 ∪ K2. Thus we have
NU (x) ⊆ {u1, u2, u3} for each x ∈ X0. Noting that |X0| ≥ 4, there exists x1, x2 ∈ X0 such
that NU (x1) = NU (x2). Assume NU (x1) = NU (x2) = {u2, u3}. By Lemmas 5 and 12, we
have x1x2 ∈ E(G), which contradicts Claim 1. Thus G contains an induced 3K1 ∪ P3 is also
impossible.

On the other hand, since ∆(G) ≤ n−2, |I | = 5 and |V (G)− I | = 2n−3, V (G)− I contains
a vertex v such that dI (v) ≤ 2, which implies G contains an induced 4K1 ∪ K2 or 3K1 ∪ P3, a
contradiction.

By now, we have shown R(Sn, W8) ≤ 2n + 2. Therefore, we have R(Sn, W8) = 2n + 2 for
n ≥ 6 and n ≡ 0 (mod 2). The proof of Theorem 4 is completed. �
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