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ON GENERALIZED VERTEX-PANCYCLIC GRAPHS

ZHANG KE MIN ( #&%E ), D.A. HOLTON
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ABSTRACT. Let G be a graph G of order n > 4 such that d(u) + d(v) > n
for all non-adjacent vertices u,v. Thus each vertex of (¥ lies on a cycle of

every length from 4 to n inclusive except if m is even, n # 4 and G = Kln,ln'

A similar result, without the exceptional case, holds if d(u)+d(v) > n —I—2 1 for
each pair of vertices u and v a distance two apart in G. We show that upper
bounds are given for the number of vertices which do not lje on 3-cycles in
the above two types of graphs.

1. INTRODUCTION

In this paper we consider only simple graphs. Throughout, we essentially use
the terminology and notation of Bondy and Murty [2]. Hence we use N(v) for the
neighbourhood of a vertex v, d(v) = |N(v)| and d(u,v) for the distance between
v and v. In addition we will let N(v) = N(v)U{v}. A graph of order n is said to
be pancyclic if it contains a cycle of length  for all 7 such that 3 <! < n. In this
paper we consider the concept of pancyclicity from the point of view of a vertex.
So we say that a vertex is pancyclic if that vertex lies on a cycle of every length
from 3 to n inclusive. We will be particularly interested in vertices which are not

quite pancyclic. Hence we say that a vertex is 37 —pancyclic if it lies on a cycle of
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every length from 4 to n inclusive and it does not lie on a 3-cycle. We say that G
18 vertex~pahcyclic if every vertex is pancyclic; and vertex 3~ —pancyclic if every
vertex is at least 37-pancyclic. It is convenient to say that a vertex is [-cyclic if it
lies on a cycle of length [. A 37 -pancyclic vertex is not 3—cyclic.

We consider the 37-pancyclic property of vertices in two classes of graphs. The
first class is that for which if u,v € V(G) and uv ¢ E(G), then d(u) 4+ d(v) > n.
This is Ore’s condition on a graph.

Fan [5] introduced a different condition to imply the existence of a hamiltonian
cycle.

The second class is that we combine Fan’s and Ore’s condition to give the
distance two condition, for all u,v € V(G) with d(u,v) =2, d(u) + d(v) > n+1.

The following theorem follows immediately by [5].

Theorem 1. Let G be a 2-connected graph which satisfies the distance two
condition. Then G 1s hamiltonian.

To enable us to prove our results on 3~ —pancyclicity we will need the following.

Theorem 2. If G is a graph of order n > 5 with d(u) + d(v) > n + 1 for
distinct non-adjacent vertices u,v, then G contains a path of every length from |
to n — 1 inclusive, between any pair of distinct vertices in G.

Theorem 2 is due to Faudree and Schelp [6]. A shorter proof was given by Cai
in [4]. In Cai’s proof the full power of the hypothesis of Theorem 2 is not used.
Instead only the distance two condition is used.

Corollary 3. Let G be a grapph of order n > 5 which satisfies the distance
two condition. Then G contains a path of every length from 4 to n — 1 inclusive,
between any pair of distinct vertices in G.

Finally we also need a result of Schmeichel and Hakimi (see [7] Lemma 1).
Again, the proof of their result contains more than its original statement. We give
a fuller result below.

Theorem 4. Let u,v be adjacent vertices on a hamiltonian cycle in a graph

G. If d(u)+d(v) > n+1, then u and v are pancyclic.
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2. ORE’S CONDITION

Theorem 5. [3, corollary 4] Let G be a graph of order n > 4 where, for all
non—adjacent vertices u,v in G, d(u) + d(v) > n. Then G is vertez 3™ -pancyclic
unless n 1s even n # 4 and G = K%n’%n.

Consider 'the class of graphs G % K%n’%n such that for u,v € V(G) where
if wv ¢ E(G), we have d(u) + d(v) > n. Let M; be the maximum number of

3~ -pancyclic vertices in a graph with the above property.

2 for n odd
Theorem 6. Ifn > 6, then M, =<{ 1
SN 2 for neven

L

Proof. We first show that there are graphs with the stated number of 3——

pancyclic vertices.

Vi
v
join Va
S
T
G,
Figure 1.

The join GV H of disjoint graphs G and H is the graph obtained from G + H
by joining each vertex of G to each vertex of H. Let Gy be the graph of order n
as shown in Figure 1 where n = |T'| +6 =t + 6. We see that d(v1) = d(vy) = 3,
and d(w) =t + 3 for w € SUT. Clearly, if w € T, then wv; ¢ E(G1), and
d(w) +d(vi) =t+6 = |[V(Gy)|, for i = 1,2. If w € S and wo, ¢ E(G,), again
d(w) + d(vi) = t + 6. Finally, if w,w’ € S and ww’ ¢ E(G), then d(w) + d(w') =
2t +6 > |V(Gy1)|. Hence G, satisfies the Ore’s condition and contains only two
3”—pancyclic vertices. If ¢ is odd, then Gy shows that M; > 2.
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Now let Gy = K%n’%n + e. Let the two partite sets of I(%n,%n be Xvand Y. Let
e = z122 and X = X; U X, such that X; = {z),29} and X; N Xy = . We see
that for z € X, d(z) = in+ 1, for z € Xy, d(z) = in. Clearly d(z) + d(z')y > n
for za' € E(G). It is easily seen that every vertex of X, is 3 —pancyclic. So, for
n even, My > |X,| = itn —2.

Note that both G, and G have at least 6 vertices. We now produce the reverse
inequalities for M;. In what follows, the graph G satisfies the Ore’s condition. Let
R = {v; : 1,2,--+,7} be the set of 37 —pancyclic vertices in G. Since M, > 2 we
may assume r = |R| > 2. Let C = ujuy---u,uy be a hamiltonian cycle in G.
We have d(v;) < in for every i. Otherwise d(vi) > in and there is a 3—cycle
containing vy, a contradiction.

Case 1. d(v;) = %, for some ¢ € {1,2,---,r}.Clearly, n is even. Without
loss of generality, suppose d(vy) = %n. For any uq,u; € N(vy). Since vy is not
3-cyclic, we have uju, ¢ E(G). Hence N(u;) = N(uq) € V(G)\N(vy) and, by
Ore’s condition, d(u1) + d(uz) > n. So d(uy) = d(uz) = 3. Now G % Kz =. So

Kp n + e is a spanning subgraph of G, where e is an edge. Hence M; < in—2.

wis

n
'2

N

Case 2. d(v;) < § for any ¢ € {1,2,---,r}. Then Ore’s condition gives .
vv; € E(G) for any k,j € {1,2,---,r} with k # j. Furthermore, G[R] = K,.
Hence r < 2.

Combining the two cases with G and G, the theorem 1s true.

3. THE DISTANCE TWO CONDITION

In this section we consider the problem of vertex 3~ -pancyclicity and the num-
ber of 3-—pancylic vertices in graphs satisfying the distence two conaition.

Theorem 7. Let G be a graph of order n > 5. If d(u) + d(v) =2 n+1 for any
u,v € V(G) with d(u,v) = 2, then G 1s vertex 3~ -pancyclic.

Proof. By Corollary 3, every pair of distinct vertices are joined by paths of
length 4 to n — 1 inclusive. Hence adjacent vertices must lie on t—cycles for & <

t < n. We now only have to show that any vertex of G lies on a 4-cycle. Since G
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is hamiltonian, let vyv; - - v,v; be a hamiltonian cycle. Suppose that v, is on no
4-cycle. Then for all k¥ such that 3 < k < n — 1, at most one of VU, UV, 1s in
E(G). Hence d(v;) +d(v,) < (n—3)+1+41=n—1. By the conditions on G, this
implies vyv, € E(G). Replacing v, and v, by v; and v,_; similarly v,v,_; € E(G).
So the 4-cycle viv4v,v,,_1v; esists in G. This contradiction shows that vy, and
hence any vertex, lies on a 4-cycle. &

Unfortunately the conditions of the last theorem are not sufficient to imply
vertex pancyclicity. The graph of Figure 2 satisfies the conditions of Theorem 7
but the vertex v; does not lie on a 3—cycle. In this graph vertices vy, vy, v3, Vs, vg

are adjacent to all vertices of K,_g where n > 7.

Figure 2.

Consider all graphs G with the property that for u,v € V(G) and d(u,v) =2,
d(u)+d(v) > n+1. Let M, denote the maximum mumber of 3~ ~pancyclic vertices
in a graph with the above property.

Theorem 8. M, = [%(—3 + V11 +2n )}
Proof. Consider the graph F with V(F) = AU (| B;)UD, where F[A] = KC,
=1
F[B;] = I&’TCH for all : and F[D] = K,243,_,. Further N(v;) = B; for all v; € F[A]

and each vertex of U B; is joined to every vertex in D.
=1
We note that d(v;) = r + 2 for all v; € A, d(w;) = r? + 3r for all w; € U B;

=1

and d(z) = 2r* + 5r —2 for all z € D. Clearly n = |V(F)| = 2r® + 6r — 1.
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It is easily checked that F satisfies the distance two condition and that the
vertices of degree r + 2 are 3~ -pancyclic. Now r = [3(—3 + V11+2n)]. So
M, = [3(—=3+ V11 +2n)].

Let G satisfy the distance two condition. Let R = {v; : ¢ = 1,2,---,7} be
the set of 3 —pancyclic vertices in G. Assume without loss of generality, that
d(v;) > d(v;) for 1 < j. The remainder of the proof now proceeds in four steps.

Step 1. d(v;) < in. Suppose d(v;) > in and let w; € N(v;). By Theorem 2,
there is a hamiltonian cycle containing v;w;. If d(w;) > 3n, then d(v;) + d(w;) >
n+1. By Theorem 4, v; is pancyclic. Hence d(v;) < in. Indeed, for all w; € N(v;),
we have d(w;) < 5”' Since G is hamiltonian, d(v;) > 2. Take u,v € N(v;). Since
v; is not on a 3—cycle, d(u,v) = 2. From above we see that d(u)+ d(v) < n and so
uv € E(G). However, this gives the 3—cycle vv;uv in G. The contradiction shows
that d(w;) < %n

Step 2. v;v; ¢ E(G). Assume that v;v; € E(G) and let w; € N(v;). Clearly
w; € N(v;) since v; and v; are not 3—cyclic. Hence d(w, v;) = 2 and d(v;)+d(w;) >
d(v;) + d(w;) > n + 1. But this implies that N(v;) N N(w;) # @ and so v; lies on
a 3—cycle. Hence v;v; € E(G).

Step 3. N(v;) N N(v;) = ® and if w; € N(v;), then N(w;) N N(v;) = ®. Let
w; € N(v;). If w; € N(v;), then d(v;,v;) = 2 so d(v;) + d(v;) > n+1. However, by
Step 1 we know that d(v;) + d(v;) < n. Hence N(v;) N N(v;) = ®. Now since v; is
3~—pancyclic, N(v;)NN(w;) = @ , so d(v;)+d(w;) < n. If N(w;)NN(v;) # @, then
d(w;, v;) = 2, so d(w;) +d(v;) > n+1. However, d(w;) +d(v;) < d(w;)+d(v;) < n.
Consequently N(w;) N N(v;) =&

Step 4. r < [}(=3+V11+2n)]. Let z € V(G)\[LTJ N(v,-)]. Such a z exists

U N(v:)
Then for some v;, r +s+t+1=n+1 <d(z)+d(v)_ [>+(t—1)]+31 Hence
sy > r+2and s > r(r + 2). Further, for w;, wy € N(v;), r+s+t+1=n+1<
d(wi)+d(wi) < 2t4+2. Hencet > s+r—1. Son = r4s+t > 2s42r—1 > 2r’+6r—1.
This implies that r < [2(=3 4+ 11+ 2n)]. Hence M, < [2(=3 + V11 +2n)).

since G is connected. Let |N(v;)| = s,

—aandt—.V(G [UN ;) ”
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Combining the two inequalities for M, we complete the proof of the theorem. <&

Note that M; = 0 for n < 6. However, if r > 1 then, from Step 4 of the proof,
sy >3and t > 3. Hencen > 7.

We note that combining, in some sense Ore’s condition and the distance two
condition reduces the maximum number of 3~ —pancyclic vertices.

Theorem 9. Consider the set of graphs of order n > 5 for which d(u)+d(v) >
n+1 for all u,v such uv s not an edge. Then the largest number of 3~ -pancyclic
vertices, M, in a graph of this set is one.

Proof. Let vy,v, be 3~ —pancyclic vertices. Steps 1 and 2 of Theorem 8 still
hold. By Step 2, d(v;) + d(v2) > n + 1 but by Step 1, d(v;) + d(v3) < n. This
contradiction shows that M5 < 1.

The graph F of Theorem 8 with r = 1, shows that M, > 1. O
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