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In this paper, we consider the generalized Ramsey number R(Tp, K1,q,," " v Ki,q0)
and its lower and upper bounds. Furthermore, we obtain some Ramsey numbers
in special cases.

1. Introduction

Let Gi,Ga, - ,Gy be simple graphs. The generalized Ramsey number
R = R(G,,Ga, --,Gy) is the smallest integer such that if the edges of a
complete graph K, with n > R are painted arbitrarily with & colours, then
the i-th coloured subgraph contains G; as a subgraph for at least one i. Let T},
K, p-1, Kp denote a tree, a star and a complete graph of order p, respectively.

Below are some known results about Ramsey numbers of stars or trees.

t
THEOREM A ([1]). Let R(Ki1,4,, - ,K1,q) =R and £ = ) (g — 1). Then,

i=1
(i) R=X+2 i X is odd;
(i) R=X+2if X is even and ¢; (i = 1,2,---,1) are odd;
(iii) R =X+ 1 if T is even and there exists i € {1,2,--- ,t} such that g; is
even.

THEOREM B ([3]). Let p > 1. Then,

(i) R(Tp,K14q) =p+q—-11fqg=1 (mod p — 1),
(i) R(Tp, K1q) Sp+q-1.

THEOREM C ([2]). Let T, be a tree with a vertex of degree one adjacent to a
vertex of degree two. Then

R(Tp, K1 q)=p+q—2
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provided that one of the following four conditions holds:
¢g=0,2 (modp-1),
gZ1 (modp-1)andq>(p-3)?,
qZ1 (modp-1)andq=1 (modp-2),
orq=p—2 (modp—-1)andqg>p-2.

Up to date ([5]), R(Ty, K)1,q) is still not known in general. In this paper
we study the generalized Ramsey number R(Tp, Ki 4., K1,45,"* , K1,4,)-

2. The Lower Bounds
First, we need the following Lemmas :

LEMMA 1 ([4]). Let G = Kn n,... n be a l-partite complete graph. If In is odd
and ! > 2, then G is 2-factorable.

LEMMA 2 ([6, Theorem 2.10]). Let G = K ,, -~ ,n be a l-partite complete
graph. If In is even and | > 2, then G is I-factorable.

t
THEOREM 1. Letp>1and ¥ = 5 (¢; —1). Then

i=1
R(TP’KLQN"' 1 K1,4) 2p+Z -6y,
where 6y = min{u + s — 1} and u,m € N* s € Nt U {0} satisfy the follow-

ing condition: ¥ — s = m(p — u), and the number of the even numbers in
{@, 02, - @t} <s,ifp+ T — s~ is odd.

ProoF. Let s and u satisfy the condition of Theorem such that §, =
s+tu—1 Thusp+E-6-1=(E-s)+(p-u) = (m+1)(p—u). Let
G = K(m+1)(p—u)- We consider two cases.

Case I: (m + 1)(p — u) is even. Let (V;,Va,---,Viny1) be a partition of
V(G) with |V} =p-u (i =1,2,--- ,m+1),and let H = K\vi|1Val, o Vi |-
By Lemma 2, H is 1-factorable. Hence H is a union of m(m — u) 1-factors.
Thus H can be divided into internally-disjoint subgraphs H; (t—1,2,---,¢),

: t
where H; is a union of ¢'(< ¢; — 1) 1-factors with 3" ¢/ =m(p—u) = £ — s.
i=1
Thus there is an assignment of the i-th colour to H; (i = 1,2,---,t), and of
the (¢ + 1)-th colour to H®. Clearly, there are no monochromatic T » Whose
edges are in colour t + 1 and K; 4, (1 = 1,2, - ,t) whose edges are in colour i.
Hence, the theorem is true in this case.

Case I: (m 4 1)(p—u) is odd. Without loss of generality, we assume that
q1,92, " ,qr (r < s) are even, and the other ¢; (i > 7) are odd. Let H be
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as in case 1. Since (m + 1)(p — u) is odd, m is even. Thus m(p — u) is even.
By Lemma 1, H is 2-factorable. Hence, H is a union of 3m(p — u) 2-factors.
Notethat S —s=[(q1 —2)+ (g2 =2)+ -+ (¢ = )]+ (gr41 = 1) + -+ +
(g- — 1)] = (s = 7). So, there always exist nonnegative integers a; satisfying
a; < Mg —-2)ifi =12, ,ra < Jg-1)ifi=r+1,r+2--,tand
ap+ay+--+a = (X —3s) = im(p—u). Hence H can be divided into
internally-disjoint subgraphs H; (i = 1,2,---,t), where H; is a union of a;
2-factors. Thus there is an assignment of the i-th colour to H; (1 = 1,2, ,1),
and of the (¢ + 1)-th colour to H®. Clearly there are no monochromatic T,
whose edges are in colour ¢t + 1 and Ki,4,(j = 1,2, - ,t) whose edges are in
colour 7 too. Hence in this case, the theorem is true. 4

When t = 1, we have a stronger result.

THEOREM 2. R(Tp,K1,4) > p+q— 0, where § = min{l; U I} with [, =
{s1lg — 51 = mi(p — w), uy < 81, s,u1,m € NV} I = {wslg — 52 =
ma(p — ua), u2 > s2, S2,u2,M2 € N*} andp > 2.

Proor. Clearly, there always exists 6 satisfying the condition of the the-
orem.

Case I. 6 = min{[;}, i.e. there is s; = 6 such that
p+q—0-1l=p+tg-si-l=mp-—w)+p-1
mi—Dp-uw)+p—-1l=mip-—w)+u —1=¢-(s1—u)-1<qg-1

and my(p~u) =q—s1 <g—1.

Let Gi1 = K, (p—ui)+p-1- We divide V(Gy) into m; + 1 parts V; (1 =
1,2,...,mi+ 1) such that |V;| =p—u; (i =1,2,... ,m;) and |Vin, 1| =p—1.
Thus there is an assignment of the 1st colour to all G;1[V;] 1 = 1,2,... ,m1 +1)
and of the 2nd colour to the remaining edges of G;. Clearly, there is no

monochromatic T, whose edges are in colour 1 and K; , whose edges are in
colour 2. Hence R(Tp, K1,q) 2 mi(p—u1) +p=p+q—6.

Case II. 6 = min{l,}, i.e. there is uy = 8 such that
p+q—0-1=(qg—s2)+p—us+3s2—1=ma(p—u2) +p— (ug —s2) — 1
p—(us —s2) —1<p-1;
(me—){(p—u2)+p—(uz—s2) —l=ma(p—uz) +s2—1=q—1

and ma(p —u2) =¢—s2 <g—1

Let G2 = Kpy(p—uz)+p—(uz—s2)—1- We divide V(G2) into my + 1 parts V;
(1=1,2,...,mg+1) such that |Vil =p—up (i =1,2,--- ,my) and |V, 41| =
p — (ug — s9) — 1. A similar argument as in case I yields that R(Tp, K1,4) >
ma(p —u2) +p— (u2 —s2) =p+q—90. O
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3. The HPPer Bounds

¢
THEOREM 3. Ifp>1and¥ = ¥ (¢;—1), then R(Tp, K14, ,K1,4,) < p+X.
i=1

PROOF. Suppose that there is an assignment of t+1 colours, 1,2, ,t+1,

to the edges of Kpix_;. If there is no monochromatic T, whose edges are in
colour ¢ + 1, then by Theorem B(ii) there must be a Ky, 541 whose edges are
in the former ¢ colours. Hence there must be a monochromatic X 1,¢; for some
i € {1,2,---,t} whose edges are in colour i. The proof is completed. O

THEOREM 4. If p(> 3) is odd and q is even, then R(T,,K 1 4) <p+q-2.

PROOF. Let G = K,_,_5. Suppose that there is an assignment of 2
colours, 1, 2, to the edges of G. Let G’ be the edge-deduced subgraph whose
edge set is the set of all colour 1 edges in G. If there is no monochromatic
K, whose edges are in colour 2, then the minimum degree §(G') > p — 2.
The maximum degree is A(G') > p — 1. Note that A(T,) < p—1. Using
0(G') > p—2and A(G') > p—1, it is easy to check that T, as a subgraph is
contained in G'. Therefore the proof is completed. ]

t
THEOREM 5. Ifp(>3) and & = Y (¢; — 1) are odd, then
i=1

R(TP7K1,(]17“' ) Kl,q,) Sp'*'z— 1.

PROOF. Suppose that that there is an assignment of t+1 colours, 1,2, - - - |
t + 1, to the edges of Kp1x_1. If there is no monochromatic T, whose edges
are in colour ¢ + 1, then by theorem 4, there must be a K 541 whose edges
are in the former ¢ colours. Hence there must exist a monochromatic & 1,; for
some i € {1,2,---,t} whose edges are in colour i. The proof is completed. O

4. Some Ramsey Numbers in Special Cases

By Theorems 1, 3, and 5, we have:

t
THEOREM 6. Let ¥ = 3 (q; — 1).
i=1
L Ifp>1,2=0 (mod p—1) and p+ T is odd,
then R(Tp, K1,4,,- -+ ,K1,,) =p+ %;
2Ifp>1,LE=1 (modp—1) orL =0 (mod p - 2) and p + ¥ is even,
then R(Tp, K14)=p+X~1o0rp+X;
3. Ifp>1,% =1 (modp—2) and only one of {a1,92, -+ , 1} is even
and p is odd, then R(Tp, K1 4, - -, Kig)=p+X~2o0rp+%—1.

By Theorem B(ii) and Theorem 2, we have:
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THEOREM 7. 1. If p(> 1) and q satisfy one of the following conditions:
(i)gq=1o0r2 (mod p-2), (i) ¢ =2 (mod p—1), then R(Tp, K1) =
p+qgq—2orp+q—1.

2. If p(> 1) and q satisfy one of the following conditions: (i) ¢ =1 or 2
or 8 (mod p—3), (i) ¢ =3 (mod p—2), (ii1) ¢ =3 (mod p—1), then
R(Ty,K1q)=p+q—3orp+qg—2o0orp+q—1.

By Theorem 4 and 7, we have:

COROLLARY. Let p(> 1) be odd and q even.

1. If p and q satisfy one of the following conditions: (i) ¢ = 1 or 2
(mod p—2), (1) ¢ =2 (mod p— 1), then R(Tp, K1 4) =p+q—2;

2. Ifp and q satisfy one of the following conditions: (1) ¢ =2 (mod p-3),
(i1) ¢ =3 (mod p — 2), then R(Tp,K14) =p+q—-3 ofp+q—2.
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