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Abstract

A graph is a (k, k, g)-graph if it is k-regular, k-chromatic and all cycles have length at least g. In this
note we prove that a (4, 4, 4)-graph of order n exists if and only if n > 12.

A graph is a (k, k, g)-graph if it is k-regular, k-chromatic and it has girth at least g (that is, all cycles have
length at least g). Griinbaum [1] conjectured that (k, k, 8)-graphs existforall k>2 and g >4 .For k27 and
8 24 the conjecture was disproved by Borodin and Kostochka [2], Catlin [3] and Lawrence [4]. For k = 5
and g 2 35 the conjecture was disproved by Kostochka [5] and he also disproved it for k = 6 and g large
enough. Moreover, we note that this is trivial for g = 3 and for k = 2,3 the validity of the conjecture fol-
lows from the existence of the cages. Thus the major unsolved case is k = 4. In this case, only two such
graphs are known (see [6]): a (4, 4, 4)-graph of order 12 and a (4, 4, 5)-graph of order 25. In this note we
show that there are (4, 4, 4)-graphs of all orders greater than or equal to 12.

Lemma 1 [7]: Let G be a(4, 4, 4)-graph of order n. If n < 12, then G is isomorphic to the

Chv4tal graph (see Figure 1). n
Lemma 2 [8]: There is a(4, 4, 4)-graph of order 15 (see Figure 2). ]

Figure 1: The Chvétal graph. Figure 2: A (4, 4, 4)-graph of order 15.
Lemma 3 [9]: There are (4, 4, 4)-graphs of orders at least 20 (see Figure 3). [ ]

Lemma 4: There are (4, 4, 4)-graphs of orders 13, 14, 16, 17, 18 and 19 .

Proof: Construct the (4, 4, 4)-graphs of orders 13, 14, 16, 17, 18 and 19 as shown in Figwe 4. m
Theorem 5: A (4, 4, 4)-graph of order n exists if and onlyif n2>12.

Proof: The result follows from Lemmas 1-4. u
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(a). nis odd. (b). nis even.
Figure 3: (4, 4, 4)-graphs of order n > 20.

(@.n = 13. (b).n=14. (c).n = 16.

| 2

(d).n =17. (e). n = 18. ). n=19.
Figure 4: Six (4, 4, 4)-graphs.

Remark: Let f(4, 4, g) denote the smallest number of vertices of a (4,4, g)-graph. Lemma 1 implies
f(#4,2) = 12. Whatis f(4,4,¢) for g>5?We guess that  f(4,4,5) = 25. Moreover, for any
n2 f(4,4, g) with ¢ 25, does a(4, 4, g)-graph of order n exist? All of these problems are still open.

References

(1]
{2]

B3]
g
(51

(6]
{7]
{8]
&)

B. Griinbaum,; A problem in graph coloring, Amer. Math. Monthly, 77, 1088-1092 (1970).

O.V. Borodin and A V. Kostochka; On an upper bound of a graph’ s chromatic number, depending on the graph’s
degree and density, J. Combin. Theory, B23, 247-230 (1977)

P A. Catlin; A bound on the chromatic number of a graph, Discrete Math., 22, 81-83 (1978).
J. Lawrence; Covering the vertex set of a graph with subgraphs of smallest degree, Discrete Math., 21, 61-68 (1978).

A.V. Kostochka; Degree, girth and chromatic number, Colloguia Math. Sci. Janos Bolyai 18, Combinatorics (Edi-
tors, A. Hajnal and V.T. $6s), 679696 (1976)

J.A. Bondy and U.S.R. Murty;, Graph Theory with Applications, Macmillian Co., New York, 241 (1976).
V. Chvatal, The smallest triangle-free 4-chromatic <-regular graph, J. Combin. Theory, 9, 93-94 (1970).
X. Liand W. Song; Another 4-regular 4-chromatic graph with girth 4, J. Taiyuan Inst. of Machinery, 3,31-33 (1989).

1 Wang, W. Song and X. Li; On 4-regular 4-chromatic graphs with girth 4 and order p, J. Taiyuan Inst. of Machinery,
1, 24-26 (1991).

Received: November 29, 1995





