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In 1986, Shao [3] proved that the exponent set of symmetric primitive matrices is {1,2,...,2n — 2]\ S,
where S consists of all odd numbers among {n,n+1,...,2n —2}. This paper gives the complete
description of symmetric primitive matrices with exponent 2n — 2r (> n).

1. INTRODUCTION

An n x n nonnegative matrix 4 = (ay) is primitive if A¥ > 0 for some positive
integer k, the least such k being called the exponent of A and denoted by ~(A).
The associated graph of symmetric matrix 4, denoted by G(A4), is the graph with a
vertex set V(G(4)) = {1,2,...,n} such that there is an edge from i to j in graph
G(4) iff a; > 0. Hence G(A) contains loops if a; > 0 for some i. A graph G is
primitive if there exists an integer kK > 0 such that for all ordered pairs of vertices
i, j € V(G) (not necessarily distinct), there is a walk from i to j with length k. The
least such k is called the exponent of G, denoted by v(G). Clearly, A symmetric
matrix A is primitive iff its associated graph G(A4) is primitive. And in this case,
we have y(4) = v(G(4)). By this reason as above, we will use graph theory as a
major tool and consider y(G(A4)) to prove our result.

Let SE, = {k € Z" |k = y(4) for some n x n symmetric primitive matrix 4} be
the exponent set of n x n symmetric primitive matrices. In 1986, Shao Jiayu
proved that SE, is {1,2,...,2n—2}\S, where S consists of all odd numbers
among {n,n+1,...,2n—2}. In this paper, we give the complete description of
n X n symmetric primitive matrices with exponent 2n — 2r (> n). This result is a
generalisation of the result in [2], [3], where r = 1, 2.

Other notation and terminology not defined in this paper can be found in [1].

*This project supported by NSFC and NSFIJS.
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2. SOME LEMMAS ABOUT ~(G)

The exponent from vertex u to vertex v, denoted by y(u.v), is the least integer k
such that there exists a walk of length m from u to v for all m > k. We denote

Y(u, u) by v(u).
LemMa 13]  If G is a primitive graph, then v(G) = Max, ey (G) 7(u, v).
LemMma 2[3] G is a primitive graph iff G is connected and has odd cycles.

LemMA 3[2]  Let G be a primitive graph, and let u and v € V(G). If there are two
walks from u to v with lengths k| and k, respectively, where k) + k» = 1(mod 2), then
v(u,v) < Max{k;, k2} — 1.

LemMa 4 Let G be a primitive graph with order n (> 2r). If there are u,v € V(G)
such that v(u,v) = ¥(G) = 2n — 2r, and C is any order cycle in G, thenV [P, (u, v)]
NV(C) = @, where Puin(u,v) is a shortest path from u to v in G.

Proof Let P = Ppin(u,v) =vvy---v, (Where vo=u,v, =v) with V(P)N
V(C) # @, and let i = Min{s|v; € V(P)NV(C)},j=Max{s|v, € V(P)NV(C)},
(0 <i<j < m). Then v;,v; divide C into internally disjoint (v;, v;)-paths L; and L;.
Clearly, Qi = P(vo,v:) UL U P(v;,vm),k = 1,2, are two disjoint (u,v)-walks in G
with |Qi|+|Q2| = 1(mod2) and |Qx| <n. Thus by Lemma 3,n<2n-2r=
~v(u,v) < Max{|Q1],|02|} — 1 < n, a contradiction. [ |

Let G be a primitive graph with u,v € V(G) and kg = d(u,v), where d(u,v) is
the distance between u and v in G. Thus by Lemma 2, there is an (u, v)-walk with
length k' such that ko + k' = 1(mod 2). Let k= ky(u,v) = Min{k' |k + k' =
I(mod 2) and there is a walk of length &’ from u to v in G}. Then kj > k¢ and
ko + Kk}, = (mod 2). By Lemma 3, we have y(u,v) = k}(u,v) — 1.

Let G1,G, be two subgraphs of G. Puin(Gi,G,) denotes a shortest path
between G| and G,. Its length d(G1,G2) = Ming,ep(6,)/i=1,2d(v1,v2). If for
u,v€ V(G) and an odd cycle C in G, there is an x & V(C) such that
du,C) =d(u,x) and d(v,C)=d(v,x), then we define ~(u,v,C)=d(u x)+
d(v,x) +]C| - 1. For convenience, we denote ~(u,u,C) by ~(u,C). And let
¥(u) = Minj¢=i(mod 2) (¥, C).

LeMMA 5  Let G be a primitive graph with order n(> 2r). Suppose there are
u,v € V(G) such that v(u,v) =y(G)=2n—2r. Then for any odd cycle C in
G, v(u,v,C) is well defined. Furthermore, there is an odd cycle Cy in G such that
ko = ko(u,v) = v(u,v, Co) + 1. i.e. ¥(u,v) = y(u, v, Co).

Proof Let Cbean odd cyclein G. Let Py (u, C) with d(u,i) = d(u, C),i € C and
Prin(v, C) with d(v,j) =d{(»,C),j€ C. If I =V (Pnin(u, C)) NV {Prin(v,C)) =&,
then using an analogous proof of Lemma 4, produces a contradiction. So I # .
Let w € I such that the section P(w, i) of Pmin(u, C) satisfying V' (P(w,i)) NI = {w}.
Since Puin(t, C)(Pmin(v, C), resp.) is the shortest path from u(v,resp.) to C,|P(w, )|
must be equal to |P(w,j)|, where P(w,j) is the section of Ppin(v,C). Thus
|P(v,w) U P(w,i)| = d(v,C), where P(v,w) is section of Py, (v, C). Now, we change
Puin(v,C) to P(v,w)U P(w,i), and let x =i. Hence ~(u,v,C) is well defined.
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Furthermore, by the definition of kg, there is an (u, v)-walk Py (u, v) with length kj.
Since ko + kg = 1(mod 2), the symmetric difference Prin(u, v)APg (u,v) must be
contained an odd cycle Cy. By Lemma 4, we have Cy C Pk:0 (u,v). Thus
Y(u, v, Co) + 1 < |Py (u,v)| = kj. Hence by the definition of kg, ki = ko(u,v) =
~v(u, v, Co) + 1.

LEMMA 6 Let G be a primitive graph of order n (> 2r) with v(G) = 2n — 2r. Then
there exists a vertex u € V(G) such that y(u) = v(G).

Proof Suppose the lemma is false. Let m = min, yep(g){d(x, y)|7(x,y) = v(G)},
thus there exist u,v € V(G) such that ~v(u,v) =y(G) and m=d(u,v) > 0. Let
Py = Ppin(u,v) and let Cy be an odd cycle in G, thus d(Py, Cp) = ¢ >1 by Lemma
4. Now, we choose Py and Cy such that 2¢ + d as small as possible, where d = |Cy|.
Let P, = Pmin(P07 Co) = uply ---U;,, where ug € V(Po) and wu, € V(Co). Then
2n—2r = y(u,v) < y(u,v,Co) <m+2t+d—1. Hence we have ny =|V(G)\V
(POUPIUC0)|=n—(m+t+d) Sn—(2n—2r—t+1) <t-1.

If v(u, Cy) = ¥{G). By m > 0, there is an odd cycle C; in G such that y(u) =
v(u, C1) < ¥(G) < y(u, Cy). Let P} = Pmyin(u, C1) = uvyvs - - - v, Where v, € V(Cy).

Caskg 1 [V(P’l) U V(Cl)] n [V(P]) U V(C())] =®. We have Zd(P(), C1) + |C1| <
2P| +|Ci| <2mp+1<2(t—1)+1 < 2t+d.. This contradicts the choice of Py
and Cy;

CASE 2 V(P)NV(P)#®. Let we V(P))NV(P)). Thus ~(u) =~(u,Ci) =
2JuPiwl+ 2|wPiv| + |Ci| — 1 < 4(u, Co) < 2|uPiw| + 2|wPiu;| +|Co| — 1. Hence
we have 2|WPIIVSI+|C1|< 2|WP1M;|+|C0|. Thus 2|Pmin(P0,C1)| + IC1|S2|HOP1W|+
2{wP|vs|+ |C1| < 2|ugPyw|+2|wPu,| + |Co| = 2t + d. This contradicts the choice of
Py and Cy;

Case 3 V(P)NV(P)=2,V(C)NV(Cy) # ®. In this case, it is easy to see that
there is an odd cycle in Co U C; U Py U Py U P, which intersects the path Py This
contradicts Lemma 4.

Hence we can always assume that y{u, Cy) < 7(G). Using an analogous proof,
we have (v, Cy) < ¥(G). Thus v(G) = v(u, v) < y(u,v, Co) < d{u,Co) +d(v,Co)+
d —1=%(v(u, Co) +~(v,Co)) < ¥(G), a contradiction. Therefore m = 0, i.e. there
exists a vertex u € V(G) such that v(u) = v(G). [ |

3. THE MAIN RESULTS

Firstly, we define a class of graphs N, ,(G)(n > 2r > 2) as follows:

Let G* = (V*,E*) be a graph, where the vertex set V™ = Up<i<y V7 with
VinvV:=90<i<j<n-—r) and [V|=r(0<i<n-r), the edge set E” =
EfUE; with Ef ={uv|lucVi,veV; ,0<i<n—r—1}and E={uwv|u,veV,_,
and u, v are not necessarily distinct}. :

For any odd number 4 with 1 <d <2r—1, let t:n—%(2r+d~ y=n—r-—
%(d —1). When r > 2, we take two distinct vertices u;, uzq_2,+1—; in V(0 <i <
n —r), and put the path P, = upu, - - - u, and the cycle Cy = sty -+ - uprq-14;. Let
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Vid) =" (d) U V2(d), where Vi(d) = {uo, Uy, .oy Upye.. ,u,+d_1} and Vz(d) -
V\Vi(d) with |V2(d)| =r—3(d+1). Thus |V(d)| =n. The induced subgraph
G*[V(d)] of G* is denoted by G}.

The edge-induced spanning subgraph G[E(d)] of G is denoted by G4, where
E(d) =F (d) U E>(d), E|(d) = E(P,)U E(Cd),and Ez(d) - E(GZ)\El (d) such that
G, satisfies the following two conditions: (a) G, is connected, (b) There always be
d(x,Cy) <tin G, for any vertex x € K, where K is any component of Gd[Vz(d)]
with V(K) N V(C) = @ and C is any odd cycle in G,.

Now, we define N, ,(G) = | Nn,(d), where N,,(d) = | {Ga}.

1<d<2r-1 N "
d=1(mod 2) Gde{Gd }

THEOREM 1 Let G be a primitive graph with order n (> 2r), then v(G) = 2n — 2r iff
G € N,,,(G).

Proof Necessity. Let G be a primitive graph of order n > 2r with 4(G) = 2n — 2r.
By Lemma 6, there is an ug € V'(G) such that y(up) = v(G). By Lemma 5, there is an
odd cycle C; with the length d in G such that ~(up) = v(up, Cs). And let
d(ug, C4) = t. By Lemma 4, we have ¢ > 1. Thus v(up) = 2d(up, Cq) +1Cq| — 1 =
2t+d —1=2n—2r. Hence we have t =n—r —%(d —1). Let P, = Puin(uo, Ca) =
oty Uy, Ca== Uty + - Uppg—1ts, V(dY=V(P)UV(Cq)={ug,tu1, ..., thty. .., Usryd—1}
and V,(d) = V(G)\Vi(d), thus nj =|Vi(d)|=t+d and ny; = |Va(d)| =n—n =
n—t—d=r—31(d+1). Let E(d)=E(P)UE(C;) and E;(d) = E(G)\E(d).
Thus E(G) = E|(d) U E»(d).

Let X = {u|d(up,u) < n—r,u € V(G)}. If there is an odd cycle C in G[X], let
d(up,C) =5, thus s+1(|C|—1)<n-r. We have ~(u)<~(u,C)<
25+ |C| = 1=2(s+3(]C| — 1)) < 2n —2r = 4(G) = y(u), a contradiction. Hence
G[X] is a bipartite graph.

G is connected by Lemma 2. Let K be a component of G{V(d)] with
V(K)NV(C)=®, where C is any odd cycle in G. If there is an x € V(K) such
that d(x,Cyq) >t Since |V(K)|<m=t—-14+2r—n<t—LLNK)NV(Cs)=®
and ~(x,Cy) > v(uo,Cy) = v(up). On the other hand, by Lemma 1,
v{up) = 7(G) > ~v(x). Hence by Lemma 5, there always exist an odd cycle C' # C,
such that ~(x) = ~(x,C’} < v(up). By the hypothesis V(K)NV(C')=& and
N(K)YNV(Cy) =P, we have Pnin(x,C’) NP, # ®. Let y € Pyin(x,C’) N P,. Note
that d(x,Cy) >t implies d(x,y) > d(up,y). We then have ~(up)>y(x)=
¥(x,C") = 2(dx,C") +|C'|— 1 = 2d(x,y) + 2d(y, C") + |C'|— 1 > 2d(up, y) + 2d(y, C")
|C'| — 1> 2d(up, C')+ |C'| — 1 = y(up, C") > v(up), a contradiction. Therefore for
any x € V(K), we have d(x,Cy) < t.

Let X;={ulue X,deg(ug,u)=1i},0<i<n—r. 1If there 1is an edge
xy € E(G[X}]), let Py = Puin(uo, x) and Py, = Prin(u,,y) be two paths, then there is
an odd cycle in uyP,xyP,uy C G[X]. This contradicts G[X] being a bipartite graph.
Hence G[X;] is an empty graph for any i€ {0,1,...,n—r—1}. Note that
Xl <m+1=r—1(d+1)+1. So|X;| <r where i€ {0,1,...,n—r—1}. Hence
G[X] is a subgraph of G*[X]. On the other hand, {up,ui,...,un—r-1} C X, hence
|X| >n—r. Thus |X,—,|=|G\X|=n—|X|<n—(n—r)=r, and G*[V}_] is a
“complete” graph with a loop at every vertex. Therefore G is a subgraph of G}.
i.e. G € Ny, (d) C N, (G).
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Sufficiency. Let G = G € Np (d) C N,.,(G). Since G is connected and contains
odd cycles, G is a primitive graph by Lemma 2. Also |V(G)| = |V1(d)| + |Va(d)| =
t+d+(r-1@+1)=@n—-r-L(d-1)+d+(r-5(d+1)) =n In the follow-
ing, we divide into four steps the proof that v(G) = 2n — 2r.

1. y(up) =2n—2r.
Clearly, ~(uy,Cyq)=2t+d—1=2n—-2r. Let Xo={u|de(ug,u) <n-—r,
u € V(G)}. Tt is easy to check that G[X,] does not contain any odd cycle
since G = G4 € N, ,(d). If there is an odd cycle C in G such that y(u, C) <
2n —2r. i.e. 2d(up, C) + |C| — 1 < 2n—2r. Thus d(up, C) +3(|C| = 1) <n—r.
This implies that ¥ (C) C X,. Hence C is an odd cycle in G[Xy), a contradiction.
So v(uw) = 2n — 2r.
Let B = {K|K isa component in G[V>(d)] and there is an odd cycle C in G such
that V(K) N V(C) # &}, X} = UkesV(K) and X| = V2 (d)\ X5.

2. If u,v € Vi(d)U X7, then y(u,v) < 2n —2r.
By the condition (b) of the construction of G,, we have that y(u,v) <
Y(u,v,Ca) < d(u,Cq) +d(v,Cq) + |Cg| — 1 <2t +d — 1 =y(uo) = 2n - 2r.

In the following, without loss of generality, we always assume that: v € Xj.
Thus there is a component K € B so that v € V(K).

3. EN(K)NV(Cy) # @, then y(u, v) < 2n —2r.
If u € V1(d) U X], by the construction of G,, we have d(u,C4) <t, and note
that d(v,Cs) < |X}| <r—4(d+1)<t—1; If ucX;, we have d(u,Cs)+
d(v,Cy) < Max{2|X}|,|X5| + |V (P)|} = |X5| + |V (P;)|. Thus we always have
d(u,Cyq) + d(v,Cy) <2t — 1. Hence v(u,v) < v(u,v,Cq) < d(u,Cg) +d(v,Cy)
+d-1<2t+d-2<2n-2r.

4. If N(K)NV(Cy) = @, then y(u,v) <2n—2r.
By the definition of K, there is an odd cycle C in G such that F(K) N V(C) # &.
Let Py = Ppin(u, C) be a shortest path from u to C in G and let P, = Prin (v, C)
be a shortest path from v to C in K. If P; and P are internally disjoint paths in
G, then using analogous proof of Lemma 4, we have y(u,v) < 2n — 2r. In the
following, we assume that P; and P; internally intersect each other.
If u € K, thus since P, is a shortest path in G and C contains at most d — 1
edges in Cy |X5NV(C)| >3(IC]—d). Thus we have: |[V(K)\V(C)| <
|X5\V(C)| < t~1-1(|C| — d). Hence we have y(u,v) < y(u,v,C) < d(u,C) +
d(v,C) +1C| =1L 2V (K\V(O)| +|C] = 1< 2(t = 1 = 3(|C] = d)) +|C| - 1=
2+ d—3<2n—2r '
If u € K, thus P must intersect P;. Along Pifrom u to C, u; and u; are denoted
the first and the last intersections of P, respectively.

41.V(IC)NV(P)#®. Let P|=P|(u,C)=uPuP,C. Clearly V(P)U
V(K) = ®. Hence P| and P, are internally disjoint paths in G. Thus by
the proof of above, we have y(u,v) < 2n — 2r.

42.V(C)NV(P) =&. Le. V(C) C V(K) since N(K) N V(Cy) = ®.

Since P, and P, are the shortest paths in G, |uPiy| = |uPuy| = |i —jI.
Hence, in the following, we always assume that u;Pu; = u;Pu;. And along
P, from v to C, vy is denoted the first intersection on P;. Note that at this
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case vo must be on ;P1C C KU {u;}. Since vP1C and vwP,C are the
shortest paths from vy to C in K, |wp1C| = |wP2C|. Hence, in the
following, we always assume that wP,C = voP1C too. If d(v,v)+
d(vo,u;) + d(u,u;) < i+j, thus we have vy(u,v) < v(u,v,Cq) < d(u, Cq) +
d(v,Cy) +d —1 < d(u,u;) + d(u;, Cg) + d(v,vo) + d(vo,u;) + d(u;, Ca)+
d—1<i+du,Cs) +j+d(u;,Cq) +d—1=(up) =2n—2r. Hence in
the following we assume that d(v, vo) + d(vo, 4;) + d(u,u;) > i+ j + 1. Note
that d(v, C) + |C| + d(uj, vo) — 1 + d(u,u;) < |V2(d)| <t —1and d(v,C) =
d(v,v) + d(vo, C). Thus we have d(vy,C) <t —1—(i+j)—|C|. There-
fore Y(u,v) < v(u, v, C) < d(u, C) + d(v, C) + |C| — 1 < d(u, u;}+
d(w;, ) + d(uj, vo) + d(v, C) +d(»,C) + |C| =1 < t—1+|i—j|+
(t—1—i—j—|C|)=2t—|C|=2— (i+j—i—j|) < 2n—2r.

Up to now, we have exhausted all possible cases and get that v(G) = 2n — 2r.
Therefore the proof of the Theorem is completed. u

Using the connection between the exponent of a matrix and the exponent of a
graph stated above, by Theorem 1, we have:

THEOREM 2 Let A be a symmetric primitive matrix with order n(>2r), then
’)’(A) =2n-—2r lﬁG(A) c Nn,r(G).
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