Note

Complementary cycles containing a fixed arc in diregular bipartite tournaments

Ke Min Zhang ${ }^{\mathbf{a}, *, 1}$, Yannis Manoussakis ${ }^{\mathbf{b}, \mathbf{2}}$, Zeng Min Song ${ }^{\mathbf{c}, 1}$
${ }^{2}$ Department of Mathematics, Nanjing University, Nanjng, China
${ }^{\text {b }}$ University of Orsay, L.R.I. Bât 49091405 Orsay cedex. France
${ }^{\text {c }}$ Department of Mathematics, Southeast University, Nanjing, China

Received 4 January 1988; revised 18 October 1991

Abstract

Let (x, y) be a specified arc in a k-regular bipartite tournament B. We prove that there exists a cycle C of length four through (x, y) in B such that $B-C$ is hamiltonian.

1. Introduction

A pair of vertex-disjoint cycles are called complementary if they span the vertex-set of graph. Complementary cycles in bipartite tournaments were discussed in [5] and [6]. In [5], nearly regular bipartite tournaments were studied, and in [6], two of the authors of this paper investigated complementary cycles containing a pair of specified vertices in regular bipartite tournaments. In this note, we prove that if B is a k-regular bipartite tournament and (x, y) any specified arc of B, then there exists a cycle C of length four through (x, y) in B such that $B-C$ is hamiltonian. Related conjectures are proposed at the end of Section 2.

We let in what follows $B(X, Y, E)$ denote a bipartite tournament with bipartition (X, Y), vertex set $V(B)=X \cup Y$ and arc set $E(B)$. If A and L are vertex-joint subsets of $V(B)$, we write $A \rightarrow L$ if every arc of B between A and L goes from A to L. Moreover, $\Gamma^{+}(A)$ (resp. $\left.\Gamma^{-}(A)\right)$ denotes the set of vertices of $B-A$ which are dominated by (resp. dominate) at least one vertex of A. If $A=\{x\}$, we write $\Gamma^{+}(x)$ (resp. $\left.\Gamma^{-}(x)\right)$ instead of

[^0]$\Gamma^{+}(A)$ (resp. $\left.\Gamma^{-}(A)\right)$. A bipartite tournament is k-regular if for every vertex x of B we have $\left|\Gamma^{+}(x)\right|=\left|\Gamma^{-}(x)\right|=k$. A 1 -factor of B is a spanning regular subgraph of B with indegree and outdegree one. It is well-known that B has a 1-factor, if and only if it contains a perfect matching from X to Y and from Y to X in B. We let $F_{4 k}$ denote the k-regular bipartite tournament consisting of four sets K, L, M, N each of cardinality k, and all possible arcs from K to L, from L to M, from M to N and from N to K.

The following results of [1-4] are used in Section 2.
Theorem 1.1 (Häggkvist and Manoussakis [2] and Manoussakis [3]). Any bipartite tournament is hamiltonian if and only if it has a 1 -factor and is strong.

Lemma 1.2 (Häggkvist and Manoussakis [2] and Manoussakis [3]). Let B be a bipartite tournament containing a 1 -factor, B is not strong if and only if there exists a 1 -factor consisting of cycles $C_{1}, C_{2}, \ldots, C_{m}, m \geqslant 2$ such that $C_{1} \rightarrow C_{j}$ if $i<j$.

Theorem 1.3 (Amar and Manoussakis [1], Manoussakis [3] and Wang Jian Zhong and He Shu Quang [4]). Let B be a k-regular bipartite tournament and let (x, y) be any arc of B. There are cycles of all even length $m, 4 \leqslant m \leqslant 4 k$, through (x, y) unless B is isomorphic to $F_{4 \mathrm{k}}$.

2. Main results

In this section we prove the following theorem.
Theorem 2.1. Let B be a k-regular bipartite tournament and (x, y) any arc of B. There exists a cycle C of length four through (x, y) such that $B-C$ is hamiltonian.

Proof. Let $\mathrm{C}: x \rightarrow y \rightarrow w \rightarrow z \rightarrow x$ be any cycle of length four through the $\operatorname{arc}(x, y)$ in B. Such a cycle exists by Theorem 1.3 , if B is not isomorphic to $F_{4 k}$; Otherwise it is very easy to find such a cycle. Put $R=B-C$. Firstly we have to prove the following claim.

Claim. There exists a cycle C of length four through (x, y) such that R has a 1-factor.
Proof of the claim. Assume that for any cycle C of length four through $(x, y), R$ has no 1-factor. It follows from a well-known theorem of König-Hall on matchings (see, for example, C. Berge, Graphs and Hypergraphs) that there exists a subset P either of $X-\{x, w\}$ or of $Y-\{y, z\}$ such that $|P|>\left|\Gamma^{+}(P)\right|$. Assume without loss of generality that $X-\{x, w\} \supseteq P$. Put $\Gamma^{+}(P)=Q, M=X-(P \cup\{x, w\})$ and $L=Y-(Q \cup\{y, z\})$. Since B is k-regular, $k \geqslant|P|>|Q| \geqslant k-2$. We consider the following three possible cases:
(i) $|P|=k$ and $|Q|=k-2$. By using regularity on degrees, we can see that $P-Q \cup\{y, z\}$. It follows that $\left|\Gamma^{-}(y)\right|=|P|+1$, a contradiction.
(ii) $|P|=k$ and $|Q|=k-1$. As in (i), notice that $L \rightarrow P$ and $M \cup\{x, w\} \rightarrow L$. Consider now a vertex p in P such that both the $\operatorname{arcs}(y, p)$ and (p, z) are present in B. Such a vertex exists, since it follows from the regularity on degrees that $\Gamma^{+}(y) \cap \Gamma^{-}(z) \cap P \neq \emptyset$. Put $C^{\prime}: x \rightarrow y \rightarrow p \rightarrow z \rightarrow x$ and $R^{\prime}=B-C^{\prime}$. We have to prove that R^{\prime} has a 1 -factor. In particular, we have to prove that there is no subset P^{\prime} of $X-\{x, p\}$ (the proof for $Y-\{y, z\} \supseteq P^{\prime}$ is similar) such that $\left|P^{\prime}\right|>\left|\Gamma^{+}\left(P^{\prime}\right)\right|$. Namely, if P^{\prime} has k vertices, then both $P^{\prime} \cap(P-p) \neq \emptyset$ and $P \cap(M \cup w) \neq \emptyset$ hold and therefore $\left|P^{\prime}\right| \leqslant\left|\Gamma^{+}\left(P^{\prime}\right)\right|$. If on the other hand, the cardinality of P^{\prime} is $k-1$, then, once more, we may easily verify that $\left|P^{\prime}\right| \leqslant\left|\Gamma^{+}\left(P^{\prime}\right)\right|$.
(iii) $|P|=k-1$ and $|Q|=k-2$. We have $P \rightarrow Q \cup\{y, z\}$ and $L \rightarrow P$. Find, as above, a vertex p in L such that both the arcs (w, p) and (p, x) are present in B. Consider the cycle $C^{\prime}: x \rightarrow y \rightarrow w \rightarrow p \rightarrow x$. Put $R^{\prime}=B-C^{\prime}$. We have to prove that R^{\prime} has a 1 -factor. Let P^{\prime} be defined as in case (ii). If P^{\prime} has k vertices, we find cases (i) and (ii). Assume that the cardinality of P^{\prime} is $k-1$. In this case, notice that $P^{\prime}=M$, and therefore there exists a vertex g in L which is dominated by no vertex of P^{\prime}. It follows that $\left|\Gamma^{+}(g)\right|=|P|+|M|=2 k-2$, a contradiction for $k>2$. Assume $k=2$. In this particular case we have $Q=\emptyset$. Furthermore, g is dominated by both x and w. However this is another contradiction, since it follows that the outdegree of w is three. This completes the proof of the claim.

Proof of Theorem 2.1 (Conclusion). Let now C and R be as they are described in the above claim. If R is strong, we have finished by Theorem 1.1, so assume that it is not the case. It follows that $k \geqslant 3$. If $k=3$, then R consists of two cycles $C_{1}: 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ and $C_{2}: 5 \rightarrow 6 \rightarrow 7 \rightarrow 8$, each of length four, such that $C_{2} \rightarrow C_{1}$, by Lemma 1.2. Now by studying conditions on degrees, we can see that $C_{2} \rightarrow C$ and $C \rightarrow C_{1}$ in B. Consequently, the cycles $x \rightarrow y \rightarrow 1 \rightarrow 8 \rightarrow x$ and $z \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow w \rightarrow 2 \rightarrow 7 \rightarrow z$ are desired. Assume, therefore, that $k \geqslant 4$. Let $C_{1}, C_{2}, \ldots, C_{m}, m \geqslant 2$, be cycles of R, as given in Lemma 1.2. Let the length of C_{i} be n_{i}. Now, if $n_{1} \leqslant n_{2}+\cdots+n_{m}$, we can see that there exists a vertex r in C_{1} such that $k=\left|\Gamma^{+}(r)\right| \geqslant n_{1} / 4+\left(n_{2}+\cdots+n_{m}\right) / 2 \geqslant$ $\left(n_{1}+n_{2}+\cdots+n_{m}\right) / 4+\left(n_{2}+\cdots+n_{m}\right) / 4 \geqslant(n-4) / 4+(n-4) / 8$, a contradiction for $k \geqslant 4$, since $n=4 k$. On the other hand, if $n_{1} \geqslant n_{2}+\cdots+n_{m}$, then using similar arguments, we obtain a contradiction by considerng $\left|\Gamma^{-}(r)\right|$, where r is now a vertex of C_{m}. This completes the proof of the theorem.

We conclude this paper with some conjectures which could extend Theorem 2.1 and the theorem of [6].

Conjecture 2.2. Let B be a k-regular bipartite tournament, $k \geqslant 2$ on n vertices. If B is not isomorphic to $F_{4 k}$, then there are complementary cycles of all possible lengths in B.

Conjecture 2.3. Let B be a k-regular bipartite tournament, $k \geqslant 2$, on n vertices and let (x, y) be any specified arc of B. If B is isomorphic neither to $F_{4 k}$ nor to some other
specified families of digraphs, then there are complementary cycles C and C^{\prime} of all possible lengths in B, and C goes through the arc (x, y).

Conjecture 2.4. Let B be a k-regular bipartite tournament, $k \geqslant 2$, on n vertices and let x, y be two specified vertices of B. If B is isomorphic neither to $F_{4 k}$ nor to some other specified families of digraphs, then there are complementary cycles C andc C^{\prime} of all possible lengths in B such that C contains x (resp. C^{\prime} contains y).

Obviously, Conjectures 2.3 and 2.4 are stronger than Conjecture 2.2. Furthermore, Conjectures 2.3 and 2.4 do not imply each other. Notice also that a support for these conjectures could be obtained from Theorem 2.1 and the theorem of [6].

References

[1] D. Amar and Y. Manoussakis, Cycles and paths of many lengths in bipartite digraphs, J. Combin. Theory Ser. B 50 (1990) 254-264.
[2] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 51-56.
[3] Y. Manoussakis, Thesis, University of Orsay, 1987.
[4] Wang Jian Zhong and He Shu Quang, On arc-pancyclicity of regular bipartite tournaments, Ke Xue Tongbao 1 (1987) 76.
[5] Z.M. Song, Complementary cycles in bipartite tournaments, J. Nanjing Inst. Tech. 18 (1988) 32-38.
[6] K.M. Zhang and Z.M. Song, Complementary cycles containing a pair of fixed vertices in bipartite tournaments, Appl. Math. (A Journal of Chinese Universities) 3 (1988) 401-407.

[^0]: * Corresponding author.
 ${ }^{1}$ Project supported by NSFC.
 ${ }^{2}$ Research partially supported by PRC Math Info.

