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ABSTRACT
The main subjects of this survey paper a"rc,‘Hamiltonian cycles, the longest
cycles, 2—cyclability and girth in digraphs or o;iented graphs;, various types of
pancyclicity,‘ generalized cycles in tournaments. Several unsolved problems and a

bibliograph are included. )
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In graph theory, cycle is such a fundamental concept that the some simple propcrties
of them, as cycle axiomatic system, become one of the equivalent axiomatic systems in
matroid theory. Undirected graphs, compared with digraphs, without the confinement
of orientation of edges, are easier 10 study. Therefore, most of the early results on cycles
belong to undirected graphs. After 70’s, as the study of graph theory going on and thc ac-
cumulation of research techniques, so people turned their attentions on digraphs
progressively. Today, there are a great amount of literatures on direceted cycles and the
amount is increasing rapidly. Hence, it is difficult, even impossible, to list all the re-
sults on the topics in a paper. In this survey, the collection of results are according to the
following rules. a) Almost all the results and the unsolved conjectures with little progress in
[BeT] are excluded, and in this sence, this paper is a continuation and a complement of
[BeT). b) For the same question, if there are several consecutive results, the last and the
best one is collected. c) The matter in the survey is confined to the subjects mentioned in the
abstract. d) There exist many such results that the holding of their conclusions requires one
or severa: special classes of digraphs to be excluded. In order not to make the paper too
long, the definitions of these digraphs are deleted, for which the reader is refered to the
related literatures.

Tournaments is a special classes of digraphs. But because of their speciality and their
rich contents, which is more profound than digraphs, we treat them as an independent
section parallel with digraphs. Also our treatment is convenicnt.
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We use standard terminology in {[BeT,BoM], but we specify the most important defi-
nitions and notations: ‘

A digraph D =(V,A), where V is the vertex set of D and A is a set of ordered pairs xy
of vertices called arcs from x to y. We always assume that D is strict, i.e. there are no
loops and no multiple arcs. Set|¥|=n, |4]|=e¢. The subdigraph P, =(V,A,) of D is called
a dipath, simply called a path in no ambiguous case, if V,= {x,x,,...,x,} and A, = {x;_;x;:
i=1,...,.k}. Denote the path by P, = xyx,...x;, where k is called the length of P,. If x,x,€ A al-
so, the digreph P; plus the arc x,x, is called (k+1)—cycle, denote as C,,,= XoXi-.- XX
Particularly, P, and C, are called Hamiltonian path and Hamiltonian cycle
respectively. '

An oriented graph is a digraph without 1—-, 2—cycles and a tournament is an oricnted
complete graph. A k—partite tournament is an orientation of complete k—partite graph.
Spccially, denote a bipartite tournament as (V,,V,; A) where V,, V, is a partition of its
verlex set. A digraph is symmetric if every arc is contained in a 2—cycle. If G is an undirect-
ed graph, we denote by G the symmetric digraph associated with G. Lei D denotc the
converse digraph of D.

A digraph D is strong, if for any two vertices x and y, D contains a dipath from x to
y. D is strong k—connected if the deletion of fewer than k vertices always results in a strong
digraph. Similarly, The concept of k—arcjconnected digraph can be difined analogously.
‘A component of a digraph D is a maximal strong subdigraph. The components of D can be
labelled by Dy, D,,...,D, such that no vertex of D; dominates a vertex of D; if j<i,
where D, D, are cailed the initial and terminal components respectively and the other

components are the intermediate components. For digraph D, let N ; (x) = { ylxyeA},

N ) ={ylyeA}, d;0=|N;®)| d)m=|N] )| hy =mind; (9, h,

= mind  (x), h(D)=min{h b }; d (x)=d, (xr+d, (x), & (D)=mind {x). If no

xeV x&V
confusion arise, the subscript D can be omitted from above notations. A digraph is
k—diregular if d * (x)=d  (x) =k and k—tegular if d(x)=k for every vertex x of D. For
any rcal number x, [x] denotes the integer part of x and {x} is the smallest integer no less
than x .

§ 1. Digraphs.
1.1 Hamiltonian cyclcs and pancyclicities.

(1) Conditions on the degrees.
Up to date a generalized sufficient condition for the existence of Hamiltonian eyclc in a
digraph was obtained by Meyniel ((Mey], in 1973).
Theorem (Meyniel) Let D be a strong digraph with n vertices. If for any two
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non-adjacent vertices x and y, d(x)+d(y)> 2n~1, then D is Hamnltoman ,
An efficient algorithm with O(n*) steps for finding a Hamlltoman cycle in a digraph
satisfying the hypothesis of Meyniel's Theorem was obtmnqd by M. Minoux ([BeT]).
We say that a digraph D of order n sausﬁes the eondmon {C) if for any two non-ad-
')accnt vertices x and y, d(x)+d(y) 2 2n—2+i.
+ Clearly, the above Theorem can be rewrited as: a strqu dngraph satisfying condmon
(C)is Hamnltoman

4
A digraph Dis pancyclic if D contains r—cycles (2< ;g n). If in addition, for any
vertex x (arce) of D, D contains r—cycles passing x (¢) (2€ r< n), D iscalled vertex (arc)
pancyclic. For oriented graphs, of course r352, it must be relaxed r=2 in mentioned def-

initions. "

Theorem 1. 1.1[Be2]If a strong dxgraph D of order n3 3 satxsﬁes condmon (C)), then

Dis pancyclicor Disa toumament or else n is even and D is isomorphic to one of K .'

NI’

K’y ., and D, o
272
In Theorem 1.1.1, K’ ; 8K ._: » mminus one arc and D, are defined as follows. For
22 272 , N ;
given r,  add the arcs xx(n> j>i+1, j¥itr) to the path x;x,..x, and then delete some

arcs such that keeping the condition (C,).

Obviously, K’as and D, don’t satisfy (C,). Hence, Theorem 1.1.1 extends Theo-
22 : )

rem 2.2.2 of [BeT]. We can also ask that whether or not a strong digraph satisfying condi-
tion (Cy) or (C_;) with some more exceptions is pancyclic and that for what i, a strong
digraph satisfying (C,) has vertex pancyclitity. : ‘

Besides condition (C,), people can use 3(D) to describe the conditions for a dig}aph

having Hamiltonian cycles. el
{
\,

Theorem 1.1.2[Da2] If a digraph D of order n satisfies Q‘(D)z n—-1, ) k(D)= [ 2 ; ! ] ’

then D is pancyclic except a few classes of digraphs. '
Theorem 1.1.3[Qin] If a digraph D of order n with 6(D)> n. Let xe V(D), if D—x is
strong, then x is contained in cycles of all possible lengths from 2 to n excluding: 3, unless

D~K.,.

2'n

For oriented graphs, there are some further results. First, the well-known Woodall
condition([Woo)) is improved to

Theorem 1.1.4 {S010] An oriented graph D with n(>9) vertices and D)= n—1is
pancyclic if for any two vertices x,y, xy¢ A implies d*(x)+d (y)> n—-3. ‘

Theorem 1.1.5{Th3] If an oriented graph D of order n satisfies h(D)>n/2-
Vn/1000, thenDis Hamiltonian.

For smaller n, the following theorems are better.
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Theorem 1.1.6[Wal] An oriented graph D of order n is Hamnltoman ifh(D)=2k=5
and n < 2k+5.

Theorem 1.1.7[Sol] ff ‘a strong oriented graph D satisfies h(D)=k> 6. Then D is
Hamiltonian or contains & path of length at least 2k+3.

In [Wo2), all non—hamiltonian and non—hamiltonian connected dlgraphs with given
h™,h" and maximum size are descibed.

(2). Conditions on the number of arcs.
The following theorem improves Theorem 1.3.2 of [BeT].

\KJ% ‘><

Fig 1. (the edge without oricntetion indicats a 2—cycle)
Theorem 1.1.8[Wol,BeT) Let D be a dlgraph with n vertices. If 2 (n—1)(n—2)+2, and
D is not isomorphic to the digraphs in Figure 1 and their converse or the digraphs con-

taining a sourse or a sink. Then a) D is Hamiltonian, b) D is pancyclic unless D~ C : .
With additional condition h(D)=r, [4FG]has 4
Theorem 1.1.9[4FG] Let D be a digraph with n vertices, h(D)=r. (@). If ¢ 2

n’>~(r+2)n+(r+1)>+1, then D is Hamiltonian; (b). e n>=(r+Dn+r(r+1)+1, then D is

Hamiltonian—connected, i.e. for any two vertices x,y of D, D contains a Hamiltonian

dipath fromx to y. _

Let n,},r be integers with 6< 2r+2< 1<n. Let D(n,Lr) be the following digraph of or-
der n. Whose vertex set consists of two disjoint set E and F with |E|=1-r—1, |F|
=n—+r+1. The arc set consists of all possible arcs xy, where x,yeE or xeE, yeF or xe
F, yeE’ where E’ is a r—subset of E. Obviously, D,(n,l,r) contains no cycle of lengih at.
least 1. This implies Theorem 1.1.9is, in a sence, best possible.

For oriented graph, there exists a further result and a conjecture:

Theorem 1.1.10 {Fa0] A strong 2-connected oriented graph D is Hamiltonian if

&D)> Cl-2.
Conjecture 1.1.11 [FaO] A strong k—connected oriented graph D is Hamiltonian if -
¥D)>c’ - ¢’ K
Theorem 1.1.10 implies that the conjecture is true .for k=2.

(3) Other conditions. _
If D is a digraph, we may difine three kinds of independence numbers as follows:( '
(D) (a(D);  ay(D) resp.) is the maximum cardinal of a vertex subset B of D such

k42’
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that D[B] has no arc (no cycle, no 2-cycle resp.). Clearly, a (D)< a,(D) < a (D). We
notice that the Chvatal—Erdos condition: a(G)< x(G) about an undirected graph impling a
Hamiltonian cycle and there exists an counterexample ([7/42]) about 3—connected
non—Hamiltoiiian digraph D with a,(D)=3. Thus the Chvatal-Erdos condition can not be
generalized for digraphs. So, the following conjecture may be true. -

Conjecture 1.1.12[Ja0]. For any integer a2 1, there exists a least integer f;(a) such
that every strong fy(a)—connected digraph D with a;(D) < a is Hamiltonian.

Theorem 1.1.13[Ja3] Let D be a strong k—connected digraph with a,(D)<a. If k>
2*(a+2)!, then D is Hamiltonian.

This implies fy(a)< 2*(a+2)!, i.c. Conjecture 1.1.12 is true. As for the precise value of
fs(a), up to now we only know that f;(1)=1,{;(2)=3, f;(3)=4.

Consequently, the following holds:

Conjecture 1.1.14[Ja3] For any integer a> 1, there exists a least integer {i(a) such that
any strong f(a)-connected digraph with o;(D) < a is Hamiltonian (i=1,2).

[He4] asserts [i(1)=,(1)=1, f,(2)=3.

1.2 The longest cycles and 2—cyclability. ,

For the difficulty of searching into the sufficient conditions of a digraph to be
Hamiltonian and the existence of non—Hamiltonian digraph, therefore the longest cycles
in a digraph have received more attention. This topic has been studied extensively.

A1) Condition on the degrees.

Theorem 1.2.1[He3,He4] If a strong digraph (a strong oriented graph resp.) D with n
vertices satisfies the condition (C,_) ((C,..5y) Tesp.), where 1< h<n—1, then (a) D con-

n—1

tains a cycle of length {T} +1. (b) For h=2, D contains a path of length at least

{n ; ! } + {" ; 2} . (c) The vertex set of D can be covered by'at most h cycles.

For h=1, the Theorem is Meyniel’s Theorem of § 1.1. So it is an extension of
Meyniel’s Theorem in the sense of longest cycles.

Let D,(n,q) be the following digraph with n vertices, where n=qgh+r+l, 0<r<
q—1. The vertex set of Dy(n,q) consists of the disjoint union of q sets X;(1<i<q)anda
vertex z, where r of which are of cardinality h+1 and q—r of cardinality h. The arcs of
D,(n,q) are all arcs of the form xy with xeX;, yeX;(1<i<j< g) and all the possible arcs
between z and X(1< i< q). Dy(n,q) implies that Theorem 1.2.1is, in a sense, best possi-
ble. .

Theorem 1.2.2[So03] Let D be a digraph with n vertices. Ifh"(D)> k. ‘h*(D)>handn
> h+k+1, then D contains a cycle of length at least k+h or a path of length at least k+h+1

unless D is isomorphic to the union of m(> 2) disjoint copies D,,....D,, of K ;+1 except

one vertex in common,
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Bermond and Thomassen conjectured independently that if a strong 2—connccted
digraph D with at least 2k vertices and h(D)> k, then D contains a cycle of length at least
2k. Theorem 1.2.2 implies that the Conjecture holds for n=2k+1. For n> 2k+2, although
a conterexample was shown by [Th2], the following result holds:

Theorem 1.2.3[So4] Let D be a strong digraph of order n with h(D)= k, n=2k+2.
Then D contains a cycle of length at least 2k uﬁless D is isomorphic to one of Figure 2 or a

spanning subgraph of the union of K K& with only one vertex in common. Itis, in

k+71? k42
asense, best possible.
= N
Figure 2

In [SoZ] it is also proved that a digraph D satisfying the conditions of Theorem 1.2.3
contains a cycle of length at least 2k+1, unless D is one of 8 exceptions.

For oriented graph, the following results hold.

Theorem 1.2.4[S09] If D is an oriented graph with h"(D)=k> 1, h*(D)=h> 3,

1) If n< k+h+2, then D is hamiltonian;

2) If n > k+h+3, then D contains a cycle of length at least h+k+2 ora path of length at
least h+k+3. : : :

Theorem 1.2.5[S09] If D is an oriented graph with 8(D)=r. If for any uv¢ A(D),
d*(u)+d (v) > r—1, then D contains a cycle.of length at least r+1 or a path of length at least
r+1. - .

Conjecture 1.2.6[Ja2] Every 2—connected oriented graph with h™(D) =k contains cither
a hamiltonian cycle, or else a cycle of length at least 2k+2.

This Conjecture may be, in a sense, best possible.

As for bipartite digraphs, the following further results are best possible in a sense.

Theorem 1.2.7[AmM] Let D =(X,Y;A) be bipartite digraph with h(D)> k. If a=|X]|,
b=|Y| andasx 2k—1, then D has a cycle of length 2a unless D is one of two exceptions.

Theorem 1.2.8[ZA47) Let D be a bipartite oriented graph with h'(D)>h, h°(D)> k.
Then D contains a cycle of length at least 2(h+k) or a path of length at least 2(h+k)+3..

By Theorem 1.2.8, the following conjecturs may be true. . : :

Conjecture 1.2.9[Zk7] A bipartite oriented graph with h*(D)>h, h (D)3 k contains a
cycle of length at least 2(h+k).

Conjecture 1.2.10{Z47) Let D be a bipartite oriented graph. If h*(D)> k, then D con-
tains a Hamiltonian cycle or a cycle of length at least 4k.

Clearly, if the above two conjectures hold, they are, . in a sensg, best possible.

In digraph, there is an interesting fact different from undirected graph. In a 2—con-
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nected undirected graph, any two vertices are contained in a common cycle. But not so for
strong 2-connected digraphs. Thus, the following concept and problem was deduced.

"D has k—cyclability if any k vertices of the digraph D are contained in a common cy- k
cle.

"Problem 1.2.11[BeL] Whether or not does there exist such an integer k that any strcng
k—connected digraph D has 2—cyclability?

“Fork<$," [BeT] gives counterexamples. Hence if the problem is true, then it must
be k= 6. Sxmllarly B. Jackson conjectured that a strong 3—connected oriented graph has
2—cyclabnlxty It is regrettable that the conjecture is not true. The counterexample is shown
in Figure 3, ‘where R;, R, are 7—diregular tournaments. Clearly u and v in the Figure
can’t b_élbhé te-a common cycle.

S Figure 3
Nevertheless, by additive conditions on independent number, the following result
holdsyiin ™ :
Theorem 1.2. 12[Ja0] Let D be a strong k—connected digraph. Then D has
2—cyclability if D satisfies one of the following conditions:
D k22D ()k>3, ;D)2 (i) k> 15, a,(D)<3.
Specially, when a,(D)=1, k> 1, also D is Hamiltonian.

~‘There remains: - " g

Conjecture 1.2, 13[Ja0] Given any- lnteger m > 1, there exists an integer g(m) such that
every g(m)—connected digraph D with a, < m has 2—cyclability. -

Using also condition ‘on’ degrees:and on the number of arcs, the following theorem
holds: S AT e nie T AT

Theorem :1.2.14fSo«f]- Let I be'a digraph of order n with h(D)==k and n< 2k+1+i
(i=0,1). Then, - with'someexceptions,.’D has 2—cyclability and any two vertices of D be-
long to a cycle of length at least:n—1+2i.: ‘

Theorem 1.2.15[Man] Let D be a strong digraph with n vertices.If h(D)> k=1, &D)
= n?-n(k+3)+k*+3k+S, -then D hasi2-cyclability.

It leads that:

‘Conjecture 1.2.16[Man] Let.D bé a(m-1)+~connected digraph of n vertices such that
h(D) 2 k> m—12 1 and &D) > n*~n(k+3)+k*+3k+m+3. Then D has k—cyclability.

(2) Conditions on the sumber of wrcs.

‘Many theorems:relating to the conditions on: the number of arcs that insure a digraph
to contain a k~cycle were shown in § 2.2 of [BeT]. Only the conjecture there is repeated.
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Conjecture 1.2.17[BeT] Let D bea strong digraph of order n = q(k—2) +r+1. If D satis-
fies one of the following conditions, then D contains a cycle of length at least k.
(i) e(D)> ¥(nk)=(k—1)n—2k+4ifk < n< 2k—4;

(ii) (D) > (b(n,k)=( ;))+(n—1)f(k-2—r)qkq—l)/ 2-1q(q+1)/ 2 ifn3> 2k—4.

Here y(n,k). &(nk) are the numbers of arcs of digraphs D,(nk,1), D,(nk-2)
respcctively. Hence it is best possible, - if the Conjecture is true.

[BeT] points out that the Conjecture is true for n=2k-4 and for k< 5. Besides when
k=n,n—1, (i)istrue; when D is strong oriented graph, (ii) is true. -

Theorem 1.2.18[HeS] Let D be a strong digraph with n vertices. If k=2, n> 13 ork
23, n3» k+2k+4 and (D)3 n’—~(k+3)n+2k+4. Then D contains a cycle of length at least
n—k unless D~ D (n,n—k; 1).

By additive conditions on half—degree, the following further results hold:

Theorem 1.2.19[HeS] Let D be a strong digraph of order n(> 15, rerp.) with h(D) >
2, ¢MD)=n*5n+13(2n —-6n+l6 resp.). Then D contains a cycle of length at least n—1
(n-2, resp.). '

Theorem 1.2.18 implies Conjecture 1.2.17 (i) is true for sufficient large n. From Theo-
rem 1.2.19, [HeS] proposes the following more generalized conjecture than 1.2.17.

Conjecture 1.2.20 [HeS] Let k,r be two integers and r> 1. Then there exists such a func-
tion f(k,r) with the following property. If D is a strong digraph of order n and n2> flk,r),
h(D)zr, s(D)>|A(D (nn—k, r))| = n’~(k+r+2)n+(k+r+1)(r+1)+1, then D cont_atps a
cycle of length at least n—k. ' B

. As a partial solution to Conjecture 1.2.20, Theorem 1.1.9, 1.2.18, and' 1.2.}9 im-
ply f0,r)=0; - f(2,1)=13; fik,1)< k*+2k+4 for k2>3; 2) 0; ‘ f(2,2)$ 15
respectively. By [BGH], f(1,1)=6; by [S02}, f(1,3)=0 and by [So4 8, SoZ] the Con-
jecture holds forng 2r+3 and k= 1.

Let n=kh+r, k+lzr> 2 and w(n, k)= (2)—(k-r+l)(2)—(r 2)(

"H) For oricnted

graphs, the correspondmg results below hold.

Theorem 1.2.21 [He2] Let D be a strong oriented graph of order n with e(D)> w(n,k).
Then D contains a cycle of length at least k+1.

Theorem 1.2.22 [Qin] Let D be a digraph of ordet n (> 4) with (D)2 (n—1)(n—-2)+2,
then every vertex of D is contained in cycles of all possible lengths from 3 to n, except D
isomorphic to some special digrphs which are described.

1.3 The shortest cycle and its girth.
In digraphs, besides the longest cycles, shortest cycle and its 1ength-—-the glrth pres-
ent one aspect of cycles. First, for diregular digraphs it has:

IR B TR TP ¥ DRI
R T NS R T N
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Conjecture 1.3.1[BCW] k—diregular digraph D with n vertices has the girth at most
{n/k}.
k The Conjecture holds for k =2 ((BCW]) and 3 ([Ber]).
Theorem 1.3.2 [Hal} Let D be a k—diregular digraph of order n with k> 4. Then its
girth is at most {n / 4}.
Theorem 1.3.2 implies that Conjecture 1.3.1 is also true for k=4,

The following conjecturé is 4 generalization of Conjecture 1.3.1.

Conjecture 1.3.3 [CaH]} Let D be a digraph of order n with h*(D)=k.

Then its girth is at most {n / k}. :

Notice that the digraph D = (V,A) where V={1,2,...,.n}, A= {i dominates i+1, i+2, ...,
i+k (mod n)i=1,2,...,n}. It cannot be improved if the above Conjecture is true.

Conjecture 1.3.3 holds for 2< k< 5 ({CaH,Ha2,HoR]). Besides the following holds:

Theorem 1.3.4 {Nis] If D is a digraph of order n with h*(D)=k, then its girth is not
greater than Min{n / k+304, 2n / (k+1)}.

A conjecture related with girth was proposed in [JaO).

Conjecture 1.3.5 [JaO] Let D be a digraph with n vertices. ITh*(D) > k, then D con-
UC,nCl,s 1foralljgk.

i<f

tains cycles C,,C,,...,C, such that

Obviously, . if the girth of D is g, then |{JC, |>k(g-1)+1, thus n>k(g~1),

i<k

i.e.,n>k>g—1. Therefore Conjecture 1:3.5 implies 1.3.3. Conjecture 1.3.5 is true for k=2
(Th6D. ‘

R. Haggkvist suggested the followmg problem:

Given a digrapt T and a condition implying that D is Hamiltonian, fot any r—subset
SofD, find an upper bound on the length of minimum cycle containing S. [Fra] has:

" Theorem 1.3.6 [Fra] Let D be a digraph (an oriented graph resp.) with n vertices. Such
that for any two vertices x and y, xy ¢ A(D) implies d*(x)+d"(y)= n (d*(x)+d (y) > n—2
resp.). Let S be any r—subset of V(D), Then S is contained in such a cycle-of length at
most min{n,2r} in D. ,

One could expect that Theorem 1.3.6 might be still valid under the weak
condition——Meyniel’s condition for Hamiltonian cycle. It is to be regretted that it docsn’t
hold. The counterexample is shown in Figure 4. .

Where for p>1, the S;x§,xS, is a tripartite complete symmetric dxgraph Add a
vertex x, then the arcs between x and S,xS xS \{y} are shown in Figure 4, and thcreis
no arc joining x and y. It is easy to check that the mentioned digraph satxsﬁes the condition
C,. butxandy are contained in no cycle of length 4 or less.

The other topic related with the girth is the enumeration of the shortest cycles.

Theorem 1.3.7 [41],Th6] Let D be a digraph of order n with girth g. If g> 4 or n< 2g,
then D contains at most 2°°% distinct cycles of length g.
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Theorem 2.4.1 of [BeT] is a result related with the girth bvy the condition on the number
of arcs which is no longer repeated here.

Figure 4 . . Figure 5
1.4 The relation among cycle and others.
First, we comment on the decomposition of a digraph into cycles. In § 4.1 of [BeT],

it is pointed out that X ;4, K can be partition into Hamiltonian cycles respectively.

.
a
30

Vi

Since a digraph usually can’t have such a strong conclusion, the following conjecture may
be true.

Conjecture 1.4.1 [Ber] Let D be a digraph with n(> 5) vertices. If h(D)=n/2, thenD
contains two arc—disjoint Hamiltoﬁian cycles.

Theorem 1.4.2 [SoZ] Let D be a digraph with n (> 5) vertices. Ifh(D)>n /2, then D
contains two arc—disjoint cycles C, and C, where C, is a Hamiltonian cycleand C, isa
cycle of length at least n—1 unless D is isomorphic to Figure 5 (see-R-10).

The theorem generalized the result of [ZA3].

Let D be a digraph. The cycle number C (D) is the cardinality of a minimum cyclc de-
composition of D, and C(D)=oe if D can’t be partition into cycles. Obviously,
C,(D)<oe if and only if D is euler digraph. B. Jackson conjectured that C,(D)< {n/ 2} for
euler oriented graph D, And W. Bienia and H. Meyniel conjectured that C (D)< n for
euler digraph D.

" They are disproved by some counterexamples in [Den], even for strong 2—connccted
digraph. So the following conjectures may be true. ‘

Conjecture 1.4.3 [Den] Let D be an euler digraph of order n>2. Then C /(D)<
{8n / 3}-3. ' ' -

Conjecture 1.4.4 [Den] Let D be a symmetric digraph of order n> 2. Then C,(D)<
2n-3. ‘

Also, B.Jackson suggested that:
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Conjecture 1.4.8 [Den] For any euler oriented graph D of order n, then C,D)<
{2n/3}; IfD has 2—cyclability in addition then C (D)< {n/2}.

In the following we only consider disjoint cycles in digraphs.

Theorem 1.4.6 [Th4] For any positive integer k, there exists a least positive intrger f(k)
such that any digraph D with h*(D) > f(k) has k disjoint cycles.

Hence, the following conjecture may be true.

Conjecture 1.4.7 [Th4]} (k) = 2k+1.

[Th4] proves that the Conjecture holds for k = 2.

Let u be a vertex of digraph D. We call that the result digraph by splitting vertex u in
D, sayD,, is obtained as follows: First replace u by two vertices u,, u, and an arc u,u,;
and cach arc of D with head u by a new arc with head u,; and each arc of D with tail u by
a ncw arc with tail u,, and then reserve all other arcs of D. Let C, be acycle of lengih k.

From C ; by successive splitting vertices, the result digraph is called weak k-’—double—cycle.

Figure 6 are weak 3~double—cycles via splitting vertices successively.

—— .

e g s

Fxguer 6

Now we study the characterization of a digraph in which any two cycles always mect.
Theorem 1.4.8 [Th6] Every cycle of a dxgraph D contains a given vertex iff any two cy-

cles of D always mee:, and.D.is.n’,t isomorphic to any subdivision of the.digraphs in Figure
6.

)

Theorem 1.4.9 [4ll] Let D be a dlgraph wnth n vertices. If therc is no vertex joint wnth
all cycles of D, then D contains a cycle of length at most 2n / 3. .

Theorem 1.4.10 [Th10] In a digraph D, every cycle contains a given arc 1ff any two cy-
cles of D have at least two vertices in common, and D is not 1somorph1c to any
subdivision of the digraph in Figure 6(d), or any subdivision of C k= : 2),. where C
is a digraph obtained by replacing gvery arc of k—cycle by two parallel ares.

A digraph D is randomly k—cyclic (k> 3), if every path P of length at most k-—l can
be cxtended to a k—cycle containing P. This concept is an extension of randomly
Hamiltonian of [BeT). The rand dnmly k—cyclic digraphs, for k =3,4,5 ((CORY]) and for k>
6 ((EMR]), were characterized, so this problem is completely solved. A -digraph D has
odd cycle property if there exists an arc subset S such that any cycle of D contains an odd
number of arcs of S. Otherwise, D is even if D has not odd cycle property. It is equivalent
to the following definition: If any subdivision of D always contains a cycle of even length,
then D is even. For any closed directed walk W of D, obviously it can be decomposed into



i &m KIRRS: H AR P EIB L - 199 .

the uoion of cycles where the union is understood to be in the sence of multiset. We call that
&!

the digraph has 2 unique parity property if for every closed walk W in D, A(W)=JA(C)

jm]
and A(W) U A(C) imply that k=1(mod 2), whereC; and D; are cycles inD (1 =1,2,.
=1
ki j=1,2,...,1).Its property is deplcted by the following theorem _ .
Theorem 1.4.11 [SeT] A digraph D is even ifT it contains a weak odd double cycle.
’Theorem 1.4.12 [MaS] A digraph D has the odd cycle property iff D has the unique
parity,property. ,

§ 2 Tournaments

Tournaments is a spec1a1 kxnd of chgraphs It has complete, . irreflexive and
antisymmetric propertles Just by these very good properties, it deduces a very rich and
decp going results.

2.1 Hamilton cyclys and Kelly s conjecture

Many equivalent statements about Hamlltonian cycles in tournaments are well known.

Theorem 2.1.1 LetTbea tournament, the following five statements are equivalent:

(i) there exists a Hamiltonian cyclein T;

(ii) T is strong (P. Camion);

(iii) T has vertex pancychclty (J. W.Moon);

(iv) For any proper subset Vl < V{D), (V‘,V(D)\V,)*d) s o

(v) T has a dipath from R to S, where R={x|d(x)=A7} S={x|d*x)=A"}
(wal). |

The further study on tournaments ‘may be the conditions insuring two or more
Hamiltonian cycles and Kelly’s coxtjecture related to this problem.

Kelly’s conjecture: The arcs of a diregular tournament T can be partitioned into
{(n—1) / 2 Hamiltonian cycles. -

This Conjecture has been venﬁed for tournaments of order n< 9 by [SeTj R.
Haggkv:st proved that ([Th8)) the Con]ecture is true for sufficiently large n. The remains
have the followmg results: ([Zzh1], [WaC]) prove that thcre are two (three) arc disjoint
Hamiltonian cycles, when n2 5 (n2 15). These results will be deduced by the following
theorem. when n is sufficiently large.

Theorem 2.1.2 [Th3] Let T be a diregular or almost diregular tournament of order n,
then T has [‘J n / 1000 ] arc—disjoint Hamiltonian cycles.

By the way, Conjecture 4.1.9 of [BeT], which is stronger than Kelly’s con)ectu re,
has been disproved in [Den]. And besides. Con)ecture 1.4.5,the following conjecture is weak-
er than Kelly’s con;ecture.
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Conjecture 2.1.3 [Th3] For any & > 1, almost all tournaments of order n have [(1/2-¢

Jn] arc—disjoint Hamiltonian cycles. . R

If this problem is transformed into covering the arc set of a tournament by
Hamiltonian cycles, then - : v

Theorem 2.1.4 [Th 7] The arc set of a dlregular tournament of order n is covered by at
most 12n Hamiltonian cycles.

From the point of view of connectivity we can also get some conditions for insiuring
Hamiltonian cycles. First, [Thl] pbihiéd out that: “every strong 4—connected tournament
is Hamiltonian connected and in a strong 3—connected tournament, every arc is contained
in a Hamiltonian cycles”. These results are very useful for studying tournaments with high
strong connectivity. S

Theorem 2.1.5 [Th5] There exists a function flk): N— N such that every strong
flk)—connected tournament has a Hamxltoman cycle containing glvcn k pairwise
nonadjacent arcs.

For f(k), we only know that f(1)= 3. On the other hand, there also is:

Theorem 2.1.6 [Fr7] Let T be a strong k—confiected tournament, I is any k-1 arc sct
in T. Then there is a Hamiltonian cycle in T—~I. ‘ ' ‘

Clearly, the above result is best possible. Note that if we substitute the stron"g k—con-
nected condition by degree conditions h(T)> k in a tournanient T, it can’t insure the ex-
istence of a Hamiltonian cycle in T-I; And if we substitute k arc—coﬁnccteii condition for
strong k—connected condition in Theorem 2.1.5 and 2.1.6, the éonclusions arc not true ei-
ther, The counterexample as follows: Let T,, T, be k—arc—connected tournaments with
onc common vertex v, and joined by all the faossible arcs from T,—v to T,~v, then add
two new vertices X,y with arc xy. The remains arcs are all the possible arcs of the form uv
with ueT;, v e{x,y} or ue{x,y},veT,—v. Clearly,the resulting tournament is k arc—con-
nceted,  but its every Hamiltonian cycle must contain xy.

The results ‘on Hamiltoniafi cycle in k—partite tournaments are few less than ordinary
tournaments, even if we consider the condition of existence of Hamiltonian cycles.

The bipartite tournament T=(V ,V ; A) is denoted by T(r,, 15, 13, 1), contammg of
four vertex—set B(i=1, 2, 3, 4) and IB I T, and possible arcs from B;to B,+l (1—1 2, 3)‘
and from B to B,. Usually T(r, 1, 1, 1), T(r+1, ‘r+1, 1, 1) are called Feor sz respectively.

Theorem 2.1.7{Wa4] Let T =(V,, V,;A) be a strong bipartite tournament. If for any u,v
eV,uV,and uv¢ A, d*(u)+d"(v)> k, then T contains a cycle of length at least 2min{k+1,

/ ) |} unless n is even and T is isomorphic to one of T(k,, k,, k,, k{ﬁi} for any k;>
k/2,i=1.23,

Theorem 2.1.8[LWZ, Wa6] Let T be a nx n bipartite tournament. If T=(V,, V,; A)
satisfies the condition d"(u)+d*(v) > n—2> 4 whenéver uve A, then T is Hamlltoman cxcept
two exceptional graphs.

Conjecture 2.1.9 There exists a Hamiltonian cycle in every diregular k—partite tourna-
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This Conjecture is true for k=2 ((BeT, WH1])..Furthérmore there is an analogous re-
sult about almost ‘dir'egular balance bipartite tournament T«~F,., ([So3], [Whi]).

Theorem 2.1.10 [Zh4] Every diregulat k—partite tournament of ordér n contains a cycle
with the length at least n=1. Thus it contains a Hamiltonian dipath.

Usually, for a strong k—partite tournament (k> 2),it doesn’t contain a Hamiltonian
cycle. So the following results are still interesting. -

Theorem 2.1.11 [Bon] Let T be a strong k—partite tournament (k> 3). Foranyr, 3<r
<k, thereis r—cycle in T. If in addition, each part of T is of size at least 2, then T con-
tains a h—cycle for some h> k+1. S o

By the above Theorem, the following conjécture may holds:

Conjecture 2.1.12 [Bon] For k> 5, every strong k—partite toumament T wnth cach
part being of size at least 2 contains a (k+1)—cycle. S

About this Conjecture, [Gur] proved that T contains (k+1)~ or (k+2)-cycle. But
[BaP] gets counterexamples for ‘any k., and proved the following mbdifie’d ;lersi(m B

Theorem 2.1.13 [BaP] Let Thea strong k—partite tournament. If T contains & k—cycle
which visits at most k—1 parts of T, then T also contains a (k+l)—cycle

For k—partite tournemant, it also has the following interesting prOperty:

Theorem 2.1.14 [GoO] Let v be a vertex in a strong k—partite tournament T, then v
lies on a cycle that contains vertices from exactly m parts (3< m< k). ' ' ‘

A bipartite version of Kelly’s Conjecture is proposed in [BeT] that “every diregular
bipartite tournament can be pdrtitioned into n / 4 Hamiltonian cycles”: Clearly, this Con-
jecture implies that every diregular bipgrtite tournament is arc—Hamiltonian, which will
be obtained by Theorem 2.2.5 in the next section. A possible genéralization of this Conjec-
turc is the following. )

Cdnjectnre 2.1.15[AmM] Let D =(V,V,; A) be a bipartite oriented graph with h(D)>
k, where 2k =|V | <|V, | Then D has exactly k pairwise arc—disjoit cycles of length 2k.

2.2 Pancyclicities and complementary cyclicities in tournaments.

Let D=(V,A) be a dxgraph of order n. D is said to be arc k—cyclic if each arc of A is
contained in a cycle of length k. Partxcularly, arc n—cyclic is often callcd arc—Hamnltoman
cycllc An arc e of A is said to be m quas1—arc—pancyc11c if it is contamed in cycles of all
lengths , m<l1<n. D is said to ‘be m quasi—arc—pancyclic if each arc of A is m
quasi—pancyclic. Especially, a 2(3) quasi—arc—pancyclic digraph is often called to be
arc—pancyclic in digraphs (in oriented graphs), which was defined before.

As a result of Theorem 2.1.1, the study of arc—pancyclic is & main direction in this
area, since B. Alspach introduced the concept of arc—pancyclic. And some deep rcsults
were obtained. :

Lemma 2.2.1 [T hl] Let v, and v, be distinct vertices of a tournament T. Then T has a
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Hamiltonian dipath from v; to v, iff T contains an acyclic spanning subgraph D such
that for any vertex veD, Dhasa dipath from v, tov, containingyv. o

Thisis a very uscful Lemma The effect of the Lemma in the study. of pancyclrcrty isno
less than the effect of Camron s result in Theoretn 2.1.1 in the study of Hamiltonian cycle.

Theorem 2.2.2 [WZZ] If T is a tournament of order n which is arc 3—cyclrc and arc
n—cyclic, then Tis arc—pancyclle

In the followmg, Theorem 2.2.2 was unproved to

Theorem 2.2.3 [TWZ] Except two specnal classes of tournaments (in which only onc arc
is not pancyche) every arc 3—cyclic toumament is arc—paneyehe o

Many known results are corollaries of Theorem 2.2.3. Forexample: : ;.. ,

Corollary 1 [4Is] Every diregular tournament is arc—paneychc

Corollary 2 [Z,z2] Let T be an arc 3—-cyclic tournament of order n. wrth h(T); k and n
< 4k—-3.ThenTis arc—pancychc N , _ .

By Theorem 5.5 of [ReB] almosj all teurnaments have arc 3—pancyclicity So, by
the Theorem 2.2.3, - almost all tournaments are arc—pancychc But the tournaments which
arc not arc—pancychc may be quasl—arc—pancychc In [ZhT), [ZTC) and [HZL]), the) got
some suiTicient condmons by the score list Qf a tournament. We say that a tournament, of
order n satisfies a condition O(n,q) if for any arc v,v,, dt (v,)-{-d (v)=>n—q, whereqisa
constant. [Zh?f], p_,rp\!pdvthat a tournament. Tv,pf q_r_der n‘_is 4 quasi—arc—pancyclic,_ if T sat-
isfics the condition Ofn,q),q<2 and nz7;  [ZTC] also proved that T is 5
quasi—~arc—pancyc,lic, if T satisfies the conditienO(n,q) with‘n = 3q+3 We can also dcpict

which is

the m quasi—arc—pancyclicity by the irregularity.

e
different from the condition O’(n,qi Using this eoncept,v ;T_h)eorem 3.1.5 of [Bef] gave a
condition of 4 quasi’—arc—pancyclicity— 7 7 S
From Theorem 2.2. 2 and 2 23, itis easy to deduce the I‘ollowmg problem What is
the action of arc 3—cychc1ty. arc Hamnltoman cychcnty on arc—-pancychcuy respecuvely
[WZ1}and [WZ3] point out that an arc 3—cychc tournament T is only arc k-—cychc where k
< {(n+1) / 2}+2. There exlsts a counterexample thh k > [(n+1) / 2]+3 On the other hand,
[Zhu] and [Wa3] point out that an arc Hamnlton—cyclrc toumament with n3> 8 is arc
(n 1)— n—2)—cychc Except a special class of tournament it is arc (n—-3)—cyclrc too.
‘ Slmnlarly, ' we may consider pancychc, vertex—pancycllc, arc—-pancychc k—parﬁte
tournaments. So far, the known results on these toplcs are few, and mainly on blpamte
tournaments [BeL] dxscussea even—pancyclrcny of blpamte tournaments. Then [lh6] ob-
tained. "’

e

Theorem 2.2.4 {Zhﬂ;A 2 x 2bipartite tournament T is vertex even—pancyclic=T con-

tains a Haniiltonian cycle and T 5( F,=T contains a Hamiltonian cycle and a 6—cycle.
For the are——pancychcnty of bipartite tournaments, there exnsts the followmg resull
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* Theorem 2.2.5 [WHI] A diregular bipartite tournament T F,, is even arc—pancyclic.

Besides pancyclicity, K. B. Reid [R_e2] discussed a problem, Origina'lly’ p’osed by
Bollobas, as follows:

Problem 2.2.6 Let m be a positive integer. What is the least integer g(m) so that all but
a finite number of g(m)—connected tournaments contain m vertex—disjoint cycles that in-
clude all vertices?

Clearly, g(1)=1. Reid [Rel] proved that g(2)=2. For m > 3, the problem remains
open. Reid [Re2] proved that m € g(m) < 3m—4. [So6] pose a fuyfther problem. -

Let n,;n,,...,n;,, be m positive mtcgers If they satlsfy

(A) nl,3 1-1 2,.. ,mand Zn =n,

im1l

-we saythat they are a solution of (A). ‘ :

.+ 'Problem 2.2.7 Let 'm be a positive integer. What is the least integer f{m) so that, for
any solution of (A), all but a-finite number of f(m)—connected tournaments contain m
vertex—disjoint cycles of lengths ny, n,, ..., ng? , . : .

Clearly, f{1) = g(1) and g(m) < f(m). [So6] makes the fol]owmg conjecture.

Conjecture 2.2.8 For all m, g(m) = f(m).

[So6] proved that f(2) = 2. This implies the Conjecture holds for m= 1 or 2

. A digraph D has pan—complementary cycles pmperty if foranyk, 3<k<[n/2, D
contains two complementary cycles (two vertex disjoint.cyeles which include all vertices of
D)C, and C_,.

For bipartite tournaments. ~we obtain, - .

Theorem.2.2.9 [ZWI1, ZSW] Let T= (V,, Vy A)bea. k—dlregular blpamte tournament
with k >.2. Then for any uve A and weV,;u V,\{u,v}, there exists a pair of complementary
cyclesC, and Cy_, withuveC, and weCy _,, unless TxFg.

[SoS] also proved that every almost vdmegular bipartite tournament has two comple-
mentary cycles. v , - ‘ . .

A bxpartuc tournament T with ordcr -n has _even pu-eomplenentuy cyclea

. property (even pan—complemenyary cycles containing a pair of given vertices, cven

pan—complmentary cycles containing a given arc resp.) if for each k (2 k< n/4) (any
given distinct vertices u,veT, any given arc yv in T resp.). T contains a pair of comple-
mentary cycles C,, and C,_p; ( with ueCy, v6C, i . withuveCy resp.). -

[ZM S] also suggests the following three conjectures: :

Conjecture 2.2.10 [ZM S] If T is a k—diregular bipartite tournament with k;: 2 and Tis
not isomorphic to F,,, then T has even pan—complementary cycles property.

Conjecture 2.2. 11{ZM S} If T is a k diregular—bipartite tournament wi.th'kk 2and Tis
not isomorphic to F,, or some other special digraphs, then T has even pan—complemen-
tary cycles contammg a pair of given vertices. . .

Conjecture 2.2.12 [ZMS]If Tisa k dnrcgular blpartnte tournament vmh k) 2and Tis
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not isomorphic to F or some other special digraphs, then T has even pan—complemen-
tary cycles containing a given arc. :

Evidently, Conjecture 2.2.11 and 2.2.12 are stronger than Conjecture 2.2.10, Con-
jecture 2.2.11 and 2.2.12 don’t imply each other. Theorem 2.2.9 is some results in support of
Conjecture 2.2.10——2.2.12,

2.3 Generalized paths and generalized cycles. :

Let(x;, a3 ... @)beak—tupleof 'sand—1’s, D be adigraph.

An (a;s a,, ..., a)—generalized path (V,A,),as simply a generalized path and denoted
by GP,, is a subdigraph of D, where V, = {x,, XppoXe)s A= (XX, ifa,=1; xx., ifa
i=-1, i\= 1,2,...,k}and k is called the length of GP,. Especially, we call GP,_,a gencral-
ized Hamiltonian path. Similarly, an (a;, @3 ... a)—gemeralized cycle (V,,A,), as sim-
ply a gemeralized cyde and denoted by GC,,,. is a subdigraph of D, where
Vo= {XgXppeeXp}r Ag={x_x; ifo;=1; xx, ifa=-1, i=0,1,2,...k, and let x_;=
" x.}. Especially, - we call GC, a generalized Hamiltonian cycle, Clearly, a (1,1,...,1)— or
(-1,-1,..,~1)~ GP; 'or GC, is an ordinary dipath or a directed cycle in D. We may con-
gsider 2* distinct types of GP, and 2* / k distinct types of GC, . Among of them, a
(1,-1,1,-1,..-GP, or GC, is called an AD—-path or an AD-cycle; a (1,
-1,-1,..,~1)-GC, is called a (1)-GC, . Especially, lete be a given arcin D, a bypass
of ¢ or an anticycle of ¢ is a (1)-GC,. if a;=1 cbrresponds to e. Up to date, almost all
the literatures on GP, and GC, is about these two special classes.

As the ordinary directed cycles for variant types of generalized cycles, pan—general-
ized cyclicity, vertex pan—generalized cyclicity;": “#rc pan—generalized cyclicity were simi-
larly defined. Especially, - we point out that a digraph D is m quasi—arc—antipancyclic if
‘foranyr(m<gr<n), D isarc—r—anticyclic. A 3 quasi—arc—antipancyclic digraph is usual-
ly called arc—antipancyclic. ‘D ‘is (1,m)—quasi—strong path—comnected if D is both 1
quasi—arc—pancyclic and m quasi—arc—antipancyclic. A (3,3)-quasi—strong path—con-
nected digraph is usually called completely strong pan—connected. [Z W 2] proved the exist-
ence of completely strong path—connected tournament in construction. S @

Theorem 2.3.1 [ZW2] A tournament T of order n'is completely strong path—connccted
iff T is arc 3—, arc n—cyclic and arc 3~, arc n—anticyclic.

The following theorem improved the above result.

Theorem 2.3.2 [ZAhS5] A tournament T is completely strong path—connected iff T is arc
3—cyclic and arc 3—anticyclic, except that T is isomorphic to T,, where T, is a special
class of tournaments. - o :

By § 9 of [ReB], almost all tournamweats are arc 3—anticyclic. And in § 2.2, we
point out that almost all tournaments are arc 3—cyclic.

So, by Theorem 2.3.2, almost all tournaments are completely strong path—connected.
‘But on the other hand, note that there is at least one tournament with a given score list that
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« has no arc 3—anticyclicity. Hence there are infinite tournaments, qcluding some diregular

tournaments, which are not arc 3—anticyclic. But among of them, some may be
(m,)—quasi—strong path connecied. So thefrollowing theorems are still interesting. ‘
Theorem 2.3.3 [ZhT] If a tournament T of order n (> 10), satisfies the condition
O(n,2), then T is (4,4)—quasi—strong path —connected.
Theorem 2.3.4 [Tao,Gua,Dal} If a tournament T of order n with i(T)< k, and n>
5k+4, k3> 4orn> Sk+5+2(1-sign k), - then T is (4,4)-quasi—strong path connected.

From Theorem 2.3.1 and 2.3.2, [Zh5] suggested a conjecture that a tournament T is

completely strong path—connected iff T is arc 3—anticyclic and arc Hamilton anticyclic.
showed a counterexample for n> 91, and hence dMe conjecture. On the

other hand, [Wa2] also shown a class -of tournaments of order n_each of which is
Hamiltonian cyclic and arc Hamiltonian anticyclic but not arc (n—1)—anticyclic. Therefore
it is casy to suggest the following problcm o -

Problem 2.3.5 Ifa tournament T is arc 3— and arc Hamnlton anticyclic, what is the
smallest number m such that T is m quasi—arc antipancyclic?

[(WH2, Hel] got that m € n—2.

The reeults about arc antipancyclicity and (1,m)—quasi-strong path—connected proper-
ties is few in other classes of dlgraphs The following results may be worthy pointing out:

Theorem 2.3.6 [WaS] A diregular bipartite tournament T with T%F,, is even arc

‘ _ @e‘agcychc.

By the condition (C;)), the enalogous result with Theorem 1.1.1 was obtained by
(BW3]. «
Theorem 2.3.7 [B W3] Let D be a digraph of order n (2 3). If D satisfies the condition

(C,), then D is pananticyclic, except that D is isomorphic to T s O T g OF K sa, - for
2"

3’
even n.

About the study of vertex pananticyclicity of digraphs etc, up to date, it seems that
there is no literatures in this area. ’

Since 1971, the concepts of an' AD—path and an AD-cycle was first introduced by B.
Grunbaum ([Gru]) And he proved that évery tournament has an ADH—path, except the
three rotational tournaments R(1), R(1,2) and R(1,2,4), [Ro2] proved further that in ev-
ery tournament T with n> 9, there is an ADH—path starting at any vertex. Therc are
some courterexamples if n<‘8. By the microcomputer, we exhausted all possible tourna-
ments for n < 8. 7412 nonisomorphic tournaments are checked. And we got 27 tournaments
which are counterexamples. In other words, we have: -

Theorem 2.3.8 Let T be tournament of order n. Except 27 special tournaments (n<38),
there is an ADH—path starting at any vertex inT.

[Ro2] further suggested the following conjecture of path,

Conjecture 2.3.9 [Ro2] There exists a number N such that every tournament T withn 2

Ay
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N contains all types of GP,_,.
The following are two thcorems in support of Conjecture 2.3.9.
Theorem 2.3.10 [Tho,Zh4] Every tournament T of order n contains all types of GP,,_2
A block in a generalized path GP, is a maximal dipath (maxlmal with respect to in-
cluslon), and denoted by B,. Clearly every GP, is uniquely determined by its blocks B,,
B,..B. _ , h - T S
Theorem 2.3.11 [ARR] If GP, a1= B,B,.B, |B,|>i+l, then every tournament con-
tains GP__;. ‘ '

[Gm] showed examples for n € 8 which don’t contaln any ADH—cycles Hence' .

V Conjecture 2.3.12 [RoI] Every tournament T with n= 2k 3 10 has an ADH—cycle. e
» First [Rol] proved this Conjecture for n= 2k > 28. And then [Pe] proved t!ns Con)ec-
~ ture with n=2k > 16. So it remains open only for three cases n = 10,12,14.

[Ro1] deduced conjecture of cycle from Conjecture 2.3.12 as follows:

Conjecture 2.3.13 [Rol] There is a number N such that n}'? N implies that every tour-
nament T contains all types of GCk with two possible exceptlons (1, ,l) GCk and
-1,..,~-1)-GC,.

{Tho] proved Conjeciure 2.3.13 and got N> 2'%(a 3.4 % 10%). The result has only the-
oretical meaning, since this estimation is much bigger than the real whnch may be N=9,
So, the following theorems are still mtercstmg ' 4

‘Let D(n,p) be a(l,...,1,~1,....~ )—GC with p—1 consecutive —1’s. ' 1

_ Theorem 2314 (B w2) Every tournament T with n3» 3 contains D(n,p), p = 2,3,...,n,
exccpt 5 espec:al classes of tournament T withn< 6.

Theorem 2.3.15 [So7] Le T, Tyees T be dicomponents of tournament T with n> 5.
Then T is arc pan—(1)—generalized cyclic iff T satisfies one of the following conditions: (i)
except some especial classes of tournaments, m=1 (ii) 2 m< 3, and every arcinT;. is
contained in some Hamilton dipath in T},

For bipartité tournaments, we have

Theorem 2.3.16{/ZL)] Let T be a bipartite tournament. If h(T)> k(> 3), then ’1‘ con-
tains either an AD~—cycle or an AD—path of the. length at least 4k, except T > T(kl,k,,k,,kg
where k< ky k3 € 2k—1, k< k, k. V : e

. Corollary[WZL, Qin] Every du'egular btpamtc tournamcnt contams an. ADI—I—cycle
except TxFg.. , - : :

We turn our attention to generahzed cycles in dlgraph (Gra] suggests the followxng
con)ecture

Camlpstare 2.3.%7 (Gra] Let D be a strict dxgraph w1th n= 2k > 4 IfD satlsﬁes the con-
dition h(D)> n/ 2, then D contains an ADH—cycle. , :

“The following theorem seems to support this Conjecture. ,

Theorem 2.3.18 [Gra] Let D be a strict digraph with n=2k> 4. If D satxsﬁes the condi-
tions h*(D)> 2n / 3+~f;17¢)g_n and h"(D)>2n/ 3, then D contains an ADH—cycle.
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It is much to be regretted that this Conjec-
turc was disproved by [Cai]. The counterexample
(Fig 7) as following:

~ Butfor D(n,2), ([Bel]has I

Theorem 2.3.19 [Bel] Let D be a digraph
with order n. If D satisfies one of the following L <3
conditions, then D contains a D(n,2). ‘ 3 .,,

(i) d*(x+d"(y) <n =>xyeA(D) (Woodall condition)

(i) 5()> n (Ghouila—Houri condition)

(iii) D is strong 2—connected with (D) n—1, and D é{ D,
where Dy is a special digraph with odd n as follows: V(Dg)=AUB, An B=¢, Aisan
indecpendent set with |4|=(n+1)/2, |B|=(n—1)/2, between A and B join all possible
arcs. .

About the condition on the number of arcs, [BW]] suggested the following conjec-
ture.
*onjecture 2.3.20 [BW 1] A strong digraph D of order n with &(D)> (n—1)(n—2)+2 con-
taigé all types of GC, except (a)—(d) in Figure 1 and their converse. )
“BHST] proved that Conjecture 2.3.20 is truc if ¢ > (n—1)(n—2)+3, [Wol] further proved
that Conjecture 2.3.20 is also true, except several special classes of digraphs?
Finally, it would be worthy pointing out that there is such a class of ‘digraphs which
doesn’t contain any AD—cycle.
Conjecture 2.3.21 [4pH] For every planar graph G, there is an orientation of G such
that the reault digraph doesn’t contain any AD—cycle.
[GrM] proved that Cohjecture 232l is true if G is a bipartite planar graph or an
outerplanar graph. ‘ ' o ‘
Let t(n) (t,(n)) the maximal number of arcs of all possible digraphs (k—partite
digraphs) with n vertices which don’t contain any AD—cycle, then '
Theorem 2.322 [GJP,JaP] ' -

) [-l-g (r-Dl<n) < %(n -1) when n> 5, the lower bound can be reached;

(2) t,(n) =2(n—-1) whenn2 2;
(3) t;(n) =3(n—1) . when n> 3 and n is odd;
3(n—-1)-1< t3(n) < 3(n~1) when n> 4 and n is even;
(4) t,(n)=3(n-1) / whenn2 3;
®6(r-1/51<t ()< t(mM<10(n—-1)/3 whenn > 5;
4(1 1 : ’
D)(n—1 k i .
CTROR P e

kK)(n—1) k is ”even
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2.4 The enumeration of some special cycles and others

The enumeration of 3—cycles in a tournament is a solved problem, it only depends on
the score list of the tournament. But ifk > 4, the enumeration of k—cycles in a tournament
is still open. Let C(T,4) denote the number of 4—cycles in a tournament T. Although the
upper bound of the number of 4—cycles in a tournament of order n is obtained ([BeT]),
the upper bound of C(T,4) over all tournaments with a given score list is still interesting.
[A1T] has:

Theorem 2.4.1 [AIT] If (s), 8,, ...,8,) is & score list of a tournament T of order n, then

(:) —max{Sl,Sz}z'C(TA)B ( :) — min{§ — !.I(s‘)‘ S, = i:(n—s' -0},

‘ 2
» s *rn—s —1 . [m ~1)/24 misodd,
whcreS,=2( ;),SZ=Z( 3' ;),and(m) ={ (:n ) e
! t=1 (m —4m)/ 24 miseven.
By Theorem 2.4.1, it is easy to get the upper bound of the number of 4—cycles in a
tournament of order n once again.

For 4—cycles in a random bipartite tournament, it also has: , ¥

i=

Theorem 2.4.2 [BFK] Let T,, ,be a random bipartite tournament. Let M,, .(p)'and a:u‘

(p) denote the expectation and the variance of 4—cycle in Tpao respectively. The
— m m) 2 2 _
M, .(p) —2( ,) ( ‘ ,)p q", where q=1-p,

aim (»)= 2( ';) ( ';) p2q2[1+2pq(mn—m-—n)—2p2qz(2m—3)(2n—3)].

We call that a tournament T has the property XK, ( X’ resp.) 1f any arc in T is exactly
contained in k(in k or k+1 resp.) m—cycles, where k is a positive constant. A tournament
T is doubly—regular if all pairs of vertices jointly dominate the same nunibcr of vertices.
Many propertices of doubly—-regular tournaments were shown in § 8 of [Row]. The follow-
ing is a new one.

Theorem 2.4.3 [Row] A tournament T is doubly—regular =T sansﬁcs the property X,
=T satisfies the property XX, and X or T is 3—cycle=The degree of the minimal
polynomial of adjacency matrix of T is three. :

For the enumeration of 4—cycles in diregular tournaments, it has:

Theorem 2.4.4 [Tab] The lower bound of the number of 4—cycles in a dxregular tour-
nament with n = 2k+1 vertices is

{(2k+ XK' —k)/8  ifk is odd,

Qk+ 1k’ /8 if k is even,
and these bounds are reached by the tournaments which satisfy the property X,(if k is odd)
or XK’,(if k is even). '
In [Th7), the author also estimated the lower bound of the number of Hamiltonian
cycles in diregular tournaments.
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The following conjecture is related to the enumeration of cycles in digraphs.

Adam’s Conjecture. Any digraph containing a cycle hes an arc whose reversal decrease
" the total number of cycles. :

i Counterexamples to Adam’s Conjecture were obtained independently by [ThS8] and

[DGN]. But the Conjecture is still open for the classes of strict digraph, also for tourna-
ments. .
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