ON EDGE-PANCYCLIC GRAPHS

BY

ZHANG KE MIN AND D. A. HOLTON*

Abstract. Let G have the property that for any non-adjacent vertices $u.v \in VG$, $d(u)+d(v) \geq 1+|VG|$. We characterize the graphs of this type in which every edge lies on a cycle of every length from 3 to |VG| inclusive.

1. Introduction

In this paper, all graphs G are simple. We let $n = |VG| \ge 5$. A graph is pancyclic if it contains a cycle of every length from 3 to n inclusive, while an edge (a vertex resp.) is pancyclic if it lies on a cycle of every length from 3 to n inclusive. A graph is edge-pancyclic (vertex-pancyclic resp.) if every edge (every vertex resp.) is pancyclic.

If $e \in EG$ does not lie on a k-cycle in G we say that e is k^- -cyclic. Further $e \in EG$ is k^- -pancyclic if it lies on a cycle of every length from 3 to n inclusive except k.

In this note we will consider graphs with the property O(n+1): for any $u, v \in VG$ such that $uv \notin EG$, then $d(u) + d(v) \ge n+1$.

Finally by $G \subseteq H$ we mean that G is a spanning subgraph of H.

Faudree and Schelp [3] proved the following result.

Theorem 1. Let G have property O(n+1). Then there is a path of

Received May 8, 1991; revised August 23, 1991.

^{*} The research of this author was supported by UGC Grant No. 0886.

AMS Subject Classification. 05C38, 05C45.

every length from 5 to n inclusive between any pair of vertices.

A shorter proof of this result is due to Cai [2].

The corollary follows immediately.

Corollary. Let G have property O(n+1). Then every edge in G lies on a cycle of length 5 to n inclusive.

We will now construct some classes of graphs which will prove to be the only ones with property O(n+1) that contain 3⁻-pancyclic or 4⁻-pancyclic edges.

Let $G_1 = (K_1 + K_{n-a-b-1}) \vee (K_a^c + K_b)$, where $a \geq 1$, b = 0 or $b \geq 2$ are positive integers. The graph operations join \vee , union + and complement of H H^c are defined in [1]. Let sP_2 be a set of s independent edges and let $G_2 = (sP_2 + K_{n-b-2s}) \vee K_b^c$, where s and b are integers, and for s = 1 $3 \leq b \leq \frac{1}{2}(n-1)$ and for $2 \leq s \leq \left\lceil \frac{1}{2}b \right\rceil - 1$, and n = 2b + 1.

2. Main Results

Theorem 2. Let G satisfy the condition O(n+1). Then

- (a) G can not contain both 3⁻-pancyclic edges and 4⁻-pancyclic edges.
- (b) G contains a 3⁻-pancyclic edge if and only if $G \subseteq G_1$.
- (c) G contains a 4⁻-pancyclic edge if and only if $G \subseteq G_2$.

Proof.

(i) We first prove that if G contains a 3--cyclic edge then $G \subseteq G_1$.

Let u_1v_1 , u_2v_2 be two independent 3⁻-cyclic edges in G. Let $B=N(u_1)\cap N(u_2)$, $A=N(u_1)\setminus (B\cup \{u_2\})$ and $C=N(u_2)\setminus (B\cup \{u_1\})$. Finally, let |A|=a, |B|=b, |C|=c. If $D=VG\setminus (\{u_1,u_2\}\cup A\cup B\cup C)$, then |D|=n-a-b-c-2.

Since not both $u_2, v_2 \in N(u_1)$, we may assume without loss of generality that $u_1 u_2 \notin EG$. We note that if $v_1 \in A$, then $d(v_1) \leq n - a - b - 1$. While if $v_1 \in B$, then $d(v_1) \leq n - a - b$. Hence $d(v_1) \leq n - d(u_1)$ and similarly $d(v_2) \leq n - d(u_2)$. Thus $d(v_1) + d(v_2) \leq 2n - (d(u_1) + d(u_2)) \leq n - 1$. Hence

by the condition O(n+1), $v_1v_2 \in EG$ and $v_1 \in A$, $v_2 \in C$. Without loss of generality we may assume that $a \geq c$. However $u_2v_1 \notin EG$, so $n+1 \leq d(u_2) + d(v_1) \leq (b+c) + (n-a-b-1) \leq n-1$.

This contradiction shows that G contains no two independent 3⁻-cyclic edges. Hence $G \subseteq G_1$.

(ii) We now prove that if G contains a 4-cyclic edge then $G \subseteq G_2$.

Let e = uv be a 4⁻-cyclic edge. Let $N(u) \setminus (N(v) \cup \{v\}) = A$, $N(u) \cap N(v) = B$ and $N(v) \setminus (N(u) \cup \{u\}) = C$, with |A| = a, |B| = b and |C| = c. Let $VG \setminus (N(u) \cup N(v)) = D$. Then |D| = n - a - b - c - 2.

Since e is 4-cyclic, then |EG[B]| = 0.

Now d(u) = a+b+1. For $w \in C$, $d(w) \le (c-1)+1+(n-a-b-c-2) = n-a-b-2$. Since $uw \notin EG$, we have $n+1 \le d(u)+d(w) \le n-1$, a contradiction. Hence $C = \phi$. Similarly $A = \phi$.

Let G contain s distinct 4⁻-cyclic edges. First consider s=1. Suppose e is the only 4⁻-cyclic edge in G. Let $x \in D$. Then $d(x) \le n-3$. However since $ux \notin EG$, $n+1 \le d(u)+d(x) \le (b+1)+(n-3)$. Hence $b \ge 3$.

Further, for $z_1, z_2 \in B$, $d(z_1) \le n-b$ and $d(z_2) \le n-b$. Since $z_1, z_2 \notin EG$, $n+1 \le 2n-2b$. Hence $b \le \frac{1}{2}(n-1)$. We have thus shown that $G \subseteq G_2$.

Suppose G contains the $s \geq 2$ distinct 4^- -cyclic edges e_1, e_2, \ldots, e_s . Let $e_i = u_i v_i$. If $u_2 = v_1$, then we know from the argument above that $u_1 v_2 \in EG$. Clearly there is no $v \in N(u_1) \cap N(v_1)$ and $v \neq v_2$, since e_2 is 4^- -cyclic. Hence $d(u_1) = d(v_1) = 2$. Similarly $d(v_2) = 2$. Since G is connected by the condition O(n+1), $G = K_3$, which contradicts $|VG| \geq 5$. It follows therefore that $\{e_1, e_2, \ldots, e_s\}$ is a set of independent edges.

Repeating the argument above which showed that $A = \phi = C$ on the neighbourhoods of e_1 and e_2 , we see that $\{w : u_1w, v_1w \in EG \text{ and } u_2w, v_2w \notin EG\} = \phi$. Hence $N(u_i) \cap N(v_i) = N(u_1) \cap N(v_1) = B$ and |D| = n - 2s - b.

Since G satisfies O(n+1), $n+1 \le d(u_1)+d(u_2)=2b+2$. Hence $n \le 2b+1$. Further if $z_1, z_2 \in B$ we have $n+1 \le d(z_1)+d(z_2) \le 2n-2b$. So $n \ge 2b+1$. Therefore n=2b+1.

Finally, for $x \in D$ we have $n+1 \le d(u_1)-d(x) \le n-2s+b$.

Hence $s \leq \lceil \frac{1}{2}b \rceil - 1$. Therefore $2 \leq s \leq \lceil \frac{1}{2}b \rceil - 1$. It follows that $G \subseteq G_2$.

(iii) We now show that if G contains a 4⁻-cyclic edge it contains no 3⁻-cyclic edge.

Suppose to the contrary, G contains 3⁻-cyclic edges. Let e = uv be a 4⁻-cyclic edge in G. Let B,D and s be defined as in (ii). Let $z_1, z_2 \in B$ and $w_1, w_2 \in D$. Let $r = |N(w_1) \cap B|$ and $t = |N(w_1) \cap D|$. Consider two cases. First suppose $w_1w_2 \in EG$ is a 3⁻-cyclic edge. We have $N(w_1) \cap B \neq \phi$. Now for $z_1 \in N(w_1) \cap B$, $d(z_1) \leq n - b$. Further $d(w_2) \leq n - (r + t + 2s)$. Since $uw_1 \notin EG$, $n+1 \leq d(u)+d(w_1)=r+t+b+1$. Since $z_1w_2 \notin EG$, $n+1 \leq d(z_1)+d(w_2) \leq 2n-b-t-r-2s$. But this implies $n \geq b+t+r+2s+1 \geq n+3$, a contradiction. Now Suppose z_1w_1 is a 3⁻-cyclic edge. Since $uw_1 \notin EG$, $n+1 \leq d(u)+d(w_1)=r+t+b+1$. Further, since $z_1z_2 \notin EG$, $n+1 \leq d(z_1)+d(z_2) \leq 2n-2b-t$. Hence $n \geq 2b+t+1$. This implies that $r+t+b \geq 2b+t+1$, or $r \geq b+1$, a contradiction.

This completes the proof of (a).

(iv) We now show that if $G \subseteq G_1$, then G contains a 3-pancyclic edge.

Suppose $G \subseteq G_1$ and there is no edge from K_1 to K_a^c in G. Let $u \in VK_1$ and $v \in K_a^c$. Then $d(u) + d(w) \leq n$, which contradicts O(n+1).

So there are edges from K_1 to K_a^c and clearly such edges lie on no 3-cycle. By (iii) they must lie on a 4-cycle and by the Corollary to Theorem 1, they lie on cycles of every higher length. Hence they are 3⁻-pancyclic.

Hence, combining (i) and (iv) we have completed the proof of (b).

(v) We now show that if $G \subseteq G_2$, then G contains a 4-pancyclic edge.

If no edges of sP_2 remain in G, then let $u_1, u_2 \in V(sP_2) \cap VG$. We see that $d(u_1) + d(u_2) \leq 2b \leq n-1$. This contradicts O(n+1). Hence $u_1u_2 \in EG$.

Clearly u_1u_2 is a 4⁻-cyclic edge. Hence by (iii) and the Corollary to Theorem 1, u_1u_2 is a 4⁻-pancyclic edge.

Combining (ii) and (v) we have completed the proof of (c).

By Theorem 2 and the Corollary of Theorem 1, we have

Theorem 3. Let G satisfy the condition O(n+1). Then G is edge

pancyclic iff $G \not\subseteq G_1$ and $G \not\subseteq G_2$.

Corollary. Let G satisfy the condition O(n+1). Then G is vertex-pancyclic iff $G \not\subseteq G_1$ with b=0.

Acknowledgment

One of us would like to thank the University of Otago for its financial support.

References

- [1] J. A. Bondy and U. S. R. Murty. Graph Theory With Applications, Macmillan, London, 1976.
- [2] Cai Xiao-tao, A short proof for the Faudree-Schelp Theorem on path-connected graphs, J. Graph Th., 8 (1984), 109-110.
- [3] R. J. Faudree and R. J. Schelp, Path connected graphs, Acta. Math. Acad. Sci. Hungar., 25 (1974), 313-329.

Department of Mathematics, Nanjing University, Nanjing, People's Republic of China.

Department of Mathematics and Statistics, University of Otago, Dunedin, New zealand.