The Ramsey numbers for stars of even order versus a wheel of order nine ${ }^{\text {a }}$

Yunqing Zhang, Yaojun Chen, Kemin Zhang

Department of Mathematics, Nanjing University, Nanjing 210093, PR China
Received 13 April 2007; accepted 26 July 2007

Abstract

For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest positive integer n such that for any graph G of order n, either G contains G_{1} or the complement of G contains G_{2}. Let S_{n} denote a star of order n and W_{m} a wheel of order $m+1$. In this paper, we show that $R\left(S_{n}, W_{8}\right)=2 n+2$ for $n \geq 6$ and $n \equiv 0(\bmod 2)$.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

All graphs considered in this paper are finite simple graph without loops. For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer n such that for any graph G of order n, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. The neighborhood $N(v)$ of a vertex v is the set of vertices adjacent to v in G and $N[v]=N(v) \cup\{v\}$. The minimum degree, maximum degree, independence number and connectivity of G are denoted by $\delta(G), \Delta(G), \alpha(G)$ and $\kappa(G)$, respectively. The edge number of a graph G is $e(G)$. Let $V_{1}, V_{2} \subseteq V(G)$. We use $E\left(V_{1}, V_{2}\right)$ to denote the set of the edges between V_{1} and V_{2}, and $e\left(V_{1}, V_{2}\right)=\left|E\left(V_{1}, V_{2}\right)\right|$. For $U \subseteq V(G), G[U]$ is the subgraph induced by U in G. A cycle and a path of order n are denoted by C_{n} and P_{n}, respectively. We use $m G$ to denote the union of m vertex disjoint G. A wheel of order $n+1$ is $W_{n}=K_{1}+C_{n}$. A book of order $n+2$ is $B_{n}=K_{2}+\overline{K_{n}}$. Let $c(G)$ be the circumference of G, that is, the length of a longest cycle, and $g(G)$, the girth, that is, the length of a shortest cycle. A graph on n vertices is pancyclic if it contains cycles of every length $l, 3 \leq l \leq n$. A graph is weakly pancyclic if it contains cycles of every length from the girth to the circumference. Let C be a cycle. For a given orientation

[^0]of C, we use u^{+}to denote the successor of u and u^{-}to denote its predecessor. If $A \subset V(C)$ then $A^{+}=\left\{a^{+} \mid a \in A\right\}$ and $A^{-}=\left\{a^{-} \mid a \in A\right\}$. Let $u, v \in V(G)$ and s, t with $s \leq t$ be integers. If G contains a (u, v)-path of order l for each l with $s \leq l \leq t$, then we say u and v are (s, t)-connected in G. A linear forest is a forest with maximum degree not more than two. For notations which are not defined here, we follow [3].

For the Ramsey number of a star versus a wheel, Chen et al. determined all values of $R\left(S_{n}, W_{m}\right)$ for odd m and $n \geq m-1 \geq 2$, and obtained the following.

Theorem 1 (Chen et al. [6]). $R\left(S_{n}, W_{m}\right)=3 n-2$ for m odd and $n \geq m-1 \geq 2$.
Obviously, Theorem 1 shows that the Ramsey number $R\left(S_{n}, W_{m}\right)$ for m odd and $n \geq m-1 \geq$ 2 is determined by n. However, it is not the case when m is even. In fact, as pointed in [6], the Ramsey number $R\left(S_{n}, W_{m}\right)$ for even m and $n \geq m-1 \geq 2$ cannot be determined by n alone and is a function related to both m and n. In the case when m is even, only the values of $R\left(S_{n}, W_{4}\right)$ and $R\left(S_{n}, W_{6}\right)$ are known by now, and it seems difficult to calculate the values of $R\left(S_{n}, W_{m}\right)$.

In [8], Surahmat et al. determined the value for $R\left(S_{n}, W_{4}\right)$, and got the following.
Theorem 2 (Surahmat and Baskoro [8]). $R\left(S_{n}, W_{4}\right)=2 n-1$ for $n \geq 3$ and $n \equiv 1(\bmod 2)$ and $R\left(S_{n}, W_{4}\right)=2 n+1$ for $n \geq 4$ and $n \equiv 0(\bmod 2)$.

By using induction on n, Chen et al. established the following.
Theorem 3 (Chen et al. [6]). $R\left(S_{n}, W_{6}\right)=2 n+1$ for $n \geq 3$.
In this paper, we consider the value of $R\left(S_{n}, W_{8}\right)$. Our main result is the following.
Theorem 4. $R\left(S_{n}, W_{8}\right)=2 n+2$ for $n \geq 6$ and $n \equiv 0(\bmod 2)$.

2. Some lemmas

In order to prove Theorem 4, we need the following lemmas.
Lemma 1 (Bondy [1]). Let G be a graph of order n. If $\delta(G) \geq n / 2$, then either G is pancyclic or n is even and $G=K_{n / 2, n / 2}$.

Lemma 2 (Brandt et al. [4]). Every non-bipartite graph G with $\delta(G) \geq(n+2) / 3$ is weakly pancyclic and has girth 3 or 4.

Lemma 3 (Dirac [7]). Let G be a 2 -connected graph of order $n \geq 3$ with $\delta(G)=\delta$. Then $c(G) \geq \min \{2 \delta, n\}$.

Lemma 4 (Zhang [9]). If G is a Hamiltonian graph of order n and there exists a vertex x such that $d(x)+d(y) \geq n$ for each y not adjacent to x, then either G is pancyclic or n is even and $G=K_{n / 2, n / 2}$.

Given a graph G of order n, repeat the following recursive operation as long as possible: For each pair of nonadjacent vertices a and b, if $d(a)+d(b) \geq n+1$ then add the edge $a b$ to G. We denote by $\operatorname{cl}(G)$ the resulting graph and call it the closure of G.

Lemma 5 (Bondy and Chvátal [2]). A graph G of order $n \geq 3$ is Hamilton-connected if and only if its closure $\mathrm{cl}(G)$ is Hamilton-connected.

Lemma 6. If F is a linear forest of order 6 , then \bar{F} is (4, 6)-connected.

Proof. Let $u, v \in V(F)$. Since $\operatorname{cl}\left(\overline{P_{6}}\right)=K_{7}$, by Lemma 5, \bar{F} has a Hamilton (u, v)-path $P=v_{1} v_{2} \cdots v_{6}$, where $u=v_{1}$ and $v=v_{6}$. If \bar{F} contains no (u, v)-path of order 5 , then $v_{i} v_{i+2} \in E(F)$ for $1 \leq i \leq 4$. Since $\Delta(F) \leq 2$, we have $v_{1} v_{4} \in E(\bar{F})$, which implies $v_{2} v_{6} \in E(F)$. In this case, F contains a triangle $v_{2} v_{4} v_{6}$, a contradiction. If \bar{F} contains no (u, v) path of order 4 , then $v_{i} v_{i+3} \in E(F)$ for $1 \leq i \leq 3$. If $v_{1} v_{3} \in E(\bar{F})$, then $v_{2} v_{6}, v_{4} v_{6} \in E(F)$, which contradicts $\Delta(F) \leq 2$. Thus by symmetry we have $v_{1} v_{3}, v_{4} v_{6} \in E(F)$, which implies F contains a C_{4}, a contradiction.

Lemma 7 (Chen et al. [5]). Let G be a connected graph and C a maximal cycle of G. Suppose that $v \in V(G-C)$ and $d_{C}(v) \geq 2$. Then for any two distinct vertices x, y in $N_{C}^{+}(v)$ or $N_{C}^{-}(v)$, $x y \notin E(G)$ and $N(x) \cap N(y) \cap V(G-C)=\emptyset$.

Lemma 8. Let $G=K_{4,4}$ and $E_{0} \subseteq E(G)$. If $G\left[E_{0}\right]$ is a linear forest, then $G-E_{0}$ contains a C_{8}.

Lemma 9. Let $G=\left(V_{1}, V_{2}\right)$ be a bipartite graph with $\left|V_{1}\right| \geq 4$ and $4+k \leq\left|V_{2}\right| \leq 6+2 k$, where $k \geq 0$ is an integer. If $d(a) \geq 4+k$ for each $a \in V_{1}$, then G contains a C_{8}.

Proof. We need only to consider the case in which $\left|V_{1}\right|=4$. Let $P=v_{1} v_{2} \cdots v_{l}$ be a longest path of G. Obviously, $l \leq 9$. If $v_{1} \in V_{1}$, then by the maximality of P, we have $N\left(v_{1}\right) \subseteq\left\{v_{i} \mid i \equiv 0(\bmod 2)\right\}$. Since $d\left(v_{1}\right) \geq 4+k$, we have $k=0, l=8$ and $v_{1} v_{l} \in E(G)$, which implies G contains a C_{8}. Thus we may assume $v_{1} \notin V_{1}$. By symmetry, $v_{l} \notin V_{1}$. In this case, we have $l \equiv 1(\bmod 2),\left\{v_{i} \mid i \equiv 1(\bmod 2)\right\} \subseteq V_{2}$ and $\left\{v_{i} \mid i \equiv 0(\bmod 2)\right\} \subseteq V_{1}$. Since $d(a) \geq 4+k$ for each $a \in V_{1}$ and $\left|V_{2}\right| \leq 6+2 k$, we have $\left|N\left(a_{i}\right) \cap N\left(a_{j}\right)\right| \geq 2$ for $a_{i}, a_{j} \in V_{1}$, which implies $l \geq 5$. By the maximality of P, we have $N\left(v_{2}\right) \cap N(a) \cap\left(V_{2}-V(P)\right)=\emptyset$ for each $a \in V_{1}-V(P)$. If $l \neq 9$, then we may assume $a \in V_{1}-V(P)$ since $\left|V_{1}\right|=4$. By the maximality of P, we have $v_{1}, v_{l} \notin N(a)$. Thus we have $d_{P}(a) \leq 2$, which implies $\left|N(a) \cap\left(V_{2}-V(P)\right)\right| \geq 2+k$. If $N_{P}(a)=\emptyset$, then $\left|N(a) \cap\left(V_{2}-V(P)\right)\right| \geq 4+k$. Noting that $N\left(v_{2}\right) \cap N(a) \cap\left(V_{2}-V(P)\right)=\emptyset$, we have $d\left(v_{2}\right) \leq 2+k$, a contradiction. Since $l=5$ or 7 , by symmetry we assume $v_{3} a \in E(G)$. By the maximality of $P, v_{2} v_{l} \notin E(G)$. Thus, noting that $N\left(v_{2}\right) \cap N(a) \cap\left(V_{2}-V(P)\right)=\emptyset$, we have $d\left(v_{2}\right) \leq 3+k$, a contradiction. Therefore, $l=9$.

Let $U=V_{2}-V(P)$ and $X=\left\{v_{3}, v_{5}, v_{7}\right\}$. If G contains no C_{8}, then we have $d_{U}\left(v_{2}\right)+$ $d_{U}\left(v_{8}\right) \leq|U| \leq 1+2 k$ and $v_{1} v_{8}, v_{2} v_{9} \notin E(G)$. Since $d\left(v_{2}\right)+d\left(v_{8}\right) \geq 8+2 k$, we assume $d_{X}\left(v_{2}\right)=3$ and $d_{X}\left(v_{8}\right) \geq 2$. For $v_{i} \in\left\{v_{3}, v_{5}\right\}$, if $v_{i} v_{8} \in E(G)$, then v_{1}, $v_{9} \notin N\left(v_{i+1}\right)$ for otherwise G contains a C_{8}. Since $v_{i+1} v_{i} \overleftarrow{P} v_{2} v_{i+2} \vec{P} v_{8}$ is a path of order 7, we have $d_{U}\left(v_{i+1}\right)+d_{U}\left(v_{8}\right) \leq 1+2 k$ and $v_{9} v_{i+1}, v_{1} v_{i+1} \notin E(G)$. Thus, noting that $d\left(v_{i+1}\right)+d\left(v_{8}\right) \geq$ $8+2 k$, we have $X \subseteq N\left(v_{8}\right)$. Now, consider $d\left(v_{4}\right)+d\left(v_{6}\right)$. Since $X \subseteq N\left(v_{2}\right) \cap N\left(v_{8}\right)$, we have $v_{1}, v_{9} \notin N\left(v_{4}\right) \cap N\left(v_{6}\right)$. Noting that $v_{4} v_{3} v_{2} v_{5} v_{8} v_{7} v_{6}$ is a path of order 7 , we have $d_{U}\left(v_{4}\right)+d_{U}\left(v_{6}\right) \leq 1+2 k$. Thus, we have $d\left(v_{4}\right)+d\left(v_{6}\right) \leq 7+2 k$, a contradiction. So G contains a C_{8}.

Lemma 10. Let G be a 2 -connected graph of order 11 and $\delta(G) \geq 4$. If $c(G)=9$ or 10 , then G contains a C_{8}.

Proof. Let $C=t_{1} t_{2} \cdots t_{l}$ be a longest cycle of G and $H=G-C$. If $h \in V(H)$ and $d_{C}(h) \geq 4$, then by Lemma 7, G contains a bipartite graph G_{0} between $\{h\} \cup N_{C}^{+}(h)$ and $V(G)-\left(\{h\} \cup N_{C}^{+}(h)\right)$, which satisfies the conditions of Lemma 9, and hence G contains a C_{8}. If $d_{C}(h) \leq 3$ for any $h \in V(H)$, then we have $l=9$ and $H=K_{2}$. Let $E(H)=\left\{h_{1} h_{2}\right\}$ and $t_{1} h_{1} \in E(G)$. By the maximality of C, we have $t_{2}, t_{3}, t_{8}, t_{9} \notin N\left(h_{2}\right)$. If G contains no C_{8},

[^1]then we have $t_{5}, t_{6} \notin N\left(h_{2}\right)$ and $\left|N\left(h_{2}\right) \cap\left\{t_{1}, t_{4}, t_{7}\right\}\right| \leq 1$, which implies $d_{C}\left(h_{2}\right) \leq 1$, and hence $d\left(h_{2}\right) \leq 2$, a contradiction.

Lemma 11. Let G be a graph of order at least $n+3$ and $\Delta(G) \leq n-2$. Suppose (U, X) is a partition of $V(G)$ with $|U|=6$ and $\bar{G}[U]$ is $(5,6)$-connected. If \bar{G} contains no C_{8}, then $e(U, X) \geq \min \left\{5|X|-5, \frac{9}{2}|X|\right\}$.

Proof. Let $x_{0} \in X$ and $d_{U}\left(x_{0}\right)=\min \left\{d_{U}(x) \mid x \in X\right\}$. If $d_{U}\left(x_{0}\right) \leq 2$, then $\bar{G}\left[U \cup\left\{x_{0}\right\}\right]$ is Hamilton-connected, which implies $d_{U}(x) \geq 5$ for any $x \in X-\left\{x_{0}\right\}$. In this case, $e(U, X) \geq$ $5(|X|-1)=5|X|-5$. If $d_{U}\left(x_{0}\right) \geq 3$, we let $X_{0}=\left\{x \mid x \in X\right.$ and $\left.d_{U}(x) \leq 4\right\}$ and x any vertex in X_{0}. Since $|X| \geq n-3$ and $\Delta(G) \leq n-2$, there is some $x^{\prime} \in X$ such that $x x^{\prime} \notin E(G)$. If $d_{U}\left(x^{\prime}\right) \leq 5$, then noting that $\bar{G}[U]$ is $(5,6)$-connected, we see that $\bar{G}\left[U \cup\left\{x, x^{\prime}\right\}\right]$ contains a C_{8}, and hence we have $d_{U}\left(x^{\prime}\right)=6$. If $x_{1}, x_{2} \in X_{0}$ and there is some vertex $x \in X$ such that $x_{1}, x_{2} \notin N(x)$, then since $\bar{G}[U]$ is $(5,6)$-connected, \bar{G} contains a C_{8}, a contradiction. Thus we have $\left|X_{0}\right| \leq \frac{1}{2}|X|$, and hence $e(U, X) \geq(3+6)\left|X_{0}\right|+5\left(|X|-2\left|X_{0}\right|\right)=5|X|-\left|X_{0}\right| \geq \frac{9}{2}|X|$.

Lemma 12. Let G be a graph of order $2 n+2 \geq 22$ and $\Delta(G) \leq n-2$. Suppose H is a graph of order 7 and \bar{H} is Hamilton-connected. If G contains an induced $K_{1} \cup H$, then \bar{G} contains a W_{8}.

Proof. Let $v \in V(G)-V(H), N(v)=Q$ and $N_{H}(v)=\emptyset$. Set $B=V(G)-V(H)-N[v]$. If $b \in B$ and $d_{H}(b) \leq 5$, then since \bar{H} is Hamilton-connected, $\bar{G}[V(H) \cup\{v, b\}]$ contains a W_{8} with the hub v. Hence we may assume that $e(H, B) \geq 6|B|$.

Assume $e(H) \leq 2$. If $q \in Q$ and $d_{H}(q) \leq 2$, then it is not difficult to see that $\bar{G}[V(H) \cup\{v, q\}]$ contains a W_{8} with the hub h for some $h \in V(H)$. Thus we have $d_{H}(q) \geq 3$ for any $q \in Q$, which implies $e(H, Q) \geq 3|Q|$. In this case, $7(n-2) \geq \sum_{h \in H} d(h) \geq$ $3|Q|+6|B|=3|B|+3(2 n-6) \geq 9 n-30 \geq 7 n-10$, a contradiction. Therefore, we have $e(H) \geq 3$. If $e(H)=3$, we assume $h_{0} \in V(H)$ with $d_{H}\left(h_{0}\right)=0$ and $F=H-\left\{h_{0}\right\}$. Since $e(F)=3$, it is easy to see \bar{F} contains a C_{6}, which implies $\bar{G}[\{v\} \cup V(F)]$ is Hamiltonconnected. Thus, if $q \in Q$ such that $d_{H}(q)=0$ or $q h_{0} \notin E(G)$ and $d_{F}(q) \leq 4$, then $\bar{G}[V(H) \cup\{v, q\}]$ contains a W_{8} with the hub h_{0}. Hence we may assume $d_{H}(q) \geq 1$ and if $q h_{0} \notin E(G)$, then $d_{H}(q) \geq 5$ for any $q \in Q$. If $q^{\prime}, q^{\prime \prime} \in Q$ and $q^{\prime}, q^{\prime \prime} \notin N\left(h_{0}\right)$, then we have $e(H, Q) \geq|Q|+8$, which implies $7(n-2) \geq \sum_{h \in H} d(h) \geq|Q|+8+6|B|+2 e(H) \geq 7 n-12$, a contradiction. Thus we have $d_{Q}\left(h_{0}\right) \geq|Q|-1$. If $q^{\prime}, q^{\prime \prime} \in N_{Q}\left(h_{0}\right)$ such that $d_{H}\left(q^{\prime}\right) \leq 2$ and $d_{H}\left(q^{\prime \prime}\right) \leq 2$, then $e\left(V(F),\left\{v, h_{0}, q^{\prime}, q^{\prime \prime}\right\}\right) \leq 2$. Since $e(F)=3, F$ contains some h such that $d_{H}(h) \leq 1$ and $q^{\prime}, q^{\prime \prime} \notin N(h)$. Let $U=V(F)-N[h]$ and $|U|=4$. By Lemma 8 , we see that $\bar{G}\left[U \cup\left\{h, v, h_{0}, q^{\prime}, q^{\prime \prime}\right\}\right]$ contains a W_{8} with the hub h. Thus we may assume $e(H, Q) \geq$ $3(|Q|-2)+2$, which implies $7(n-2) \geq \sum_{h \in H} d(h) \geq 3|Q|-4+6|B|+2 e(H) \geq 7 n-8$, a contradiction. Therefore, we have $e(H) \geq 4$.

If $e(H, Q) \geq 2|Q|-3$, then $7(n-2) \geq \sum_{h \in H} d(h) \geq 2|Q|-3+6|B|+2 e(H) \geq 8 n-23 \geq$ $7 n-13$, and hence we have $e(H, Q) \leq 2|Q|-4$.

If $|Q| \leq 2$, then $7(n-2) \geq \sum_{h \in H} d(h) \geq 6|B| \geq 6(2 n-8) \geq 7 n+2$, a contradiction. Thus we may assume $q_{1}, q_{2}, q_{3} \in Q$ such that $d_{H}\left(q_{1}\right) \leq d_{H}\left(q_{2}\right) \leq d_{H}\left(q_{3}\right)$ and $d_{H}\left(q_{3}\right) \leq d_{H}(q)$ for any $q \in Q-\left\{q_{1}, q_{2}, q_{3}\right\}$. Set $X=\left\{v, q_{1}, q_{2}, q_{3}\right\}$. If $d_{H}\left(q_{3}\right)=0$, then since $|H|=7$ and \bar{H} is Hamilton-connected, we have $\delta(H) \leq 2$, which implies $|V(H)-N(h)| \geq 4$ for $h \in H$ and $d_{H}(h)=\delta(H)$, and hence \bar{G} contains a W_{8} with the hub h. Thus we have $d_{H}\left(q_{3}\right) \geq 1$. If $d_{H}\left(q_{3}\right) \geq 3$, then we have $e(H, Q) \geq 3|Q|-6>2|Q|-4$, a contradiction. Hence we have $1 \leq d_{H}\left(q_{3}\right) \leq 2$. Since $\Delta(G) \leq n-2$, we have $2 e(H) \leq 7(n-2)-(e(H, Q)+e(H, B)) \leq$

[^2]$7(n-2)-(|Q|-2+6|B|)=7(n-2)-(5|B|+2 n-6-2) \leq 14$, that is, $e(H) \leq 7$. Let $U=\left\{h \mid h \in V(H)\right.$ and $\left.d_{H}(h) \leq 2\right\}$. Then we have $|U| \geq 3$. If $d_{H}\left(q_{2}\right)=0$, then since $d_{H}\left(q_{3}\right) \leq 2$, there is some $u \in U$ such that $d_{X}(u)=0$. Let $Y \subseteq V(H)-N[u]$ and $|Y|=4$. By Lemma 8 , we see that $\bar{G}[X \cup Y \cup\{u\}]$ contains a W_{8} with hub u. Thus we may assume $d_{H}\left(q_{2}\right) \geq 1$. In this case, we have $d_{H}\left(q_{3}\right)=1$ for otherwise $e(H, Q) \geq 2|Q|-3$, and $e(H, Q) \geq|Q|-1$, which implies $e(H) \leq 6$. If $|U|=3$, then $H=3 K_{1} \cup K_{4}$, which contradicts that \bar{H} is Hamiltonconnected. Hence we have $|U| \geq 4$. Define $Q_{1}=\left\{q \mid q \in Q\right.$ and $\left.d_{H}(q) \leq 1\right\}$. Obviously, $\left|Q_{1}\right| \geq 3$. If $d_{H}\left(q_{1}\right)=0$ or $\left|N_{H}\left(Q_{1}\right)\right| \geq 2$, say $\left|N_{H}(X)\right| \geq 2$, then since $|U| \geq 4$, there is some $u \in U$ such that $d_{X}(u)=0$. Let $Y \subseteq V(H)-N[u]$ and $|Y|=4$. By Lemma 8, $\bar{G}[X \cup Y \cup\{u\}]$ contains a W_{8} with the hub u. Thus we have $\left|N_{H}\left(Q_{1}\right)\right|=1$ and $d_{H}\left(q_{1}\right)=1$. If $h \in V(H)-N_{H}\left(Q_{1}\right)$ and $d_{H}(h) \leq 1$, then \bar{G} contains a W_{8} with the hub h, and hence we have $d_{H}(h)=2$ for any $h \in V(H)-N_{H}\left(Q_{1}\right)$. This implies $H=K_{1} \cup C_{6}$ or $K_{1} \cup 2 K_{3}$. Let $N_{H}\left(Q_{1}\right)=\left\{h^{\prime}\right\}$, then we have $d_{H}\left(h^{\prime}\right)=0$. Noting that $e(H)=6$, we have $d_{H}(q)=1$ for any $q \in Q$ and $|Q|=n-2$ for otherwise $\Delta(G) \geq n-1$. In this case, Q contains at least two vertices, say q_{1}, q_{2} such that $q_{1} q_{2} \notin E(G)$. Let $h_{1} \in V(H)-\left\{h^{\prime}\right\}$ and $h_{2}, h_{3}, h_{4} \in V(H)-\left\{h^{\prime}\right\} \cup N_{H}\left[h_{1}\right]$. Then $v h^{\prime} h_{2} q_{1} q_{2} h_{3} q_{3} h_{4}$ is a C_{8} in \bar{G}, and hence \bar{G} contains a W_{8} with the hub h_{1}.

Lemma 13. Let G be a graph of order $2 n+2 \geq 22$ and $\Delta(G) \leq n-2$. Suppose H is a linear forest with $|H|=6, e(H) \leq 3$ and $H \neq K_{1} \cup K_{2} \cup P_{3}$. If G contains an induced $K_{1} \cup H$, then \bar{G} contains a W_{8}.

Proof. Let $v \in V(G)-V(H), N(v)=Q$ and $N_{H}(v)=\emptyset$. Set $X=V(G)-V(H)-N[v]$. By Lemma 12, we may assume $d_{H}(q) \geq 3$ if $e(H) \leq 1$ and $d_{H}(q) \geq 2$ if $e(H)=2$ for any $q \in Q$. By Lemmas 6 and 11 , we may assume $e(H, X) \geq 4|X|+2$. Thus we have $\sum_{h \in H} d(h) \geq 3|Q|+$ $4|X|+2 \geq 6 n-6$ if $e(H) \leq 1$ and $\sum_{h \in H} d(h) \geq 2|Q|+4|X|+2+4 \geq 6 n-10$ if $e(H)=2$, which implies $\Delta(G) \geq n-1$, a contradiction. If $e(H)=3$, then $H=3 K_{2}$ or $2 K_{1} \cup P_{4}$. By Lemma 12, Q has at most one vertex which has no neighbors in H. If $e(H, Q) \geq 2|Q|-3$, then by Lemmas 6 and 11, we have $\sum_{h \in H} d(h) \geq 2|Q|-3+4|X|+2+6 \geq 6 n-11$, a contradiction. Thus there exists $q_{1}, q_{2}, q_{3} \in Q$ such that $\sum_{i=1}^{3} d_{H}\left(q_{i}\right) \leq 3$. Let $Y=\left\{v, q_{1}, q_{2}, q_{3}\right\}$ and $U=\cup_{i=1}^{3} N_{H}\left(q_{i}\right)$. If $|U| \geq 2$, then since $\sum_{i=1}^{3} d_{H}\left(q_{i}\right) \leq 3$, there is some $h \in V(H)-U$ such that $d_{H}(h) \leq 1$. Let $U^{\prime} \subseteq V(H)-N[h]$ and $\left|U^{\prime}\right|=4$. Obviously, the subgraph induced by $E\left(U^{\prime}, Y\right)$ is a linear forest, which implies $\bar{G}\left[\{h\} \cup U^{\prime} \cup Y\right]$ contains a W_{8} with the hub h by Lemma 8. If $|U|=1$, then there is some $h \in V(H)-U$ such that $N(h) \cap(V(H)-U)=\emptyset$. Since $|V(H)-U \cup\{h\}|=4$ and $E(V(H)-(U \cup\{h\}), Y)=\emptyset$, we see that \bar{G} contains a W_{8} with the hub h.

3. Proof of Theorem 4

Proof of Theorem 4. Obviously, the graph $K_{n-1} \cup \bar{H}$ shows that $R\left(S_{n}, W_{8}\right) \geq 2 n+2$, where $H=\frac{n-4}{4} K_{4} \cup K_{3,3}$ if $n \equiv 0(\bmod 4)$ and $H=\frac{n+2}{4} K_{4}$ if $n \equiv 2(\bmod 4)$. In the following proof, we need only to show that $R\left(S_{n}, W_{8}\right) \leq 2 n+2$.

Let G be a graph of order $2 n+2$. Suppose to the contrary that neither G contains an S_{n} nor \bar{G} contains a W_{8}.

We first consider the case in which $n \leq 8$. Let v_{0} be a vertex of degree $\Delta(\bar{G})$. Set $H=\bar{G}\left[N_{\bar{G}}\left(v_{0}\right)\right], B=V(G)-N_{\bar{G}}\left[v_{0}\right]$ and $F=\bar{G}[B]$. Since G contains no S_{n}, we have $\delta(\bar{G}) \geq(2 n+1)-(n-2)=n+3$. Assume $d_{\bar{G}}\left(v_{0}\right)=n+3+l$, where $l \geq 0$ is an integer. Since $|B|=n-2-l$, we have $\delta(H) \geq(n+3)-[(n-2-l)+1]=4+l$.

Since \bar{G} contains no W_{8}, we see that H contains no C_{8}.
If $n=6$, then $|H|=9+l$. If $l \geq 1$ or $l=0$ and $\delta(H) \geq 5$, then we have $\delta(H) \geq|H| / 2$, which implies H contains a C_{8} by Lemma 1, a contradiction. If $l=0$ and $\delta(H)=4$, then H is connected and \bar{G} is 9 -regular. If $\kappa(H)=1$, say u_{0} is a cut-vertex, then it is easy to see that $H=\left\{u_{0}\right\}+2 K_{4}$. Since \bar{G} is 9 -regular, we have $N_{\bar{G}}\left(u_{0}\right) \cap B=\emptyset$. For each $h \in V(H)-\left\{u_{0}\right\}$, since $d_{H}(h)=4$ and $d_{\bar{G}}(h)=9$, we have $B \subseteq N_{\bar{G}}(h)$, which implies $F=2 K_{2}$ since \bar{G} is 9-regular. Thus $\bar{G}=3 K_{2}+2 K_{4}$, and hence \bar{G} contains a W_{8}, a contradiction. If $\kappa(H) \geq 2$ and H is bipartite, then $H=K_{4,5}$, a contradiction. If $\kappa(H) \geq 2$ and H is non-bipartite, then by Lemmas 2 and 3, H contains a C_{8}, a contradiction. Hence $R\left(S_{6}, W_{8}\right) \leq 14$.

If $n=8$, then $|H|=11+l$. If $l \geq 3$, then we have $\delta(H) \geq|H| / 2$, which implies H contains a C_{8} by Lemma 1, a contradiction. Thus we have $l \leq 2$. Suppose $l \neq 0$. If $\kappa(H) \geq 2$ and H is bipartite, then since $\delta(H) \geq 4+l$ and $|H|=11+l, H$ contains a C_{8} by Lemma 9 , a contradiction. If $\kappa(H) \geq 2$ and H is non-bipartite, then since $\delta(H) \geq 4+l \geq[(11+l)+2] / 3$, by Lemmas 2 and $3, H$ contains a C_{8}, a contradiction. If $\kappa(H) \leq 1$, then it is not difficult to see that H contains a subgraph H_{1} such that $H_{1}=K_{5}$ and $d_{H}(h)=4+l$ for each $h \in V\left(H_{1}\right)$. Since $\delta(\bar{G}) \geq n+3$, we have $B \subseteq N_{\bar{G}}(h)$ for each $h \in V\left(H_{1}\right)$. Thus, H_{1} together with v_{0} and any three vertices of B produce a W_{8} in \bar{G}, a contradiction. Therefore we have $l=0$. If H is disconnected, then H contains a component $H_{1}=K_{5}$. Thus, this H_{1} together with v_{0} and any three vertices of B produce a W_{8} in \bar{G}, a contradiction. If $\kappa(H)=1$, we let v_{1} be a cut-vertex of H. Since $\delta(H) \geq 4$, $H-v_{1}$ contains exactly two components H_{1}, H_{2} such that $\left|H_{1}\right|=\left|H_{2}\right|=5$ or $\left|H_{1}\right|=4$ and $\left|H_{2}\right|=6$. If $\left|H_{1}\right|=5$, then since $\delta\left(H_{1}\right) \geq 3$ and the number of vertices of odd degree is even, H_{1} contains a vertex v such that $V\left(H_{1}\right) \subseteq N_{\bar{G}}[v]$. Obviously, $d_{H}(v) \leq 5$. Since $\delta(\bar{G}) \geq 11$, we may assume $B^{\prime} \subseteq N_{\bar{G}}(v) \cap B$ and $\left|B^{\prime}\right|=5$. For each $h \in N_{H_{1}}(v)$, we have $\left|N_{\bar{G}}(h) \cap B^{\prime}\right| \geq 4$. Thus \bar{G} contains a W_{8} with the hub v by Lemma 9 , a contradiction. If $\left|H_{1}\right|=4$, then $V\left(H_{1}\right) \cup\left\{v_{1}\right\}$ is a clique and $B \subseteq N_{\bar{G}}(h)$ for each $h \in V\left(H_{1}\right)$. Since $\delta(\bar{G}) \geq 11$ and $|H|=11$, we see that either $N_{\bar{G}}\left(v_{1}\right) \cap B \neq \emptyset$ or F is not an independent set. If $N_{\bar{G}}\left(v_{1}\right) \cap B \neq \emptyset$, say $b_{1} \in N_{\bar{G}}\left(v_{1}\right) \cap B$, then H_{1} together with v_{0}, v_{1}, b_{1} and any two vertices of $B-\left\{b_{1}\right\}$ form a W_{8} in \bar{G}, a contradiction. If F is not an independent set, say $b_{1} b_{2} \in E(F)$, then H_{1} together with $v_{0}, v_{1}, b_{1}, b_{2}$ and any vertex of $B-\left\{b_{1}, b_{2}\right\}$ form a W_{8} in \bar{G}, a contradiction. If $\kappa(H) \geq 2$, then $c(H) \geq 8$ by Lemma 3 . By Lemma $10, c(H)=11$, that is, H is Hamiltonian. If $\delta(H) \geq 5$, then by Lemmas 2 and $3, H$ contains a C_{8}, a contradiction. Thus we have $\delta(H)=4$. Let $v \in V(H)$ and $d_{H}(v)=4$. Since $\delta(\bar{G}) \geq 11$, we have $B \subseteq N_{\bar{G}}(v)$. If $\Delta(H) \leq 6$, then $\left|N_{\bar{G}}(u) \cap B\right| \geq 4$ for each $u \in N_{H}(v)$. Thus G contains a W_{8} with the hub v by Lemma 9 , a contradiction. If $\Delta(H) \geq 7$, then noting that $\delta(H)=4, H$ contains a C_{8} by Lemma 4, a contradiction. Thus $R\left(S_{8}, W_{8}\right) \leq 18$.

Now, we consider the case in which $n \geq 10$.
Let I be a maximum independent set of G. If $|I| \leq 2$, then G contains an S_{n}, and hence we have $|I| \geq 3$. By Lemma 13, we have $|I| \leq 6$ and if $|I|=6$, then $d_{I}(v) \geq 3$ for any $v \in V(G)-I$. Suppose $|I|=6$. Since $\sum_{a \in I} d(a) \leq 6(n-2)$ and $|V(G)-I|=2 n-4$, we have $d_{I}(v)=3$ for any $v \in V(G)-I$ and $d(a)=n-2$ for each $a \in I$. Let $a \in I, N(a)=Q$ and $X=V(G)-I-N[a]$. Obviously, $|X|=n-2$. Let $u \in X$. Since G contains no S_{n} and $d_{I}(u)=3$, there exists $v, w \in X-\{u\}$ such that $v, w \notin N(u)$. Noting that $d_{I}(v)=d_{I}(w)=3$, we see that $\bar{G}[I \cup\{u, v, w\}-\{a\}]$ contains a C_{8}, and hence \bar{G} contains a W_{8} with the hub a, a contradiction. Thus we have $3 \leq|I| \leq 5$.

In order to consider the cases when $3 \leq|I| \leq 5$, we need the following claim.
Claim 1. Let $H \in\left\{K_{3} \cup K_{4}, K_{3} \cup B_{2}, P_{3} \cup B_{2}\right\}$. If $\alpha(G)=\alpha(H)+1$, then G contains no induced $K_{1} \cup H$.

Proof. Let $v \in V(G)-V(H), d_{H}(v)=0, N(v)=Q, R=V(G)-N[v]$ and $U=R-V(H)$. Assume $V(H)=A \cup B$ with $G[A]=K_{3}$ or $P_{3}, G[B]=K_{4}$ or B_{2} and $E(A, B)=\emptyset$. Set $A=\left\{a_{1}, a_{2}, a_{3}\right\}, B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$. Choose H such that $e(H, U)$ is as large as possible.

We first show that $e(H, U) \geq 6|U|$. Since \bar{G} contains no W_{8}, we can see that $\bar{G}[R]$ contains no C_{8}. Define $X=\{u \mid u \in U, A \subseteq N(u)$ and $B \nsubseteq N(u)\}, Y=\{u \mid u \in U$ and $A \cup B \subseteq N(u)\}$ and $Z=\{u \mid u \in U, B \subseteq N(u)$ and $A \nsubseteq N(u)\}$. If there is some vertex $u \in U$ such that $d_{A}(u) \leq 2$ and $d_{B}(u) \leq 3$, then since $\alpha(G)=\alpha(H)+1$, we have $\alpha(G) \geq 4$, and hence $G[B]=B_{2}$. In this case, since \bar{H} contains an (a, b)-path of order 7 for any $a \in A$ and $b \in B$, we see $\bar{G}[R]$ contains a C_{8}, a contradiction. Thus, (X, Y, Z) is a partition of U.

If $d_{B}(u) \leq 2$ for some $u \in U$, say $b_{1}, b_{2} \notin N(u)$, then $a_{1} b_{1} u b_{2} a_{2} b_{3} a_{3} b_{4}$ is a C_{8} in $\bar{G}[R]$. If $x z \notin E(G)$ for some $x \in X$ and $z \in Z$, then since \bar{H} contains an (a, b)-path of order 6 for any $a \in A$ and $b \in B$, we see $\bar{G}[R]$ contains a C_{8}. Thus we have $d_{B}(u) \geq 3$ for each $u \in U$ and $X \subseteq N(z)$ for each $z \in Z$. If $Z=\emptyset$, then we have $e(H, U) \geq 6|U|$. Hence we may assume $Z \neq \emptyset$. Define $Z_{i}=\left\{z \mid z \in Z\right.$ and $\left.d_{A}(z)=i\right\}$ for $i=0,1,2$.

Let $z \in Z_{0}$. If there is some $z^{\prime} \in Z$ such that $z z^{\prime} \notin E(G)$, then we have $\alpha(G) \geq 4$, and hence $G[B]=B_{2}$. Assume without loss of generality that $b_{1} b_{2}, z^{\prime} a_{1} \notin E(G)$. Then $a_{1} z^{\prime} z a_{2} b_{1} b_{2} a_{3} b_{3}$ is a C_{8} in $\bar{G}[R]$, and thus we have $Z \subseteq N[z]$. Since G contains no S_{n}, we have $|Q| \leq n-2$ and $|U| \geq n-4$. Thus $d_{Y}(z) \leq|Y|-1$. If $d_{Y}(z)=|Y|-1$, then we must have $|Q|=n-2,|U|=n-4$ and $d_{R}(z)=n-2$. By the choice of H, we have $d_{R}\left(b_{1}\right)=d_{R}\left(b_{2}\right)=n-2$, where $d_{B}\left(b_{1}\right)=d_{B}\left(b_{2}\right)=3$. Assume $d_{A}\left(a_{1}\right)=2$. Since $d_{Q}\left(a_{1}\right)+d_{Q}\left(b_{3}\right) \leq 2(n-2)-[(|U|+1)+2+2]=n-5$, there exists $q_{1}, q_{2}, q_{3} \in Q$ such that $q_{1}, q_{2}, q_{3} \notin N\left(a_{1}\right) \cup N\left(b_{3}\right)$. In this case, $\bar{G}\left[\left\{a_{1}, v, q_{1}, q_{2}, q_{3}, b_{1}, b_{2}, b_{3}, z\right\}\right]$ contains a W_{8} with the hub a_{1}, a contradiction. Hence we have $d_{Y}(z) \leq|Y|-2$ for any $z \in Z_{0}$.

Let $z \in Z_{1}$. If $d_{Y}(z)=|Y|$, then there exists $z_{1} \in Z-\{z\}$ such that $z_{1} \notin N(z)$ since $\Delta(G) \leq n-2$. Assume $a_{1} z_{1}, a_{2} z \notin E(G)$. If $G[B]=B_{2}$, say $b_{1} b_{2} \notin E(G)$, then $a_{1} z_{1} z a_{2} b_{1} b_{2} a_{3} b_{3}$ is a C_{8} in $\bar{G}[R]$, and hence we have $\alpha(G)=3$. In this case, we have $a_{2}, a_{3} \notin N(z)$ and $a_{2}, a_{3} \in N\left(z_{1}\right)$. If $z_{2} \in Z-\left\{z, z_{1}\right\}$ and $z_{1} z_{2} \notin E(G)$, then since $\alpha(G)=3$, we have $a_{2} \notin N\left(z_{2}\right)$ or $a_{3} \notin N\left(z_{2}\right)$, which implies $a_{1} b_{1} a_{2} z_{2} z_{1} z a_{3} b_{2}$ or $a_{1} b_{1} a_{3} z_{2} z_{1} z a_{2} b_{2}$ is a C_{8} in $\bar{G}[R]$, and hence we have $Z-\{z\} \subseteq N\left[z_{1}\right]$. Since $d\left(z_{1}\right) \leq n-2, z_{1} \in Z_{2}$ and $X \subseteq N\left(z_{1}\right)$, we have $Y \nsubseteq N\left(z_{1}\right)$. Thus there is some $y \in Y$ and $z^{\prime} \in Z-\{z\}$ such that $y, z \notin N\left(z^{\prime}\right)$ if $z \in Z_{1}$ and $d_{Y}(z)=|Y|$.

Let $z \in Z_{0} \cup Z_{1}$. Define $N^{*}(z)=\{y \mid y \in Y$ and $y z \notin E(G)\}$ if $d_{Y}(z) \leq|Y|-1$ and $N^{*}(z)=\left\{y \mid y \in Y\right.$ and $y, z \notin N\left(z^{\prime}\right)$ for some $\left.z^{\prime} \in Z\right\}$ if $d_{Y}(z)=|Y|$. By the argument above, we have $\left|N^{*}(z)\right| \geq 2$ if $z \in Z_{0}$ and $\left|N^{*}(z)\right| \geq 1$ if $z \in Z_{1}$. Assume $z_{1}, z_{2} \in Z_{0} \cup Z_{1}$ and $y \in N^{*}\left(z_{1}\right) \cap N^{*}\left(z_{2}\right) \neq \emptyset$. If $d_{Y}\left(z_{1}\right) \leq|Y|-1$, then there is some $z_{1}^{\prime} \in Z-\left\{z_{1}\right\}$ such that $z_{1}, z_{1}^{\prime} \notin N(y)$. Thus we can choose two vertices, say $a_{1}, a_{2} \in A$ such that $z_{1} a_{1}, z_{1}^{\prime} a_{2} \notin E(G)$, which implies $a_{1} z_{1} y z_{1}^{\prime} a_{2} b_{1} a_{3} b_{2}$ is a C_{8} in $\bar{G}[R]$, a contradiction. Hence by symmetry we have $d_{Y}\left(z_{1}\right)=d_{Y}\left(z_{2}\right)=|Y|$, and thus $z_{1}, z_{2} \in Z_{1}$. Assume $z_{i}^{\prime} \in Z$ and $z_{i} z_{i}^{\prime}, y z_{i}^{\prime} \notin E(G)$ for $i=1,2$. Since $z_{1}^{\prime} z_{2}, z_{2}^{\prime} z_{1} \in E(G)$, we have $z_{1}^{\prime} \neq z_{2}^{\prime}$. Since $z_{1}, z_{2} \in Z_{1}$, we can choose two vertices, say $a_{1}, a_{2} \in A$ such that $z_{1} a_{1}, z_{2} a_{2} \notin E(G)$, which implies $a_{1} z_{1} z_{1}^{\prime} y z_{2}^{\prime} z_{2} a_{2} b_{1}$ is a C_{8} in $\bar{G}[R]$, a contradiction. Hence we have $N^{*}\left(z_{1}\right) \cap N^{*}\left(z_{2}\right)=\emptyset$ for any $z_{1}, z_{2} \in Z_{0} \cup Z_{1}$. Let $Y_{0}=\cup_{z \in Z_{0}} N^{*}(z), Y_{1}=\cup_{z \in Z_{1}} N^{*}(z)$ and $Y_{2}=Y-Y_{0}-Y_{1}$, then $\left|Y_{0}\right| \geq 2\left|Z_{0}\right|$ and $\left|Y_{1}\right| \geq\left|Z_{1}\right|$. Thus $e(H, U)=e\left(H, X \cup Y_{2} \cup Z_{2}\right)+\left(e\left(H, Z_{0}\right)+e\left(H, Y_{0}\right)\right)+\left(e\left(H, Z_{1}\right)+e\left(H, Y_{1}\right)\right) \geq 6|U|$.

If $|Q| \leq 2$, then $7(n-2) \geq \sum_{h \in H} d(h) \geq 6|U| \geq 6(2 n-8) \geq 7 n+2$, and hence $|Q| \geq 3$. If $q_{1}, q_{2}, q_{3} \in Q$ and $d_{H}\left(q_{1}\right)+d_{H}\left(q_{2}\right)+d_{H}\left(q_{3}\right) \leq 1$, then since $|A|=3$, there is some $a \in A$ such that $q_{1}, q_{2}, q_{3} \notin N(a)$. By Lemma $8, \bar{G}\left[B \cup\left\{v, q_{1}, q_{2}, q_{3}\right\}\right]$ contains a C_{8}, and hence \bar{G} contains a W_{8} with the hub a, a contradiction. Thus we have $e(H, Q) \geq|Q|-1$, which

[^3]implies $7(n-2) \geq \sum_{h \in H} d(h) \geq e(H, Q)+e(H, U)+2 e(H) \geq(|Q|-1)+6|U|+14=$ $5|U|+(2 n-6)+13 \geq 5(n-4)+(2 n-6)+13=7 n-13$, a contradiction.

We now consider the following three cases separately.
Case 1. $\alpha(G)=3$
If G contains an induced $3 K_{2}$, we assume $U=\left\{u_{i} \mid 1 \leq i \leq 6\right\}$ and $E(G[U])=$ $\left\{u_{1} u_{2}, u_{3} u_{4}, u_{5} u_{6}\right\}$. Set $V(G)-U=X$. Since G contains no S_{n}, we have $e(U, X) \leq 6(n-3)$. Since $\alpha(G)=3$, we have $d_{U}(x) \geq 2$ for each $x \in X$ and if $d_{U}(x)=2$, then $G\left[N_{U}(x)\right]=K_{2}$. Since $|X|=2 n-4$ and $e(U, X) \leq 6(n-3), X$ contains at least four vertices, say x_{i} $(1 \leq i \leq 4)$ such that $d_{U}\left(x_{i}\right)=2$. This implies G contains an induced $2 K_{2} \cup K_{4}$. Assume $Y=\left\{u_{i} \mid 1 \leq i \leq 8\right\}$ and $E(G[Y])=\left\{u_{1} u_{2}, u_{3} u_{4}\right\} \cup\left\{u_{i} u_{j} \mid 5 \leq i<j \leq 8\right\}$. Set $V(G)-Y=Z$. Since G contains no S_{n}, we have $e(Y, Z) \leq 8(n-2)-16=8 n-32$. Since $|Z|=2 n-6$, it follows that Z contains at least four vertices, say $z_{i}(1 \leq i \leq 4)$ such that $d_{Y}\left(z_{i}\right) \leq 3$. Since $\alpha(G)=3$, we have $\left|N\left(z_{i}\right) \cap\left\{u_{5}, u_{6}, u_{7}, u_{8}\right\}\right| \leq 1$ for $1 \leq i \leq 4$ and either $u_{1}, u_{2} \in N\left(z_{i}\right)$ or $u_{3}, u_{4} \in N\left(z_{i}\right)$. Assume without loss of generality that $u_{1}, u_{2} \in N\left(z_{i}\right)$ for $i=1$, 2. By Claim 1, we have $\left|N\left(z_{i}\right) \cap\left\{u_{5}, u_{6}, u_{7}, u_{8}\right\}\right|=1$ for $i=1$, 2. By Lemma 8 , $\bar{G}\left[Y \cup\left\{z_{1}, z_{2}\right\}-\left\{u_{4}\right\}\right]$ contains a W_{8} with the hub u_{3}, a contradiction. Therefore, G contains no induced $3 K_{2}$.

Since G contains no $S_{n}, V(G)-I$ contains a vertex v such that $d_{I}(v)=1$, which implies G contains an induced $2 K_{1} \cup K_{2}$. Let $G_{0}=2 K_{1} \cup K_{2}$. For the same reason, $V(G)-V\left(G_{0}\right)$ contains a vertex v such that $d_{G_{0}}(v)=1$, which implies G contains an induced $K_{1} \cup 2 K_{2}$ since $\alpha(G)=3$. Let $U=\left\{u_{i} \mid 1 \leq i \leq 4\right\}$ and $E\left(G\left[U \cup\left\{u_{0}\right\}\right]\right)=\left\{u_{1} u_{2}, u_{3} u_{4}\right\}$. Set $N\left(u_{0}\right)=X$ and $Y=V(G)-U-N\left[u_{0}\right]$. Since G contains no induced $3 K_{2}$, we have $e(U, X) \geq|X|$. If $d_{U}(y) \geq 3$ for each $y \in Y$, then $4(n-2) \geq \sum_{i=1}^{4} d\left(u_{i}\right)=e(U, X)+e(U, Y)+2 e(G[U]) \geq 4 n-1$, and hence there is some $u_{5} \in Y$ such that $d_{U}\left(u_{5}\right) \leq 2$. Since $\alpha(G)=3$, we may assume without loss of generality that $N_{U}\left(u_{5}\right)=\left\{u_{3}, u_{4}\right\}$. Let $A=\left\{u_{i} \mid 0 \leq i \leq 5\right\}$ and $B=V(G)-A$. Obviously, $G[A]=K_{1} \cup K_{2} \cup K_{3}$. Since $\alpha(G)=3$ and G contains no induced $3 K_{2}$, we have $d_{A}(b) \geq 2$ for each $b \in B$. Set $B_{0}=\left\{b \mid b \in B\right.$ and $\left.d_{A}(b)=2\right\}$. Since $\sum_{i=0}^{5} d_{B}\left(u_{i}\right) \leq 6(n-2)-8=6 n-20$ and $3|B|=6 n-12$, we have $\left|B_{0}\right| \geq 8$. If $b_{1}, b_{2} \in B_{0}-N\left(u_{0}\right)$, then since $\alpha(G)=3$, we have $N_{A}\left(b_{1}\right)=N_{A}\left(b_{2}\right)=\left\{u_{1}, u_{2}\right\}$ and $b_{1} b_{2} \in E(G)$, which contradicts Claim 1. Thus we have $d_{B_{0}}\left(u_{0}\right) \geq 7$. Since G contains no induced $3 K_{2}$, we have $N_{A}(b) \subseteq\left\{u_{0}, u_{1}, u_{2}\right\}$ for any $b \in N_{B_{0}}\left(u_{0}\right)$. Assume without loss of generality that $b_{i} \in N_{B_{0}}\left(u_{0}\right)$ for $1 \leq i \leq 3$ and $N_{A}\left(b_{i}\right)=\left\{u_{0}, u_{1}\right\}$. Since $\alpha(G)=3$, we have $b_{i} b_{j} \in E(G)$ for $1 \leq i<j \leq 3$, which contradicts Claim 1.
Case 2. $\alpha(G)=4$
If G has an induced $2 K_{1} \cup K_{2} \cup K_{4}$, we let $V(H)=X \cup Y, X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, $E(G[X])=\left\{x_{3} x_{4}\right\}, G[Y]=K_{4}$ and $E(X, Y)=\emptyset$. Set $Z=V(G)-V(H)$. By Lemma 13, $d_{H}(z) \geq 2$ for any $z \in Z$. Let $Z_{0}=\left\{z \mid z \in Z\right.$ and $\left.d_{H}(z) \leq 3\right\}$. Since $\Delta(G) \leq n-2$, we have $e(H, Z) \leq 8(n-2)-14=8 n-30$, which implies $\left|Z_{0}\right| \geq 3$. Let $z \in Z_{0}$. Since $\alpha(G)=4$, we have $d_{Y}(z) \leq 2$. If $x_{1} z \notin E(G)$, then $\bar{G}[V(H) \cup\{z\}]$ contains a W_{8} with the hub x_{1} by Lemma 8 , and hence we have $x_{1}, x_{2} \in N(z)$ for any $z \in Z_{0}$. Since $\left|Z_{0}\right| \geq 3, Z_{0}$ contains two vertices, say z_{1}, z_{2}, such that $z_{1}, z_{2} \notin N\left(x_{3}\right)$ or $z_{1}, z_{2} \notin N\left(x_{4}\right)$, and hence \bar{G} contains a W_{8} with the hub x_{3} or x_{4} by Lemma 8, a contradiction. Therefore G contains no induced $2 K_{1} \cup K_{2} \cup K_{4}$.

If G contains an induced $K_{1} \cup K_{2} \cup P_{4}$, we assume $U=\left\{u_{i} \mid 1 \leq i \leq 6\right\}$ and $E\left(G\left[U \cup\left\{u_{0}\right\}\right]\right)=\left\{u_{i} u_{i+1} \mid i=1,3,4,5\right\}$. Set $N\left(u_{0}\right)=Q$ and $X=V(G)-U-N\left[u_{0}\right]$. By Lemma 11, $e(U, X) \geq 4|X|+2$. If $e(U, Q) \geq 2|Q|-4$, then $6(n-2) \geq \sum_{i=1}^{6} d\left(u_{i}\right) \geq$ $2|Q|-4+4|X|+2+8=2|X|+2(2 n-5)+6 \geq 6 n-10$, a contradiction. Thus there exists

[^4]$q_{1}, q_{2}, q_{3} \in Q$ such that $\sum_{i=1}^{3} d_{U}\left(q_{i}\right) \leq 3$. Let $Y=\left\{u_{0}, q_{1}, q_{2}, q_{3}\right\}$ and $Z=\cup_{i=1}^{3} N_{U}\left(q_{i}\right)$. If $|Z| \geq 2$ or $\sum_{i=1}^{3} d_{U}\left(q_{i}\right) \leq 2$, then there exists $u \in U-\left\{u_{4}, u_{5}\right\}$ such that $u \notin Z$. By Lemma $8, \bar{G}[(U-N(u)) \cup Y]$ contains a W_{8} with the hub u, a contradiction. Thus we have $\sum_{i=1}^{3} d_{U}\left(q_{i}\right)=3$ and $|Z|=1$. If $u_{3}, u_{6} \notin Z$, then there is some $u \in U-\left\{u_{4}, u_{5}\right\}$ such that $u \notin Z$ and $E(U-N[u], Y)=\emptyset$, and hence \bar{G} contains a W_{8} with the hub u, a contradiction. Thus by symmetry we may assume $Z=\left\{u_{6}\right\}$. Since $\alpha(G)=4$, we have $q_{i} q_{j} \in E(G)$ for $1 \leq i<j \leq 3$, which implies G contains an induced $2 K_{1} \cup K_{2} \cup K_{4}$, a contradiction. Hence G contains no induced $K_{1} \cup K_{2} \cup P_{4}$.

If G has an induced $2 K_{1} \cup 2 K_{2}$, we let $U=\left\{u_{i} \mid 1 \leq i \leq 5\right\}$ and $E\left(G\left[U \cup\left\{u_{0}\right\}\right]\right)=$ $\left\{u_{2} u_{3}, u_{4} u_{5}\right\}$. Set $X=V(G)-U \cup\left\{u_{0}\right\}, N\left(u_{0}\right)=Y$ and $X-Y=Z$. Since $\alpha(G)=4$ and G contains no induced $K_{1} \cup 3 K_{2}$ by Lemma 13, we have $d_{U}(z) \geq 2$ for any $z \in Z$. Define $Z_{i}=\left\{z \mid z \in Z\right.$ and $\left.d_{U}(z)=i\right\}$ for $2 \leq i \leq 5$. Let $z \in Z_{3}$. Since $\Delta(G) \leq n-2$, we have $|Z| \geq n-2$, and hence there exists $z^{\prime}, z^{\prime \prime} \in Z-N[z]$. If $\left\{z^{\prime}, z^{\prime \prime}\right\} \cap Z_{5}=\emptyset$, then $z^{\prime}, z^{\prime \prime} \in Z_{4}$ for otherwise $\bar{G}\left[U \cup\left\{z, z^{\prime}, z^{\prime \prime}\right\}\right]$ contains a C_{8} since $\bar{G}[U]=W_{4}$ is Hamiltonconnected, which implies \bar{G} contains a W_{8} with the hub u_{0}, a contradiction. For the same reason, we have $N_{\bar{G}}\left(z^{\prime}\right) \cap Z_{5} \neq \emptyset$. Let $N^{*}(z)=N_{\bar{G}}(z) \cap Z_{5}$ if $N_{\bar{G}}(z) \cap Z_{5} \neq \emptyset$ and $N^{*}(z)=\left\{x \mid x \in Z_{5}\right.$ and $z, x \notin N\left(x^{\prime}\right)$ for some $\left.x^{\prime} \in Z_{4}\right\}$ if $N_{\bar{G}}(z) \cap Z_{5}=\emptyset$. By the argument above, $N^{*}(z) \neq \emptyset$ for any $z \in Z_{3}$. If $z_{1}, z_{2} \in Z_{3}$ and $z_{0} \in N^{*}\left(z_{1}\right) \cap N^{*}\left(z_{2}\right)$, then $\bar{G}[Z]$ contains a (z_{1}, z_{2})-path of order k with $3 \leq k \leq 5$. Note that $\bar{G}[U]$ is (3, 5)-connected, we see that \bar{G} contains a W_{8} with the hub u_{0}, and hence $N^{*}\left(z_{1}\right) \cap N^{*}\left(z_{2}\right)=\emptyset$, which implies $\left|Z_{3}\right| \leq\left|Z_{5}\right|$. Therefore we have $e(U, Z) \geq 4|Z|-2\left|Z_{2}\right|$. By Lemma $13, e(U, Y) \geq|Y|$. Since G contains no S_{n}, we have $5(n-2) \geq \sum_{i=1}^{5} d\left(u_{i}\right) \geq|Y|+4|Z|-2\left|Z_{2}\right|+4=3|Z|+(2 n-4)-2\left|Z_{2}\right|+4 \geq$ $5 n-6-2\left|Z_{2}\right|$, and hence $\left|Z_{2}\right| \geq 2$. Because G contains no induced $K_{1} \cup K_{2} \cup P_{4}$ and $\alpha(G)=4$, $N_{U}(z)=\left\{u_{2}, u_{3}\right\}$ or $\left\{u_{4}, u_{5}\right\}$ for any $z \in Z_{2}$. Note that G contains no induced $2 K_{1} \cup K_{2} \cup K_{4}$ and $\alpha(G)=4$, there exists $z_{1}, z_{2} \in Z_{2}$ such that $N_{U}\left(z_{1}\right)=\left\{u_{2}, u_{3}\right\}$ and $N_{U}\left(z_{2}\right)=\left\{u_{4}, u_{5}\right\}$. In this case, $\operatorname{cl}\left(\bar{G}\left[U \cup\left\{z_{1}, z_{2}\right\}\right]\right)=K_{7}$. By Lemma $5, \bar{G}\left[U \cup\left\{z_{1}, z_{2}\right\}\right]$ is Hamilton-connected, which contradicts Lemma 12. Thus G contains no induced $2 K_{1} \cup 2 K_{2}$.

If G has an induced $3 K_{1} \cup K_{3}$, we let $U=\left\{\begin{array}{l|l}\left.u_{i} \mid 1 \leq i \leq 6\right\} & \text { and } E(G[U])= \\ & 1\end{array}\right.$ $\left\{u_{4} u_{5}, u_{5} u_{6}, u_{4} u_{6}\right\}$. Set $X=V(G)-U$. Since $\alpha(G)=4$ and G contains no induced $2 K_{1} \cup 2 K_{2}$, we have $d_{U}(x) \geq 2$ for each $x \in X$. Let $X_{0}=\left\{x \mid x \in X\right.$ and $\left.d_{U}(x)=2\right\}$. Since $\sum_{u \in U} d(u) \leq 6(n-2)$ and $|X|=2 n-4$, we have $\left|X_{0}\right| \geq 6$. Let $x \in X_{0}$. Note that $\alpha(G)=4$ and G contains no induced $2 K_{1} \cup 2 K_{2}$, we have $N(x) \subseteq\left\{u_{1}, u_{2}, u_{3}\right\}$. Thus, since $\left|X_{0}\right| \geq 6$, there exists $x_{1}, x_{2} \in X_{0}$ such that $N_{U}\left(x_{1}\right)=N_{U}\left(x_{2}\right)$. Assume without loss of generality that $N_{U}\left(x_{1}\right)=N_{U}\left(x_{2}\right)=\left\{u_{2}, u_{3}\right\}$. By Claim 1, we have $x_{1} x_{2} \notin E(G)$. In this case, $\operatorname{cl}\left(\bar{G}\left[U \cup\left\{x_{1}, x_{2}\right\}-\left\{u_{1}\right\}\right]\right)=K_{7}$. By Lemma 5, $\bar{G}\left[U \cup\left\{x_{1}, x_{2}\right\}-\left\{u_{1}\right\}\right]$ is Hamilton-connected, which contradicts Lemma 12. Thus G contains no induced $3 K_{1} \cup K_{3}$.

Let $I=\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}, V(G)-I=X$ and $X_{1}=\left\{x \mid x \in X\right.$ and $\left.d_{I}(x)=1\right\}$. Since $|X|=2 n-2$ and $\Delta(G) \leq n-2$, we have $\left|X_{1}\right| \geq 4$. If $\left|X_{1}\right| \geq 5$ or $d_{X_{1}}\left(u_{i}\right) \geq 2$ for some i with $0 \leq i \leq 3$, then G contains an induced $3 K_{1} \cup K_{3}$ since $\alpha(G)=4$, a contradiction. Thus we have $\left|X_{1}\right|=4$ and $d_{X_{1}}\left(u_{i}\right)=1$ for $0 \leq i \leq 3$, which implies $d_{I}(x)=2$ for any $x \in X-X_{1}$ and $d\left(u_{i}\right)=n-2$ for $0 \leq i \leq 3$. Let $N\left(u_{0}\right)=Y$ and $Z=X-Y$, then $|Z|=n$. Assume $Z_{0}=\left\{v_{i} \mid 1 \leq i \leq 3\right\} \subseteq X_{1}$ and $u_{i} v_{i} \in E(G)$. Set $Z_{i j}=\left\{z \mid z \in Z\right.$ and $\left.N_{U}(z)=\left\{u_{i}, u_{j}\right\}\right\}$ for $1 \leq i<j \leq 3$. By the arguments above, we see that $\left(Z_{0}, Z_{12}, Z_{23}, Z_{13}\right)$ is a partition of Z. If $z \in Z-Z_{0}$ and $d_{Z_{0}}(z)=0$, then $\operatorname{cl}\left(\bar{G}\left[Z_{0} \cup I \cup\{z\}-\left\{u_{0}\right\}\right]\right)=K_{7}$. By Lemma 5, $\bar{G}\left[Z_{0} \cup I \cup\{z\}-\left\{u_{0}\right\}\right]$ is Hamilton-connected, which contradicts Lemma 12. Thus $d_{Z_{0}}(z) \geq 1$ for any $z \in Z-Z_{0}$. Since G contains no induced $2 K_{1} \cup 2 K_{2}$, we have $G\left[Z_{0}\right]=K_{3}$. Since

[^5]
ARTICLE IN PRESS

$|Z|=n$, there exists $u \in Z$ such that $v_{1} u \notin E(G)$. Obviously, $u \notin Z_{0}$. Since $d_{I}(u)=2,|Z|=n$ and $d_{Z_{0}}(u) \geq 1$, there exists $v \in Z-Z_{0} \cup\{u\}$ such that $u v \notin E(G)$. If $v \in Z_{12} \cup Z_{13}$, then $v_{1} u v u_{3} v_{2} u_{1} v_{3} u_{2}$ or $v_{1} u v u_{2} v_{3} u_{1} v_{2} u_{3}$ is a C_{8} in $\bar{G}-N\left[u_{0}\right]$, a contradiction. If $v \in Z_{23}$, then $v_{2}, v_{3} \in N(v)$ for otherwise $v_{1} u_{2} v_{3} u_{1} u_{3} v_{2} v u$ or $v_{1} u_{3} v_{2} u_{1} u_{2} v_{3} v u$ is a C_{8} in $\bar{G}-N\left[u_{0}\right]$, and hence there exists $w \in Z-Z_{0} \cup\{u, v\}$ such that $w v \notin E(G)$. In this case, $v_{1} u_{2} v_{3} u_{1} u_{3} w v u$ or $v_{1} u_{3} v_{2} u_{1} u_{2} w v u$ or $v_{1} u_{3} u_{2} v_{3} u_{1} w v u$ is a C_{8} in $\bar{G}-N\left[u_{0}\right]$, also a contradiction.

Case 3. $\alpha(G)=5$
If G has an induced $2 K_{1} \cup K_{2} \cup P_{3}$ or $2 K_{1} \cup P_{5}$, we let $H \in\left\{K_{1} \cup K_{2} \cup P_{3}, K_{1} \cup P_{5}\right\}$, $v \in V(G)-V(H)$ and $N_{H}(v)=\emptyset$. Set $N(v)=Q$ and $X=V(G)-V(H)-N[v]$. Let $h_{0} \in V(H)$ and $d_{H}\left(h_{0}\right)=0$. If $q \in Q$, then by Lemmas 5 and $12, d_{H}(q) \geq 1$ and if $d_{H}(q)=1$, then $N_{H}(q)=\left\{h_{0}\right\}$. If $q_{i} \in Q$ and $d_{H}\left(q_{i}\right)=1$ for $1 \leq i \leq 3$, then we may assume $q_{1} q_{2} \in E(G)$ since $\alpha(G)=5$, which contradicts Claim 1. Thus we have $e(H, Q) \geq 2|Q|-2$. By Lemma 11, we have $6(n-2) \geq \sum_{h \in H} d(h) \geq e(H, Q)+e(H, X)+2 e(H) \geq 2|Q|-2+4|X|+2+6 \geq$ $6 n-10$, a contradiction. Thus G contains no induced $2 K_{1} \cup K_{2} \cup P_{3}$ and $2 K_{1} \cup P_{5}$.

If G has an induced $4 K_{1} \cup K_{2}$, we let $U=\left\{u_{i} \mid 1 \leq i \leq 6\right\}$ and $E(G[U])=\left\{u_{5} u_{6}\right\}$. Set $X=V(G)-U$. By Lemma 13, $d_{U}(x) \geq 2$ for any $x \in X$. Since $|X|=2 n-4$ and $\sum_{u \in U} d_{X}(u) \leq 6(n-2)-2, X$ contains at least two vertices, say x_{1}, x_{2} such that $d_{U}\left(x_{1}\right)=d_{U}\left(x_{2}\right)=2$. By Lemma 13, G contains no induced $3 K_{1} \cup P_{4}$. Thus noting that G contains no induced $2 K_{1} \cup K_{2} \cup P_{3}$, we have $N_{U}\left(x_{1}\right)=N_{U}\left(x_{2}\right)=\left\{u_{5}, u_{6}\right\}$. Since $\alpha(G)=5$, we have $x_{1} x_{2} \in E(G)$. Now, let $U^{\prime}=U \cup\left\{x_{1}, x_{2}\right\}$ and $X^{\prime}=V(G)-U^{\prime}$. Since $\sum_{u \in U^{\prime}} d(u) \leq 8(n-2), e\left(G\left[U^{\prime}\right]\right)=6$ and $\left|X^{\prime}\right|=2 n-6, X^{\prime}$ contains a vertex x such that $d_{U^{\prime}}(x) \leq 3$. Since $\alpha(G)=5$, we have $\left|N(x) \cap\left\{u_{5}, u_{6}, x_{1}, x_{2}\right\}\right| \leq 2$. By Lemma $8, \bar{G}$ contains a W_{8} with the hub u_{i} for some $u_{i} \in U-\left\{u_{5}, u_{6}\right\}$, a contradiction. Hence G contains an induced $4 K_{1} \cup K_{2}$ is impossible.

If G has an induced $3 K_{1} \cup P_{3}$, we let $U=\left\{u_{i} \mid 1 \leq i \leq 6\right\}$ and $E(G[U])=\left\{u_{4} u_{5}, u_{5} u_{6}\right\}$. Set $X=V(G)-U$. Since $\alpha(G)=5$ and G contains no induced $4 K_{1} \cup K_{2}$, we have $d_{U}(x) \geq 2$ for any $x \in X$. Let $X_{0}=\left\{x \mid x \in X\right.$ and $\left.d_{U}(x)=2\right\}$. Since $e(G[U])=2,|X|=2 n-4$ and $\Delta(G) \leq n-2$, we have $\left|X_{0}\right| \geq 4$. Since G contains no induced $2 K_{1} \cup P_{5}$ and $4 K_{1} \cup K_{2}$, we have $N_{U}(x) \subseteq\left\{u_{1}, u_{2}, u_{3}\right\}$ or $\left\{u_{4}, u_{5}, u_{6}\right\}$ for any $x \in X_{0}$. Let $x_{1} \in X_{0}$. If $N_{U}\left(x_{1}\right) \subseteq\left\{u_{4}, u_{5}, u_{6}\right\}$, then $N_{U}\left(x_{1}\right)=\left\{u_{4}, u_{6}\right\}$ since G contains no induced $4 K_{1} \cup K_{2}$. Let $x_{2} \in X_{0}-\left\{x_{1}\right\}$. By Lemmas 5 and 12, we have $N_{U}\left(x_{2}\right) \subseteq\left\{u_{4}, u_{5}, u_{6}\right\}$, and hence $N_{U}\left(x_{2}\right)=\left\{u_{4}, u_{6}\right\}$. Since $\alpha(G)=5$, we have $x_{1} x_{2} \in E(G)$, which contradicts that G contains no induced $4 K_{1} \cup K_{2}$. Thus we have $N_{U}(x) \subseteq\left\{u_{1}, u_{2}, u_{3}\right\}$ for each $x \in X_{0}$. Noting that $\left|X_{0}\right| \geq 4$, there exists $x_{1}, x_{2} \in X_{0}$ such that $N_{U}\left(x_{1}\right)=N_{U}\left(x_{2}\right)$. Assume $N_{U}\left(x_{1}\right)=N_{U}\left(x_{2}\right)=\left\{u_{2}, u_{3}\right\}$. By Lemmas 5 and 12, we have $x_{1} x_{2} \in E(G)$, which contradicts Claim 1. Thus G contains an induced $3 K_{1} \cup P_{3}$ is also impossible.

On the other hand, since $\Delta(G) \leq n-2,|I|=5$ and $|V(G)-I|=2 n-3, V(G)-I$ contains a vertex v such that $d_{I}(v) \leq 2$, which implies G contains an induced $4 K_{1} \cup K_{2}$ or $3 K_{1} \cup P_{3}$, a contradiction.

By now, we have shown $R\left(S_{n}, W_{8}\right) \leq 2 n+2$. Therefore, we have $R\left(S_{n}, W_{8}\right)=2 n+2$ for $n \geq 6$ and $n \equiv 0(\bmod 2)$. The proof of Theorem 4 is completed.

References

[1] J.A. Bondy, Pancyclic graphs, Journal of Combinatorial Theory, Series B 11 (1971) 80-84.
[2] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Mathematics 15 (1976) 111-135.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976, Elsevier, New York.

ARTICLE IN PRESS

[4] S. Brandt, R.J. Faudree, W. Goddard, Weakly pancyclic graphs, Journal of Graph Theory 27 (1998) 141-176.
[5] Y.J. Chen, F. Tian, B. Wei, Degree sums and path-factors in graphs, Graphs and Combinatorics 17 (2001) 61-71.
[6] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers of stars versus wheels, European Journal of Combinatorics 25 (2004) 1067-1075.
[7] G.A. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathematical Society 2 (1952) 69-81.
[8] Surahmat, E.T. Baskoro, On the Ramsey number of path or star versus W_{4} or W_{5}, in: Proceedings of the 12 th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, 14-17 July 2001, pp. 174-179.
[9] S.M. Zhang, Pansyslism and bipancyclism of hamiltonian graphs, Journal of Combinatorial Theory, Series B 60 (1994) 159-168.

[^0]: * This project supported by NSFC under grant number 10671090.

 E-mail address: yaojunc@ nju.edu.cn (Y. Chen).

[^1]: Please cite this article in press as: Y. Zhang, Y. Chen, K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.07.005

[^2]: Please cite this article in press as: Y. Zhang, Y. Chen, K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.07.005

[^3]: Please cite this article in press as: Y. Zhang, Y. Chen, K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.07.005

[^4]: Please cite this article in press as: Y. Zhang, Y. Chen, K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.07.005

[^5]: Please cite this article in press as: Y. Zhang, Y. Chen, K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.07.005

