ON GENERALIZED VERTEX-PANCYCLIC GRAPHS

ZHANG KE MIN (張克民), D.A. HOLTON AND SHENG BAU (寶 昇)

ABSTRACT. Let G be a graph G of order $n \geq 4$ such that $d(u) + d(v) \geq n$ for all non-adjacent vertices u, v. Thus each vertex of G lies on a cycle of every length from 4 to n inclusive except if n is even, $n \neq 4$ and $G \cong K_{\frac{1}{2}n,\frac{1}{2}n}$. A similar result, without the exceptional case, holds if $d(u) + d(v) \geq n + 1$ for each pair of vertices u and v a distance two apart in G. We show that upper bounds are given for the number of vertices which do not lie on 3-cycles in the above two types of graphs.

1. INTRODUCTION

In this paper we consider only simple graphs. Throughout, we essentially use the terminology and notation of Bondy and Murty [2]. Hence we use N(v) for the neighbourhood of a vertex v, d(v) = |N(v)| and d(u,v) for the distance between u and v. In addition we will let $\bar{N}(v) = N(v) \cup \{v\}$. A graph of order n is said to be pancyclic if it contains a cycle of length l for all l such that $3 \leq l \leq n$. In this paper we consider the concept of pancyclicity from the point of view of a vertex. So we say that a vertex is pancyclic if that vertex lies on a cycle of every length from 3 to n inclusive. We will be particularly interested in vertices which are not quite pancyclic. Hence we say that a vertex is 3^- -pancyclic if it lies on a cycle of

Received May 7, 1991; Revised November 8, 1992.

¹⁹⁹¹ Mathematics Subject Classification: 05C38, 05C45.

Key words: Pancyclic graph, vertex-pancyclic graph, Ore's condition

every length from 4 to n inclusive and it does not lie on a 3-cycle. We say that G is vertex-pancyclic if every vertex is pancyclic; and vertex 3⁻-pancyclic if every vertex is at least 3⁻-pancyclic. It is convenient to say that a vertex is l-cyclic if it lies on a cycle of length l. A 3⁻-pancyclic vertex is not 3-cyclic.

We consider the 3⁻-pancyclic property of vertices in two classes of graphs. The first class is that for which if $u, v \in V(G)$ and $uv \notin E(G)$, then $d(u) + d(v) \ge n$. This is Ore's condition on a graph.

Fan [5] introduced a different condition to imply the existence of a hamiltonian cycle.

The second class is that we combine Fan's and Ore's condition to give the distance two condition, for all $u, v \in V(G)$ with d(u, v) = 2, $d(u) + d(v) \ge n + 1$.

The following theorem follows immediately by [5].

Theorem 1. Let G be a 2-connected graph which satisfies the distance two condition. Then G is hamiltonian.

To enable us to prove our results on 3⁻-pancyclicity we will need the following.

Theorem 2. If G is a graph of order $n \geq 5$ with $d(u) + d(v) \geq n + 1$ for distinct non-adjacent vertices u, v, then G contains a path of every length from 4 to n-1 inclusive, between any pair of distinct vertices in G.

Theorem 2 is due to Faudree and Schelp [6]. A shorter proof was given by Cai in [4]. In Cai's proof the full power of the hypothesis of Theorem 2 is not used. Instead only the distance two condition is used.

Corollary 3. Let G be a grapph of order $n \geq 5$ which satisfies the distance two condition. Then G contains a path of every length from 4 to n-1 inclusive, between any pair of distinct vertices in G.

Finally we also need a result of Schmeichel and Hakimi (see [7] Lemma 1). Again, the proof of their result contains more than its original statement. We give a fuller result below.

Theorem 4. Let u, v be adjacent vertices on a hamiltonian cycle in a graph G. If $d(u) + d(v) \ge n + 1$, then u and v are pancyclic.

2. ORE'S CONDITION

Theorem 5. [3, corollary 4] Let G be a graph of order $n \geq 4$ where, for all non-adjacent vertices u, v in G, $d(u) + d(v) \geq n$. Then G is vertex 3^- -pancyclic unless n is even $n \neq 4$ and $G \cong K_{\frac{1}{2}n, \frac{1}{2}n}$.

Consider the class of graphs $G \ncong K_{\frac{1}{2}n,\frac{1}{2}n}$ such that for $u,v \in V(G)$ where if $uv \not\in E(G)$, we have $d(u)+d(v) \geq n$. Let M_1 be the maximum number of 3⁻-pancyclic vertices in a graph with the above property.

Theorem 6. If
$$n \geq 6$$
, then $M_1 = \begin{cases} 2 & \text{for } n \text{ odd} \\ \frac{1}{2}n - 2 & \text{for } n \text{ even} \end{cases}$

Proof. We first show that there are graphs with the stated number of 3^- pancyclic vertices.

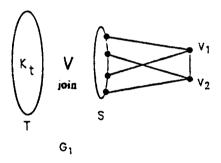


Figure 1.

The join $G \vee H$ of disjoint graphs G and H is the graph obtained from G + H by joining each vertex of G to each vertex of H. Let G_1 be the graph of order n as shown in Figure 1 where n = |T| + 6 = t + 6. We see that $d(v_1) = d(v_2) = 3$, and d(w) = t + 3 for $w \in S \cup T$. Clearly, if $w \in T$, then $wv_i \notin E(G_1)$, and $d(w) + d(v_i) = t + 6 = |V(G_1)|$, for i = 1, 2. If $w \in S$ and $wv_i \notin E(G_1)$, again $d(w) + d(v_i) = t + 6$. Finally, if $w, w' \in S$ and $ww' \notin E(G)$, then $d(w) + d(w') = 2t + 6 \ge |V(G_1)|$. Hence G_1 satisfies the Ore's condition and contains only two 3-pancyclic vertices. If t is odd, then G_1 shows that $M_1 \ge 2$.

Now let $G_2 = K_{\frac{1}{2}n,\frac{1}{2}n} + e$. Let the two partite sets of $K_{\frac{1}{2}n,\frac{1}{2}n}$ be X and Y. Let $e = x_1x_2$ and $X = X_1 \cup X_2$, such that $X_1 = \{x_1, x_2\}$ and $X_1 \cap X_2 = \Phi$. We see that for $x \in X_1$, $d(x) = \frac{1}{2}n + 1$, for $x \in X_2$, $d(x) = \frac{1}{2}n$. Clearly $d(x) + d(x') \ge n$ for $xx' \notin E(G)$. It is easily seen that every vertex of X_2 is 3⁻-pancyclic. So, for n even, $M_1 \ge |X_2| = \frac{1}{2}n - 2$.

Note that both G_1 and G_2 have at least 6 vertices. We now produce the reverse inequalities for M_1 . In what follows, the graph G satisfies the Ore's condition. Let $R = \{v_i : 1, 2, \dots, r\}$ be the set of 3⁻-pancyclic vertices in G. Since $M_1 \geq 2$ we may assume $r = |R| \geq 2$. Let $C = u_1u_2 \cdots u_nu_1$ be a hamiltonian cycle in G. We have $d(v_1) \leq \frac{1}{2}n$ for every i. Otherwise $d(v_1) > \frac{1}{2}n$ and there is a 3-cycle containing v_1 , a contradiction.

Case 1. $d(v_i) = \frac{n}{2}$, for some $i \in \{1, 2, \dots, r\}$. Clearly, n is even. Without loss of generality, suppose $d(v_1) = \frac{1}{2}n$. For any $u_1, u_2 \in N(v_1)$. Since v_1 is not 3-cyclic, we have $u_1u_2 \notin E(G)$. Hence $N(u_1) = N(u_2) \subseteq V(G) \setminus N(v_1)$ and, by Ore's condition, $d(u_1) + d(u_2) \geq n$. So $d(u_1) = d(u_2) = \frac{n}{2}$. Now $G \not\cong K_{\frac{n}{2},\frac{n}{2}}$. So $K_{\frac{n}{2},\frac{n}{2}} + e$ is a spanning subgraph of G, where e is an edge. Hence $M_1 \leq \frac{1}{2}n - 2$.

Case 2. $d(v_i) < \frac{n}{2}$ for any $i \in \{1, 2, \dots, r\}$. Then Ore's condition gives $v_k v_j \in E(G)$ for any $k, j \in \{1, 2, \dots, r\}$ with $k \neq j$. Furthermore, $G[R] \cong K_r$. Hence $r \leq 2$.

Combining the two cases with G_1 and G_2 , the theorem is true.

3. THE DISTANCE TWO CONDITION

In this section we consider the problem of vertex 3⁻-pancyclicity and the number of 3⁻-pancylic vertices in graphs satisfying the distence two condition.

Theorem 7. Let G be a graph of order $n \geq 5$. If $d(u) + d(v) \geq n + 1$ for any $u, v \in V(G)$ with d(u, v) = 2, then G is vertex 3⁻-pancyclic.

Proof. By Corollary 3, every pair of distinct vertices are joined by paths of length 4 to n-1 inclusive. Hence adjacent vertices must lie on t-cycles for $5 \le t \le n$. We now only have to show that any vertex of G lies on a 4-cycle. Since G

is hamiltonian, let $v_1v_2\cdots v_nv_1$ be a hamiltonian cycle. Suppose that v_n is on no 4-cycle. Then for all k such that $3 \le k \le n-1$, at most one of v_2v_k , v_kv_n is in E(G). Hence $d(v_2) + d(v_n) \le (n-3) + 1 + 1 = n-1$. By the conditions on G, this implies $v_2v_n \in E(G)$. Replacing v_2 and v_n by v_1 and v_{n-1} similarly $v_1v_{n-1} \in E(G)$. So the 4-cycle $v_1v_2v_nv_{n-1}v_1$ esists in G. This contradiction shows that v_n , and hence any vertex, lies on a 4-cycle.

Unfortunately the conditions of the last theorem are not sufficient to imply vertex pancyclicity. The graph of Figure 2 satisfies the conditions of Theorem 7 but the vertex v_7 does not lie on a 3-cycle. In this graph vertices v_1, v_2, v_3, v_5, v_6 are adjacent to all vertices of K_{n-6} where $n \geq 7$.

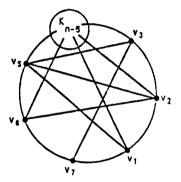


Figure 2.

Consider all graphs G with the property that for $u, v \in V(G)$ and d(u, v) = 2, $d(u) + d(v) \ge n + 1$. Let M_2 denote the maximum number of 3⁻-pancyclic vertices in a graph with the above property.

Theorem 8.
$$M_2 = \left[\frac{1}{2}(-3 + \sqrt{11 + 2n})\right].$$

Proof. Consider the graph F with $V(F) = A \cup \left(\bigcup_{i=1}^r B_i\right) \cup D$, where $F[A] = K_r^C$, $F[B_i] = K_{r+2}^C$ for all i and $F[D] = K_{r^2+3r-1}$. Further $N(v_i) = B_i$ for all $v_i \in F[A]$ and each vertex of $\bigcup_{i=1}^r B_i$ is joined to every vertex in D.

We note that $d(v_i) = r + 2$ for all $v_i \in A$, $d(w_j) = r^2 + 3r$ for all $w_j \in \bigcup_{i=1}^r B_i$ and $d(z) = 2r^2 + 5r - 2$ for all $z \in D$. Clearly $n = |V(F)| = 2r^2 + 6r - 1$.

It is easily checked that F satisfies the distance two condition and that the vertices of degree r+2 are 3⁻-pancyclic. Now $r=[\frac{1}{2}(-3+\sqrt{11+2n})]$. So $M_2=[\frac{1}{2}(-3+\sqrt{11+2n})]$.

Let G satisfy the distance two condition. Let $R = \{v_i : i = 1, 2, \dots, r\}$ be the set of 3-pancyclic vertices in G. Assume without loss of generality, that $d(v_i) \geq d(v_j)$ for $i \leq j$. The remainder of the proof now proceeds in four steps.

Step 1. $d(v_i) < \frac{1}{2}n$. Suppose $d(v_i) \ge \frac{1}{2}n$ and let $w_i \in N(v_i)$. By Theorem 2, there is a hamiltonian cycle containing $v_i w_i$. If $d(w_i) > \frac{1}{2}n$, then $d(v_i) + d(w_i) \ge n+1$. By Theorem 4, v_i is pancyclic. Hence $d(v_i) \le \frac{1}{2}n$. Indeed, for all $w_i \in N(v_i)$, we have $d(w_i) \le \frac{1}{2}n$. Since G is hamiltonian, $d(v_i) \ge 2$. Take $u, v \in N(v_i)$. Since v_i is not on a 3-cycle, d(u,v) = 2. From above we see that $d(u) + d(v) \le n$ and so $uv \in E(G)$. However, this gives the 3-cycle vv_iuv in G. The contradiction shows that $d(w_i) < \frac{1}{2}n$.

Step 2. $v_iv_j \notin E(G)$. Assume that $v_iv_j \in E(G)$ and let $w_i \in N(v_i)$. Clearly $w_i \notin N(v_j)$ since v_i and v_j are not 3-cyclic. Hence $d(w_i, v_j) = 2$ and $d(v_i) + d(w_i) \ge d(v_j) + d(w_i) \ge n + 1$. But this implies that $N(v_i) \cap N(w_i) \ne \Phi$ and so v_i lies on a 3-cycle. Hence $v_iv_j \notin E(G)$.

Step 3. $N(v_i) \cap N(v_j) = \Phi$ and if $w_i \in N(v_i)$, then $N(w_i) \cap N(v_i) = \Phi$. Let $w_i \in N(v_i)$. If $w_i \in N(v_j)$, then $d(v_i, v_j) = 2$ so $d(v_i) + d(v_j) \ge n + 1$. However, by Step 1 we know that $d(v_i) + d(v_j) < n$. Hence $N(v_i) \cap N(v_j) = \Phi$. Now since v_i is 3⁻-pancyclic, $N(v_i) \cap N(w_i) = \Phi$, so $d(v_i) + d(w_i) \le n$. If $N(w_i) \cap N(v_j) \ne \Phi$, then $d(w_i, v_j) = 2$, so $d(w_i) + d(v_j) \ge n + 1$. However, $d(w_i) + d(v_j) \le d(w_i) + d(v_i) \le n$. Consequently $N(w_i) \cap N(v_j) = \Phi$.

Step 4. $r \leq [\frac{1}{2}(-3+\sqrt{11+2n})]$. Let $z \in V(G) \setminus [\bigcup_{i=1}^r \bar{N}(v_i)]$. Such a z exists since G is connected. Let $|N(v_i)| = s_i$, $|\bigcup_{i=1}^r N(v_i)| = s$ and $t = |V(G) \setminus [\bigcup_{i=1}^r \bar{N}(v_i)]|$. Then for some v_i , $r+s+t+1=n+1 \leq d(z)+d(v_i) \leq [s+(t-1)]+s_1$. Hence $s_1 \geq r+2$ and $s \geq r(r+2)$. Further, for w_i , $w_{i'} \in N(v_i)$, $r+s+t+1=n+1 \leq d(w_i)+d(w_{i'}) \leq 2t+2$. Hence $t \geq s+r-1$. So $n=r+s+t \geq 2s+2r-1 \geq 2r^2+6r-1$. This implies that $r \leq [\frac{1}{2}(-3+\sqrt{11+2n})]$. Hence $M_2 \leq [\frac{1}{2}(-3+\sqrt{11+2n})]$.

Combining the two inequalities for M_2 we complete the proof of the theorem. \diamondsuit Note that $M_2 = 0$ for $n \le 6$. However, if $r \ge 1$ then, from Step 4 of the proof, $s_1 \ge 3$ and $t \ge 3$. Hence $n \ge 7$.

We note that combining, in some sense Ore's condition and the distance two condition reduces the maximum number of 3⁻-pancyclic vertices.

Theorem 9. Consider the set of graphs of order $n \geq 5$ for which $d(u) + d(v) \geq n + 1$ for all u, v such uv is not an edge. Then the largest number of 3^- -pancyclic vertices, M_3 , in a graph of this set is one.

Proof. Let v_1, v_2 be 3⁻-pancyclic vertices. Steps 1 and 2 of Theorem 8 still hold. By Step 2, $d(v_1) + d(v_2) \ge n + 1$ but by Step 1, $d(v_1) + d(v_2) < n$. This contradiction shows that $M_3 \le 1$.

The graph F of Theorem 8 with r = 1, shows that $M_3 \ge 1$.

REFERENCES

- 1. J.A. Bondy, Pancyclic graphs I, J. Combinatorial Theory Ser. B., 11 (1971), 80-84.
- 2. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- 3. Cai Xiao-Tao, On the panconnectivity of Ore graph, Sci. Sinica 27 (1984), 684-695.
- 4. Cai Xiao-Tao, A short proof for the Faudree-Schelp Theorem on path connected graphs, J. Graph Theory, 8 (1984), 109-110.
- 5. Geng-Hua Fan, New sufficient conditions for cycles in graphs, J. Combinatorial Theory Ser. B., 37 (1984), 221–227.
- 6. R.J. Faudree and R.H. Schelp, Path connected graphs, Acta Math. Acad. Sci. Hungar., 25 (1974), 313-319.
- E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs,
 J. Combinatorial Theory Ser. B., 45 (1988), 99-107.

Zhang Ke Min Department of Mathematics, Nanjing University, Nanjing, 210008, People's Republic of China

D.A. Holton and Sheng Bau Department of Mathematics and Statistics University of Otago, Dunedin, New Zealand