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Abstract 

Let G be a simple graph of order n with connectivity k 3 2, independence number cc We prove 
that if for each independent set S of cardinality k+ 1, one of the following condition holds: 
(1) there exist u # v in S such that d(u) +d(v) > n or ) N(u)nN(v) I> cr; (2) for any distinct pair 
u and u in S, )N(u)uN(v)J>,n-max{d(x))x~S}, then G is Hamiltonian. Many known results on 
Hamiltonian graphs are corollaries of this result. 

1. Introduction 

This paper uses terms and notation of [l]. Throughout, G denotes an undirected 

connected simple graph of order n( 2 3) with connectivity k and independence number 

CC Let L be a subset of V(G), F a subgraph of G and u a vertex in G. Define 

N,(v)={uluEL, u=E(G)}, N,(F)= Uvc~w N,-(V). For the special case when 

L= V(G), we simply write N(u) and N (F). If no ambiguity can arise, we sometimes 

write F instead of V(F). Let SC V, define A (S)=max(d(u)l UES}. 

It is well known that there are many sufficient conditions of Hamiltonian graphs, 

which are divided into various types. Degree conditions are a fundamental type. The 

inspiration for this development was the classical result of Ore [7] 

Theorem 1.1 ([7]). Let G be a graph of order n3 3. If for every pair of nonadjacent 

vertices u and v, d(u) +d(v)an, then G is Hamiltonian. 
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Neighborhood conditions are also a type, which begin with the result obtained by 

Faudree et al. [IS]. 

Theorem 1.2 ([S]). Let G be a 2-connected simple graph of order n( 2 3). If for every 
pair of nonadjacent vertices u and U, ) N(u)uN(v)) 3(2n- 1)/3, then G is Hamiltonian. 

Chvatal and Erdiis’s Theorem [4] is another type. 

Theorem 1.3. Let G be a simple graph of order n > 3 with connectivity k and indepen- 
dence number a. Zf cx< k, then G is Hamiltonian. 

Using an idea of ‘or’, we combine these conditions to obtain the following result. 

Theorem 1.4. Let G be a 2-connected simple graph of order n( b 3) with connectivity 
k and independence number of a. Iffor every independent set S of cardinality k + 1, one of 
the following conditions holds: 

(1) there exist u#u in S such that d(u)+d(v)>n or ]N(u)niV(v))~a; 
(2) for any distinct pair u and u in S, ) N(u)uN(v)) 2 n-d(S), 

then G is Hamiltonian. 

It is easy to prove that Theorem 1.4 is stronger than the first three theorems listed 

above, and Theorem C in [2] is a corollary of this theorem. On the other hand, there 

are a lot of Hamilton graphs which do not satisfy conditions of the first theorems 

listed above, but satisfy the condition of Theorem 1.4. An example is depicted in Fig. 1, 

where G1 and Gz are complete graphs with 1 V(GI)J=rl, 1 V(G,)I=r, and rI>r,>4; 
x1 is not adjacent to x2; dG1(yl)=rI, dc2(yz)=rz. In addition, for each vertex, 

XE V(G,), do,(x)>3, and for each vertex XE Y(G,), do,(x)>3. We denote the graph by 

G,. Clearly tc(G,)=k=2, a(G,,)=a=& d(u,)+d(u,)=lO<n and ]N(ul)uN(n2)J=5. 

Hence G, does not satisfy conditions of Theorems 1.1-1.3. But for any independent set 

S of cardinality 3 in G,, if )Sn{u,,u2,u3})>2, then S satisfies condition (1) of 

Fig. 1 
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Theorem 1.4. For any other S, by A(S)=max{d(u) 1 UES} and a simple calculation, 

it is easy to obtain that S satisfies condition (2) of Theorem 1.4. For example, for 

S={wz,yl,z}, where w2eV(G2) and ~~V(G~uG~)u~y,,y,,u,,u~,~~}, it is clear that 

d(w2)=r2+dc,(w2) and d(y,)=r,+3. By A(S)=d(w,) or d(yi), respectively, we 

obtain that S satisfies condition (2) of Theorem 1.4. Thus, G, satisfies the condition of 

Theorem 1.4 

Remark 1.5. In [6], Flandrin et al. have proved Theorem 1.6. 

Theorem 1.6. Let G be a 2-connected graph of order n such that 

d(u) + d(v) + d(w) > n + ( N(u)nN(v)nN(w) 1, 

for any independent set {u, u, w}, then G is Hamiltonian. 

Consider an independent set {ul, up, u3). We obtain that G, does not satisfy the 

condition of Theorem 1.6. On the other hand, Fig. 1 in [6] satisfies the condition of 

Theorem 1.4. 

Remark 1.7. In L-31, Chen and Schelp obtain the following result. 

Theorem 1.8. Let G be a simple graph with connectivity k = 2. Zf for each independent 
set S of order 3, s1 +2s2 + 2s3 >n- 1 holds, then G is Hamiltonian, where 

si=]{rEV(G)IN(v)nS)=i}I. 

Consider an independent set {ul, u2, u3 ).s,+2s2+2s,=10<n-Lthisimpliesthat 

Gi does not satisfy the conditions of Theorem 1.8. 

In the following section we prove Theorem 1.4 and in the last section we discuss 

a corollary. 

2. Proof of Theorem 1.4 

Let G satisfy the conditions of the theorem. If G is not Hamiltonian, let C be a cycle 

of maximum length in G, then I V(C) I <n. Let B be any component of G\ V(C), By 

c’ we denote the cycle with a given orientation. Let u, UE I’(C). By uC?v we denote the 

consecutive vertices on C from u to u in the direction specified by c’. The same vertices, 

in reverse order are given by veu. We will consider uc’v and VCU both as paths and as 

vertex sets. We use uBv to denote a path from u via B to v. We use uf to denote the 

successor of on c’ and u- to denote its predecessor. We write u+ + instead of (u’ )’ and 

U -- instead of (u-)-. Let SST/(C), define S+={x+lx~S} and S-(x-JxES}. Put 

Nc(B)={u1, u2, ..*, II,,,}, where Vi occurs on c’ in the order of their indices. Clearly, 

rn> k>2. We write N:(B) instead of (NC(B))’ and N&B) instead of (NC(B))-. For 

any j(1 < j<m), Let xj be any vertex in B which is adjacent to Uj. it is possible that 

Xi = Xj for i #j. 
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Claim 2.1. For any XE V(B), N,+(B)u{x} and NC (B)u{x} are independent, andfor any 

u, =N,t(B)u{ } x or N;(B)u{x}, N(u)\V(C)=4 or N(u)\V(C)=4 or N(u) and N(u) 
are not connected in G- V(C). 

For anyj(1 <j,<m), Claim 1.2 implies vj’_i$N(af). Thus since C is a longest cycle 

and Vj~N(vf), thereexists a vertex Uj, UjEvi+_ 1 C’V,: such that Uj#N(vf), and Van 

for all VEU; Cvj. Put N= {ur, u2, . . . , u,}. Let x be a vertex in B. 

Claim 2.2. For any XEB, Nu(x] is independent. 

In fact, if there exist u, v~Nu{x} with uveE(G), then x${u, u> by the definition of N. 

Let u=ui, u= uj with i< j. The cycle 

UiUjeV~ U+ ~ViXiBxjVjeuf V; C’Ui 

is longer than C. This is a contradiction. 

Claim 2.3. For any u,v~Nu(x}, d(u)+d(v)<n and IN(u)nN(v)(<cc. 

Proof of Claim 2.3. It is clear that N(u)nN(v)_c V(C), since C is a longest cycle in G. In 

the following we always assume that N(u)nN(v)E V(C). If there are u, vENn{x}, 

d(u) + d(v) 2 n or 1 N(u)nN(v) 1 >/a, then by the proof of Claim 2.2 and Lemma 4.4.1 in 

Cl] (if d(u) + d(v) 3 n, then G is Hamiltonian if and only if G + uv is Hamiltonian), we 

can assume (N(u)nN(v)I 2~. 

If XE{U, v), then N(u)nN(v)c N,(B), Hence 

By Claim 2.2, this is a contradiction. 

If x$(u,v), 1 t - i, e u-u U=V/ with i< j. Let N(u)nN(v)=(yI, y,, . . . . yp}= Y. Then 

p 2-n. We prove that Y+u{x} is an independent set. Claim 2.2 implies Nn Y= qb. In 

fact, if there exsts y: E Y+ such that xy: EE(G). Without loss of generality, we assume 

y&v-, the cycle 

YtV~Y: XBXjVj~V' Vf MY, 

is longer than C. This is a contradiction. If there are y: , y: E Y + with s < t such that 

y: y:eE(G), by the symmetry, two subcases must be considered: (1) y:, y+~uCv; 

(2) y: E&V, y: EVCU. For each subcase, the cycle 

and the cycle 
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are longer than C. There are contradictions. Hence, Y+u{x} is an independent set in 

G. Note that ( Y + u(x) ( >,p + 1 >cr + 1 there is a contradiction. Claim 2.3 holds. q 

LetS=(u,,u,,..., ~,}andSj=SU{Xj}forl<jdm.ThenSjcN~{xj}andSjisan 

independent set of cardinality k + 1. By the conditions of Theorem 1.4 and Claim 2.3, 

for any U,VESj, IN(U)UN(V)J>n-Ll(Sj). Put tj=d(Sj). 

Claim 2.4. d(xj)<d(Sj)fir any j (Id j<m). 

If there exists xj~V(B) with d(Xj)=A(Sj), Consider u1,u2, we have 

(N(u,)uN(u,))nN(Nu V(B))=@ by the definition of N. This implies that 

IN(ul)uN(uz))dn-()BI+m)dn-tj-l, a contradiction. 

We know that A(S)>tj for any j, 1 < j<k, and by Claim 2.4, we can assume 

d(u,)=A(S)>t,. Then d(uZ)2tZ. Consider N(u2)uN(x2). By the conditions of 

Theorem 1.4, IN(u2)uiV(x2)l>,n-t2. 

Claim 2.5. Let v~N(u~)uN(x~). Then v$u,cv; and 

(1) ifv~v,&;, then ulv+&E(G); 

(2) zj-vEu:cu _ ;, then u,v-#E(G). 

Proof of Claim’ 2.5. If there exists VEV,~U; such that u,v+eE(G), then since 

ulv:$E(G), we have VEV:~U;. Hence by the definition of N,-(B), Van, and the 

cycle 

u,v+~u,v~v~u~~v~x~B~~v~~~~~~~~~ 

is longer than C, If there exists VEU:&; such that ulv- EE(G), and then when 

v~iV(x~), the cycle 

u,v-&~~u~&~,x,Bx&~ 

is longer than C; when vcN(u,), VEV:&, and the cycle 

u,v-~v~u~~v,x,Bx,v,~u~v~~uZv~~~ 

is longer than C. These are contradictions. Claim 2.5 holds. 0 

We define a bijectionf on N(u2)u{x2} as follows: Let u~N(u~)uN(x~), 

I 
U for u.$ V(C), 

‘(‘)= 

+ for u~u,Cu;-, 

z, for u=u- 2, 

U- for UEU: Eu-. 

From the previous arguments and Claim 2.5, for any u~~(AJ(u~)ur\r(x,)), we have 

uul$E(G). Note that x2~f(N(u2)uN(x2)) and x2u14E(G), and we obtain 

t2~d(u~)dn-~I(u2)uN(x2)l-IQt2-1, 

a contradiction. Therefore, Theorem 1.4 holds. 0 
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3. A corollary 

Theorem 1.4 can deduce many sufficient conditions for Hamiltonian graphs, one of 
them is the following corollary. 

Corollary 3.1. Let G be a simple graph of order n( 23) with connectivity k>2. rf 
for each independent set S of cardinality k+ 1, and any distinct pair u and v in S, 

1 N(u)uN(v) 12 n-A(S), then G is Hamiltonian. 

Take a complete graph K, _k and attach k independent vertices X = {x1, x2, . . . , xk} 

of min{d(x)IxEX}=k and for any u,v~X, (N(u)uN(v)I=k+l, and there exists 
a vertex XE ?‘(I&,), x is nonadjacent to all vertices in X. We denote the graph by 
G(k). Let XEY\N(X), then S=Xu{x} is an independent set with A(S)=n-(k+l). 
For any u, VEX, I N(u)uN(v)l= k+ 1 =n- A(S). This implies that G(k) satisfies the 
condition of Corollary 3.1, thus, G(k) is Hamiltonian. However, IN(u)uN(v)(= 
k+ 1 <n-max{d(u), d(v)}, this implies that G(k) does not satisfy the condition of 
Corollary 2 in [6]. Moreover, for k > 3, n zz 3k+4 and any u, v, WEX, 
d(u)+d(v)+d(w)<3k+3 <n+IN(u)uN(v)uN(w)). This implies that G(k) does not 
satisfy the condition of Theorem 1.6. 
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