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Abstract. In this paper, we prove that the size ramsey number

14 4
(01 K1 m 162 K1y yee 62K p) = [Z(a,’—l)+ 1} I:E(n.-—-l)+ 1J .

1=1 s=1

For the most part our notation will conform with that used in [1]. All graphs
considered will be finite, undirected and without loops and multiple edges. Let
G,G1,Ga,...,Gy be graphs. The edges of G are colored in any fashion with £
colors. If for some 1, 1 < 1 < £ the ith colored subgraph G[ E;] contains G; as
a subgraph. i.e. G[ E1 D G, then G will be said to arrow (G, Ga,...,Gy) and
will be written G — (G1,Ga,...,Gy). LetD = {G|G — (G1,Ga,...,Gp) }.
The size ramsey number of {G,,G2,...,G,}, denoted #( Gy, Ga, ..., Gy), is de-
finedas 7(G1,G2,...,Ge) = ;;,|E(G)|

In 1967, Kalbfleisch [4] first raised the concept of the size ramsey number, and
then it was considered [2] and [3]. There is an open problem in [2]: ‘Show that
T(mK,,nK1z) = (k+£—1)(m+n~1) fork # £’. This problem is a corollary
of the main result of this paper. !

Theorem. '7‘(01K1,n, 02K 1m0 K1 g) = [Ef,l(a;—l)-i—l]-[zfxl(n,-—..
1) + 1), where a;, w; (1 < 1 < £) are positive integers.

Proof: Since [3°F(a; — 1) + 11K, T (mepyer ™ (01K1n, 02K
’ icl

azKlm), ';‘(alKl,,._,,azKl,m,...,agKl'm) < IE([Efgl(a; -1 + 1]
— l N ¢ —

K 5~ eyt = (3hi(ai— D+ 11 5, (m— 1) + 1]. So we only need to

prove that:

¢ ¢
a1 Kim,02 K184, 0eK1,0) 2 [E(ai— D+ 1} [E(ﬂi -+ 1}
=1
(A)

i=1
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Now, using induction on g = Ef=l(a,- —Dandn= 2le (m; — 1), we have:

(1) Whena =0,ie. a1 =az = .- =aqag =1, forany G with |[E(GQ)] < n,
there is an £-edge coloring of G such that |[E(GIED| < m — 1,41 =
1,2,...,¢, where G[ E] is the ith colored subgraph in G. Then G[ E;] 2
Kin,i=1,2,...,8. Hence G 4 (K1 , K1ngy---, Kin). 1.6. (A) iS
true in this case.

In the following, we assume thatwhen 0 < a < ¢ = Ef_l (a; '_1),(A)
is true. We will prove that when a = ag, (A) is also true. Sincea = a¢ > 0,
without loss of generality, a? > 1.

(2) Whenn=0,iem=m=...=n =1, foranyGwnh |E(®)] < a0,
there is an £-edge colonng such Lhat]E‘(G[E DILa?=1,i=1,2,...,2
ThenG[E']Za Kigi=1,2,...,L Hencer»(alK“,a,_K“,...,
a, 0K ,1). So (A)is true in this case.

In the following, we assume that when 0 < n < ng, (A) is true.

(3) Whenn=mny = Ef,, (i — 1), without loss of generality, we can assume
thatn{ > 1. For any G with |B(G)| < (a0 + 1)(mg + 1) — 1, we divide
the problem into three cases to prove (A).

Casel. A(G) >mp + 1.

There is v € V(G) such that d(vw) = A(G) > mp + 1. Since |[E(G —
vo)| = |B(G)| — d(vo) < (ao + D)(m0 + 1) — (mo + 1) = ag(mg + 1) =
#((a) =1 Ky ,9,03 Ky 2,-., 00 K; ,0) by the induction hypothesis, there is an
Z—edge coloring of G — vp such that the 1st colored subgraph docs not comam
(a? - 1) K ¢ and thesth, 2 < 1 < £, colored subgraph does not contain a? K, .o o
Then the edges which are incident with vy are colored in the 1st color. Hence we
get an £-edge coloring of G such that G[E;] 2 ol K, &1 =12,....L So

G*’(a’lKlrL‘lazKlnzl alKl,o)

Case2. A(G) < o and there is acomponent, say Cy, with|E(C1)| > ao(no +
1).

a) When01 2 M1 = (ao+1)K1'1,then|E(Cl—(ao+1)K1'1)] = |E(Cl)|—
(a0 + 1) < |E(G)| —(ag+ 1) < (ao+1)(ng+1) —(a+1) =
(ap + Dmng = [Z,_l(a -+ 1]['n1 -2+ E’_z('n,- -D+1] =
#(a? K, 01,02 9K, 0 FLRRPRN Y Kl' o ) by induction hypothesis. Hence there
is an £-edge colormgof 01 (ap+ I)K 1,1 such that the 1st colored subgraph
does not contain ] K, ,.'_1 and the 1th, 2 < 1 < £, colored subgraph does
not contain a! °K, . e “Then the edges of M; are colored in 1st color. Thus

we get an £-edge coloring of C; such that C, [ E;] 2 qf Kl,‘i_ 0,1 <i<Y,
where C; [ E;] is the {th colored subgraph in C;.

b) When C; 2 (ao-+ 1) Kj, then we have a maximum matching of C;
M= {yv,i=12,...,d},a <a. LetU = {u;,i = 1,2,...,a'},
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V={ui=12,..,a},W=V(C)\{UUV}and Wo = {v]d, (v) =
A(Cy),v € W}. Thus E(C,[W]) = ¢. Now, let Cp = Cy N[W V
(U U V)], where the join V is defined in page 58 of [1]. Thus for any
S C Wy C W,wehave |SIA(C1) = Yyesda(V) = Y yesde(v) =
e k(v < INa(S)IA(C) < INa(S)A(C). Hence
[Ne (S)] > |S|. By the Hall Theorem ( [1] Theorem 5.2), Co contains a
matching Mo that saturates every vertex in Wo. i.e. Wo C V(Co[ Mol) =
V(Ci{ Mol). Thus V(GiI{M U Mol) = Wo UUUV. D {vldg, (v) =
A(Cy),v € V(C1)}. Hence we have:

¥ (C ~ MUMpg) <1+A(Ci — MUM,) <A(C1) < mo.

So there is an ng -edge coloring C of C; — M UM . Now the edges of C; — MU M,
arerecoloredas follows. Forj = 1,2,..., £, recolor all ofthez,_l (n? —1)+1th,
z — 1) +2th,. {;, (n? - l)th color edges in C with jth color. Thus
(C, - MUMo)[E]ZKl'”?,i=1,2,...,2.

Note that C; [ MU Mo ] has o/(< ao) components which are ismorphic to K
or K1 2. Hence there is an £-edge coloring of Ci[ M U Mol such that the edges
of each component are colored the same color and there are at most a? — 1ith
color components 1 = 1,2,...,£. Thus we have an £-edge coloring of C; with
CilE] = (CI—MUMO)[E]U(CI[MUMO])[E] BaiKy0,i=12,... L

Combining a) and b), we have

- - ,..,A..,,o S ,,6..,,," 0
G 7L' (al Kl,r.? lG'ZKl,r.g)"'val Kl,n:)'

On the other hand, |E(G — C1)| = |E(G) |- |E(C1)| < (a0 + 1) (mo + 1) —
ap{mp+1)=mp+1= %(Kl.n? ,Kz,,g ,---,Kl,ng) by the induction hypothesis.
So

G'—Cl 7LP(K1‘,HO,K1',L3,...,K1’":).
Heuce G > (a9 Ky 9,03 K100, ,02 K1 9).
Cuse 3. For every component C; of G, |E(C,)| < ago(mp+1)~1,7 =
1 i yWw.

In this case, forany j, 1 < j < w, there is k; with O < k;j < ap — 1 such that
ki(no + 1) <|B(C)| < (kj+ D(no + 1) (B)

By the induction hypothesis, for any {a1j,825,++ s ag; } with Ef,=l (e;—1) = kj,
we have:

f'(alel'ﬂ?,azjKll,g,...,angl'ng) = (k}+ 1)(110 + 1).
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Thus by (B), we have
Cj 7Lv (alle.nf ,azjKll,g,---,alel,ng)-

Hence G = UL G A ([ 7 (a1 = D + 11Ky 0, [3 5., (az; — 1) + 1K,
o [Eiaalog — D + 11K o).

On the other hand, by (B), we have 357, [3°%, (ayj—1)+11 = T30, (5 (ay—
DI+e=3"0 ki+2 <300 |B(CHI/(n+ D)]+L= [|[E(G) [/(mo+ D) ]+£ <
g +2=55 (e -1 +£=T4 0.

So we can choose positive integers a;;, 1 <1 < £and1 < j < w, such that
Yri(aiy— 1) = kjand . (ai; — 1) + 1 = o?. Hence

G 7L) (O?Kl,n;’ 10'(2)K1,ug 7"')agK1,n:)'
Combining cases 1,2 and 3, (A) is true. The proof is complete.
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