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Abstract. Supposc that R = (V, 4) is a dircgular bipanite toumament of orderp > 8.
Denote a cycle of length & by Cy. Then forany e € A(R), w € V(R) \\ V(e), there
cxists a pair of vertex-disjoint cycles Cy and CoainAwithe e Cyandw € Cy s,
except R is isomorphic to a special digraph Fqy.

1. Introduction.

A bipartite tournament is an oniented complete bipartite graph. Just as ordinary
tournaments may be used Lo represent a competition, so may bipartite toumaments.
In the former case, cach player competes against everyone clse; while in the latter
case, there arc two (cams and cach player competes against everyonc on the oppos-
ing tcam. Tournaments and bipartite tournaments arc perhaps the most interesting
two classes of oricnted graphs. However, much less is known about the latter than
the former. Properties of cycles in bipartite tournaments were investigated in [1,
3-10]. Thesc include:

Theorem 1 [9]. Supposc that R is a dircgular bipartite tournament of order
p(p > 4), and u,v arc two distinct vertices in R. Then there cxists a pair of
vertex-disjoint cycles Cs and Co_s in R with u € Cs4 and v € C,_s, except
when R is a special 8-digraph.

Theorem 2 {10]. Supposc that R is a dircgular bipartitc tournament of order
p(p>4) and e is any arc in R. Then there exists a pair of veriex-disjoint cycles
Csy and Cpy in R with e € Cs.

In this paper, we shall prove a sironger resuit from which Theorem | and The-
orem 2 follow as corcllaries.
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2. Notation and some kXnown results.

Let R = (X,Y; A) be a bipartite tournament of order p, where (X,Y) is the
bipartition of the vertex set V. = X UY of R, and A is the sct of arcs of R. For
any v € V andany § C V, we define:

Iy ={ueV]uwed}, v ={uveV]|vued}
I(S) = UyesI(v) and  0(S) = U,esO(v).

R is said to be k-diregular if |[I(v)| = |0(v)] = k, forall v £ V. A factor of
R is a spanning 1-dircgular subgraph of R. Thus, a factor is a union of vertex
disjoint cycles. For any subsets S, T of V, S => T denotes that forall s in SN X
andtinT NY,stisinAandforallsinSnNnY andtinT NX, stisinA.
For any integer k, F4; = (V, A) is defined as follows: V = {vi,v2,...,vsk},
vivy € A % j—1 =1 (mod 4). Fy, isobuined from Fiy by reversing all
arcs of a 4-cycle uyzvu in Fyy (sce Figure 1). And F 4 is obtained from Fy, by
reversing all arcs of some 4-cycles: vy (1) va(3) v3 (1) zv(2),¢=1,2,... ,m,
where vi (1) € Vi \ {v}, v2 (i) € Vo \ {u}, v3(1) € V3 \ {y} andwheni # j,
vi(i) # vi(j), vs(i) # v3(j). Clearly, when m = 0, Fax = Ff,. Denote
a cycle of length k by Cx. We call Gy and Cp_y (4 < k < p —4) a pair of
complementary cycles in R if Cy and C,_; are two vertex-disjoint cycles in R.
Other terms and symbols are found in {2].

Figure 1. Ff,

In order to prove the main result, we will need the foilowing Theorems.

Theorem 3 [5]. A bipartite tournament R is hamiilonian if and only if boih of
the following conditions hold: (1) R is strong; (b) there is a factorin R.
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Theorem 4 [5]. Let R be a bipartile lournament containing a factor. Then
R is not strong if and only if there cxists a factor F' in R consisting of cycles
ClLC*...,C™,m>2,suchthat C' = C if i < j.

Let R=(X,Y; A) be abipartite tournament. An>d letA ={abe Ala€ X,
beY}, Ay = A\ A1, R(1) = R[ A} and R(2) = R[A;]. By the definition of
factor, we have:

Theorem 5. There exists a factor in R if and onl, ly if both of the following con-
ditions hold: (a) |X| = |Y'|, (b) there is a perfect matching in R(1) and R(2)
respectively. :

3. Main result.

Theorem. Supposc that R = (X,Y; A) is a k-dircgular bipartifc lournament
(k > 2). Thenforany e = wv € A(R) and w € V(R) \ V(e), there cxists a
pair of vertex-disjoint cycles Cs and Cax—s in R suchthat e € Cs, w € Cap_y,
unless R is isomorphic (0 Fsy.

Proof: Clearly, | X UY|=|V]|=2|X]|=2{Y]| = 4k. Without loss of generality,
supposc u € X. We cstablish three claims.
Claim 1. R contains a cycle Cs such thatuv € Cy and w € Cs.

Ifw e X, wemay pickan z € O(v) and z # wsince & > 2. By k-dircgularity
of R, there exists y € [(u) with zy € A(R). Thus, thereisaCy = vvzyuin R.
Similarly, forw € Y.

Claim 2. If R is not isomorphic to 744, then there exists a cycle Cy through e
such that By = R — Cy has a facior containing w.

Supposc there is acycle Cs containing e such that R, has no tsctor. By Theorem
5 and Ko6nig-Hall’s thcorem on matching, it follows that there cxists a subsct §
cither of X \ {u,z} orof ¥\ {v,y} such that |S] > |0(S)|. Without loss of
generality, we assume that § = Xy isin X \ {u,z}. Lat (X) = Y, Xy =
X\ (X1 U{u,z}) andY; =Y \ (Y U{v, y}). Thus, ¥; = X;. Since R is -
diregular, k > |X1| > |(X1)| = |Yi| > k — 2. We will consider three subcases
as follows:

@) |X:| = kand|Y3] = k — 2. By the k-dircgularity of R, we have that
X1 =Y U {v,y}. Hence, [I(v)| = |X1|+ 1 = k + 1, a contradiction.

(d) |X1| = kand Y| = & - 1. By the k-dircgularity of R, X, U {u,z} = Y3,
and since [I(v)]| = k, thereexists avertex zy € Xy suchthatvzy, ¥ € A.
LetC) = wvzyyuvand Ry = R~ Cj.

If zy # w, we have to prove that there is no subset S of X \ {u,z,} (or of
Y\ {v,y} resp.) such that [S'| > [0g (S")|. In fact, if [S'| = k, then both
SN\ {ZPD Fomd S NG U{Z) 2o (' NY FéandS'NYr # ¢
resp.) hold. Hence, [0 (S > |S'] = k. If}S'| = k — 1, once more, we may



casily verify that |S'} < [0p (S)| unless 8" = Y1 or &' = X \ {z1}. When
S' = Y;, note that z; = Y7. By k-dircgularity of R, OR;(YI)] > k — 1. When
S'=X1\{zi1}and |S'] > ]Ogl(S’) |, there exists a vertex y; € Y such that
yi = X1 \ {z1}. Hence, X; \ {z1} = y. Note that 21y, zy € A, thus, we have
[I(y)| > k, a contradiction.

If z; = wand X; \ {z1} = v, we will prove that R ¥ Fyy, wuh Vi\{v}in
Figure 1, corresponding to X1 \ {z1 = w}, V2 \ {u} to V1, V3 \ {y} to X5 U{z},
Va\{z}0?; and uvzyulovz (= w) yuv. Clearly, X U{z} = Y7 = X, \{w},
1 = {y,z} =Y == w=Y,X;\{w} = v= X, U{z} Suppose
X5y € A, where 2, € X3, 9] €Y. By k-dircgulan'ty of R, then yz), € A, and
there exists a vertex z} € X, \ {w} such that y1 =} € A thus, z{y € A Hence,
zhy; lies on a d4-cycle zh y zjyz, in R. Suppose yz; € A, wncrc Ty € Xs.
Note that vz{ € A. By k-dircgularity of R, there exist vcmccs vl € Yl and

z{ € X1 \ {w) such that zgy’l’ € Aand y{z{ € A. And then 2}y € A. Hence,
y:r,2 lies on a 4-cycle yxrj y] z{y in R. Using a similar argument, we can show
thatif yyz7 € Aorziy € A, whereyy € Y1, 27 € X \ {w}, then y; 7} or 2}y
also lies on a4-cycle, respectively, as above in R. Finaily, if there are two 4-cycles
yi(9)z1(Dyz2(d) y1(4), 1 = 1,2 in R where y1(4) € Y1, 21(4) € Xi \{w},
z2(1) € X3, then, once morc, by the k-dircgularity of B, wehave z,(1) # z;(2)
and 2, (1) # 1,(2). Therefore, R ¥ F 4.

© [Xil=k—-tand|V;| =k —2. Wehave Y3 = X; = Y U {v,y}, and

{v,y} = X3. Since |0(u)| = k, there cxists a veriex y; in ¥ such that
vu, 2y € A. LetCf = wvzypeand Ry = R - Cj.

Supposc ya # w. If Ry has no factor, then, as above, there exists a subsct §”
cither of X'\ {u,z} orof Y'\ {v, 32} such that k > [S"| > [0 (S")| > k -
I[|S"| = k, then casc (a) or (b) applics. So we assumc that |S”| = k£ — 1. Notc
that in this casc, it is cnough to consider that §” = X; or ¥y U{y}. Sinccv = X,
and R is k-dircgular, [0z (X2)| > k — 1 = | X3]. Since |0g (y)] > &k — 1, |05
(M u{yhl>k-1=riUu{y}.

Ifys = w, we may assume u = Y3 \ {y2 }. Hence, ViU{y} = vand X; = w.
Using a similar argument to that in (b), we can prove that B ¥ Fgy with Vi \ {v}
in Figure 1, corresponding to Yy U{y}, V2 \ {u} to X3, Va \ {y} to Y2 \ {y = w},
Vs \ {z} to X and uvzyu to uvzy; u.

Claim 3. For k >4 and Rand Cy as in Claim 2, R; = R — C; is strong.

Suppose Ry is not strong. ‘Let C',C?,... ,C™, m > 2, be cycles of R. as
they are described in Theorem 4. If [V(CH| < [V(C*HU...U V{C™)|, then
there exists a veriex z € C' such that k = [0(2)| > [V(CH|/4+ [V(CH L. ..U
V(C™| /2 > (IV(CH] +[V(CH| + ...+ [V(C™ /4 +(V(CH)] =
[V(C™N/4 > (p—4) /4+ (p—4)/8. Since p = 4 k, this is a contradiction for
k > 4. On the other hand, if [V (C")| > [V(CH U...U V(C"‘)| then using a
similar argument, we obtai jicti ideri crez e O




We can now settle the Theorem. Supposc R is not isomorphic to Fagand R
has a factor containing w as in Claim 2. If k # 3, then R, is hamiltonian by Claim
3 and Theorem 3. Hence, Theorem is true. If k = 3, then either A, is hamiltonian
or, by Theorem 4, Ry consists of two 4-cycles C' = 12341 and C" = 56785
such that C' = C”. By the 3-diregularity of R, we have C" = C; = C'. Thus,
there exist two pairs of complementary cycles as follows: vv18u and y3456 227y
which satisfy the Theorem if w # 1,8; or vv36u and y1273 245y which satisfy
the Theorem if w = 1 or 8. This completes the proof of Theorem. 1
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