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ON EDGE-PANCYCLIC GRAPHS

BY

ZHANG KE MIN AND D. A. HOLTON*

Abstract. Let G have the property that for any non-adjacent ver-
tices u.v € VG, d(u) + d(v) > 1 + |VG|. We characterize the graphs
of this type in which every edge lies on a cycle of every length from 3
to |V G| inclusive.

1. Introduction

In this paper, all graphs G are simple. We let n = VG| > 5. A graph is
pancyclic if it contains a cycle of every length from 3 to n inclusive, while an -
edge (a vertex resp.) is pancyclic if it lies on a cycle of every length from 3 to
n inclusive. A graph is edge-pancyclic (vertez-pancyclic resp.) if every edge
(every vertex resp.) is pancyclic.

If e € EG does not lie on a k-cycle in G we say that e is k™ -cyclic.
Further e € EG is k™ -pancyclic if it lies on a cycle of every length from 3 to
n inclusive except k.

In this note we will consider graphs with the property O(n + 1): for any
u,v € VG such that wv ¢ EG, then d(u) + d(v) > n + 1.

Finally by G C H we mean that G is a spanning subgraph of H.

Faudree and Schelp [3] proved the following result.

Theorem 1. Let G have property O(n 4+ 1). Then there is a path of
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every length from 5 to n inclusive between any pair of vertices.
A shorter proof of this result is due to Cai [2].

The corollary follows immediately.

Corollary. Let G have property O(n +1). Then every edge in G lies on

a cycle of length 5 to n inclusive.

We will now construct some classes of graphs which will prove to be the
only ones with property O(n + 1) that contain 3~-pancyclic or 4~ -pancyclic
edges.

Let G1 = (K1 + Kn—a—b-1) V (K + Ky), where a > 1,b=0o0r b > 2
are positive integers. The graph operations join V, union + and complement
of H H¢ are defined in [1]. Let sP, be a set of s independent edges and
let Gy = (ng + Kn_b_gs) V K¢, where s and b are integers, and for s = 1
3<h< %(n—l)andfor2§s§ [%b]—l,andn=2b+l.

2. Main Results

Theorem 2. Let G satisfy the condition O(n + 1). Then
(a) G can not contain both 3~ -pancyclic edges and 4~ -pancyclic edges.
(b) G contains a 3~ -pancyclic edge if and only if G C G,.
(¢) G contains a 4™ -pancyclic edge if and only if G C G,.

Proof.

(i) We first prove that if G contains a 37 -cyclic edge then G C G;.

Let ugv1, upvy be two independent 3~ -cyclic edges in G. Let B = N(u1)N
N(u2), A = N(u1) \ (BU {u2}) and C = N(ug)\ (B U {u1}). Finally, let
|Al = a, |B] = b, |C|] =¢c. f D =VG\ ({u1,u2}UAUBUC), then
|IDl=n—-a-b-c-2.

Since not both u;,v; € N(u1), we may assume without loss of generality
that u;u; € EG. We note that if v; € A. then d(v;) < n—a—b— 1. While
if v1 € B, then d(v;) < n —a —b. Hence d(v1) < n — d(u;) and similarly
d(v2) < n—d(u2). Thus d(v1) +d(v2) < 2n — (d(u1) + d(uz)) < n—1. Hence
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by the condition O(n + 1), v1v; € EG and v, € A, v, € C. Without loss
of generality we may assume that a > ¢. However uyv, € EG,son+1 <
du)+d(n)<(b+e)+(n—-a-b-1)<n-1.

This contradiction shows that G contains no two independent 3~ -cyclic
edges. Hence G C G}.

(ii) We now prove that if G contains a 4~ -cyclic edge then G C Gj.

Let e = uv be a 47 -cyclic edge. Let N(u)\ (N(v)U {v}) = A, N(v)n
N(v) = B and N(v) \ (N(u)U {u}) = C, with |A] = a, |B| = b and |C| = c.
Let VG\ (N(u)UN(v))=D. Then |[D|=n—-a-b—-c—-2.

Since e is 4™ -cyclic, then |EG[B]| = 0.

Now d(u) = a+b+1. Forw € C,d(w) < (c-1)+1+(n—-a-b-—c-2) =
n—a—b-2. Since uw ¢ EG, we have n +1 < d(u)+d(w) <n-1,a
contradiction. Hence C = ¢. Similarly 4 = ¢.

Let G contain s distinct 47 -cyclic edges. First consider s = 1. Suppose
e is the only 47 -cyclic edge in G. Let z € D. Then d(z) < n — 3. However
since uz ¢ EG,n+ 1< d(u)+d(z) <(b+ 1)+ (n - 3). Hence b > 3.

Further, for z1, 22 € B, d(z1) < n—band d(2;) < n—b. Since 21,2, ¢ EG,
n+1<2» —2b. Hence b < %(n — 1). We have thus shown that G C G,.

Suppose G contains the s > 2 distinct 4~ -cyclic edges ey, e, ..., €5.
Let e; = u;v;. If up = vy, then we know from the argument above that
u1v2 € EG. Clearly there is no v € N(u;) N N(v;) and v # v, since ey is 4~-
cyclic. Hence d(u1) = d(v) = 2. Similarly d(v2) = 2. Since G is connected
by the condition O(n + 1), G = K3, which contradicts |[VG| > 5. It follows
therefore that {e;,e2,...,e,} is a set of independent edges.

Repeating the argument above which showed that A = ¢ = C on the
neighbourhoods of e; and e;, we see that {w : uyw,v;w € EG and usw, vow ¢
EG} = ¢. Hence N(u;) N N(vi) = N(u1)N N(v1) = B and |D| = n — 25 — b.

Since G satisfies O(n+1), n+1 < d(uy)+d(uz) = 2b+2. Hence n < 2b+1.
Further if 21,2 € B wehave n + 1< d(21)+d(2z2) <2n—2b. Son > 2b+ 1.
Therefore n = 2b 4 1.

Finally, for z € D we have n + 1 < d(u;) — d(z) < n—2s+b.
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Hence s < [1b] — 1. Therefore 2 < s < [3b] — 1.

It follows that G C (5.
(iii) We now show that if G contains a 4™ -cyclic edge it contains no 37 -cyclic
edge.

Suppose to the contrary, G contains 3~-cyclic edges. Let e = uv be a
4~ -cyclic edge in G. Let B,D and s be defined as in (ii). Let 2,2z, € B
and wy,wy € D. Let r = |N(w1) N B| and t = [N(wy) N D|. Consider two

) cases. First suppose wiw; € EG is a 3™ -cyclic edge. We have N(w1)N B # ¢.

Now for z; € N(wi1) N B, d(z1) < n — b. Further d(w;) < n —(r+1t+ 2s).
Since uw; ¢ EG, n+1 < d(u)+d(wy) =r+t+b+ 1. Since nyw; € EG,
n+1<d(zn)+dw) <2n—b—t—r—2s. But this impliesn > b+t+ 7+
25+ 1 > n + 3, a contradiction. Now Suppose z;w; is a 37-cyclic edge. Since |
uwy € EG, n+1 < d(u)+ d(wy,) =+t + b+ 1. Further, since z;2; ¢ EG,
n+1<d(z)+d(z2) <2n—2b—t. Hence n > 2b+ t + 1. This implies that
r+t+b>20+1t+1,0rr > b+ 1, a contradiction.

This completes the proof of (a).
(iv) We now show that if G C G, then G contains a 37-pancyclic edge.

Suppose G C G; and there is no edge from K; to K in G. Let u € VK,
and v € K¢. Then d(u) + d(w) < n, which contradicts O(n + 1).

So there are edges from K7 to K¢ and clearly such edges lie on no 3-cycle.
By (iii) they must lie on a 4-cycle and by the Corollary to Theorem 1, they
lie on cycles of every higher length. Hence they are 3~ -pancyclic.

Hence, combining (i) and (iv) we have completed the proof of (b).
(v) We now show that if G C G, then G contains a 4~ -pancyclic edge.

If no edges of sP; remain in G, then let uy,us € V(sP,) NVG. We see
that d(u;)+d(us) < 2b < n—1. This contradicts O(n+1). Hence uyu; € EG.

Clearly ujup is a 47 -cyclic edge. Hence by (iii) and the Corollary to
Theorem 1, uyuy is a 4~ -pancyclic edge.

Combining (ii) and (v) we have completed the proof of (c).

By Theorem 2 and the Corollary of Theorem 1, we have

Theorem 3. Let G satisfy the condition O(n + 1). Then G is edge
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pancyclic iff G € G; and G € G;.

Corollafy. Let G satisfy the condition O(n + 1). Then G is vertex-
pancyclic iff G € G; with b= 0.
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