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ABSTRACT

Let IBM(n, p) denote the set of all n X n irreducible Boolean matrices with
period p. This paper generalizes the concept of the index of maximum density of A,
where A € IBM(n, p) with p > 1, and obtains upper bounds on the generalized
maximum density index of IBM(n, p). © Elsevier Science Inc., 1997

1. INTRODUCTION

The maximum density index of a power sequence of n X n irreducible
Boolean matrices with period p is an important combinatorial parameter. We
consider such a memoryless communication system associated with a network
D. Every vertex of D can have several different bits of information simulta-
neously. Let t denote the time. When t = 0, there are k bits of information
distributing on k vertices of D respectively. When t = 1, every vertex
transfers its information to its heads and loses its original information for the
same time. The system operates in that way. If D is strong, the problems are:
how much information can it store, and when will it attain this maximum?

Based on the above mathematical model, we generalize the concept of
maximum density.

*This project was supported by NSFC.
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If Aisan n X n Boolean matrix, in the power sequence A, A% A3 ...,

let u(i) denote the number of 1’s in the ith row of AJ. If X € {1,2,..., n},
we define:

DEFINITION 1. pj(X) =X, o ¢ pi(d).

DEFINITION 2. The generalized maximum density on X of A:
pa( X) = max { pd(X)}.
jEZ

DEFINITION 3. The generalized index of maximum density on X of A:
hy(X) =min{m:m € Z*, ui(X) = p(X)}.
DEFINITION 4. The k-generalized maximum density of A:

pa(k) = lma’i{l-‘A(X)}-

=
DEFINITION 5. The k-generalized index of maximum density of A:
h,(k) = min{m:m € Z*, and there exists X C {1,2,..., n} with

| X| = k such that u7(X) = pu(k)}.
DEFINITION 6. h,(n, p, k) == max{h,(k): A € IBM(n, p)}.

For undefined terminology, the reader is referred to [2].
If a Boolean matrix A is primitive, we have u,(X) = kn, where n = | X|.

So the problems are solved if p = 1.

Let h(A) == h,(n) denote the maximum density index of A, and let

h(n, p) == max{h(A): A € IBM(n, p)}, where n=rp +s, r=[n/pl. In
1988, Shao Jiayu and Li Qiao [4] obtained the following results:

p(r:—2r+2), r>1, s=0,
2
h(n,p) = p(r*=2r+3), r>1, 0<s<p,
r, r=1 0<s<p,
1, r=1, s=0.
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THEOREM 1.1.  If A € IBM(n, p), then there exists a permutation ma-
trix Q such that A has the normal form

0 A
0 A,
AQ = QTAQ — . ., ,
. Ap—l
_Ap 0 0 ]

where Ay (k = 1,2,..., p — Dis an n, X ny, | matrix, so that the diagonal
blocks are square. Furthermore, we have n, + n, + -+ +n, = n.

THEOREM 1.2 [3]. If A € IBM(n, p), then for any integer { > 0, A&
has the form

ol 0
Al = ¢l ,
0 c}
where C, (k =1,2,..., p) is an n, X n; primitive matrix, and the expo-

nents of the C, differ by at most unity.

Let D(A) denote the digraph associated with a Boolean matrix A. By
these two theorems, we can see that for every A € IBM(n, p), the digraph
D(A) is a p-partite digraph with the partition (V,,V,,...,V,) and [V}| = n,.
And it is easy to see that from each vertex of V; one can reach every vertex of
V, of D(A) by walks of the same and sufficient length. We have

pa() = | max ().

.....

If A € IBM(n, p), let A, be the normal form of A in Theorem 1.1. Of
the n, (i = 1,2,..., p), some may be equal. We denote by {n,, 1, ..., 1.}
with 7, > n, > -+ > =, the set of the multiset {n,, ny,...,n,}. In the
partition of D(A), there are x; subsets with 1, vertices (i = 1,2,..., p),
x, + x5, + - +x, = p. Thus we have:
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THEOREM 1.3. If A € IBM(n, p), then

kmy. 1<k <xm,
xmf + (k —xym)m,, o+ 1 <k<xm +xm,

i i i+1
na(k) = an] (k-— Exjnj)njﬂ, . am+1<k< ijnj,
j=1

j=1 j=1 j=1
m—1 m—1 m-1
Z k_.zlenf N » 'lxj1;].2+1<k<n.
j= j= =

In particular, p,(n) = 7", JC]'”l'lj2 =Xl "7]-2-

Therefore, the problem of the k-generalized maximum density of A is
completely solved. Now, we state the main theorem as follows:

THEOREM. For any p > 1, we have that

forn =p,
h(n,p,k) =1 1<k <n;
forn =2p,
p—-1, k=1,
h(n, p,k) P, 2<k<p,
k, ptl<k<n;
forn = 3p,

h(n,p,. k) = {Qp + k. otherwise;

forn=rpandr =>4
h(n,p,k) = (r> =3r+2)p + k;
forn=p+sandl <s<p-—-1,

max{l,s — 1}, k=1,

h(n. p. k) = P, 2 <k <n;
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forn=rmp+sandr>21<s<p-—1,

(r®?=3r+2+k)p+max{l,s -1}, 1<k<r-1,
h(n,p.k) ={(r* = 2r +2)p, k=r,
(r2—2r+3)p, r+1<k<n.

2. SOME PRELIMINARY LEMMAS

Let D(A) be a strong digraph, and let R,(i) denote the set of vertices
which can be reached from vertex i through a walk with length ¢ in D(A). In
order to prove the main theorem, we need the following lemmas.

LEMMA 2.1 [1]. Let A be an n X n primitive matrix. Then y(A) < n* —
2n + 2 and y(A) = n®> — 2n + 2 if and only if A and W, are isomorphic,
where

0 1
o 1 O
- "L . _|0 1
W, = . ) (n=3) and W, = 1 1l
0 .
11 1 0|
LEMMA 2.2.  For D(W,) we have
(1) Rz g,40(n) =1{2,3,...,n},
@ Ry, (D={12...,nifi €{2,3,...,n}
Proof. Both results are easy to prove. u

LeEmMa 2.3 [2]. hwn(k) =n?2—3n+k+2 wherel <k <n.
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LEMMA 2.4 [2].  If A is an n X n primitive matrix, and s is the shortest
cycle length of D(A), then

s(n—1) (k<s),

PAR) SV — 14k —s) (k>s).

LEmMA 25 [2].  If k is an integer with 1 < k < n, then

h(n,1,k) = n? —3n +k + 2.

LeEmMma 2.6. If
[0 1 1 0o - 0]
001 0 - 0
B, = : (:) (n>3),
0 0 0 O 1
(1 1. 0 0 - 0],

then B, is primitive, and whent = n®> — 3n + 2, B} has an dll 1 row.

Proof. We can see that the shortest cycle length is n — 1 and another
cycle length is n (see Figure 1). So B, is primitive.

We have R(1) ={2,3};...; R, _5, (D =1{1,2,...,n — 1} Rz_5,,,(1)
={1,2,...,n — 1,n}. So, when t =n®> — 3n + 2, the first row of B! is
all 1. ]

n

Fic. 1. D(B,).
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The following two lemmas are obvious by Theorems 1.1 and 1.2,

LEMMA 2.7. If A € IBM(n, p), and a subset of the partition of D(A)
has only one vertex, then vy, =1 (i = 1,2,..., p).

LEmMMa 2.8. If A € IBM(n, p), then for every 1 <k <n we have
(k) < (max, ; ., {vDp.

LEMMA 2.9. Set A € IBM(n, p) with n = rp, r > 2. If the normal form
of A has ny=ny,= - =n, =r and y,=1>—2r + 2 for every i €
{1,2,..., p), then D(A) is isomorphic to the digraph W(r, p) (see Figure 2).

Proof. 1t is obvious that the adjacency matrix of W(r, p) belongs to
IBM(n, p). Since y; = r* — 2r + 2, C, is isomorphic to W,. Without loss of
generality, suppose C, = W,. We will show thatforl i <r - 1L 1<t <p,
we have |R,_ (i)l = 1. First, any two distinct R,_,(i) have no common
vertex. If ¢ is different, the result is obvious. If v, € R,_,(i,) N R,_(i,), so
that v, can attain a vertex v, in V, through a path with length p — ¢ + 1,

then the entries (i}, j,) and (iy, j,) of C, are both 1, which contradicts
C, = W,. Since C, = W,, there exists an u, € R,_(r) (1 <t < p) which
can attain vertex 1 of V| through a path with length p — ¢ + 1. And we have
u, € R, (i) =1,2,...,r — 1), otherwise there would exist i, with 1 < i,
<r—land u, € R,_\(i,), and thus i, could attain vertex 1 of V| through a
path with length p, which contradicts C, = W,. Since there are only r
vertices in V,, we have |R,_ (i)l =1 for 1 <i<r—1, 2 <t < p. Define
v(t, r) as the vertex of R,_ (i), and v(t, r) as u,. There must exist an arc

Fic. 2. W(r, p).
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from v(t, r) to o(t + 1,1) for some t (1 <t < p); otherwise C,; # W,. We
will show that there is only one such arc. Suppose there are arcs from
o(t,, ) to v(t, + 1,1) and o(t,, r) to v(t, + 1,1) with 1 <t; <t, <p.
Note that v(p + L, 1) =2, o(p + 1,2) =3,..., v(p + 1,7 — D=r vlp
+1L7r)=1, and Rp(r) = {1, 2}. Consider the paths

o(ty, r—1) 2 v(ty+ 1, r=1) = = >o(p,r—1)
So(p+ Lr=D[=r=0(1,r)] =02, r)—> -

so(ty+1,r) > o 2o(t,—1,r) > o(ty, 1)

t
= o(ty,r) ot +1,1) = = > o(t, — 1,1) > o(ty,1)

Therefore, the values of entries ( — 1,1) and (r — 1, 1) of C,, are both 1.
Consider also the following paths:

v(ty, 1)

oty +1,r) > - oo(p,r)=o(p+1Lr)[=1 = v(1,1)]
- 0(2,1) = - > ov(t,,1)

S oty +1,7) = - > o(p,1) >o(p+1,1)[=2=0(1,2)]
- 0(2,2) = - > 0(t,,2).

So the values of entries (r,1) and (r,2) of C, are both 1. The above
conclusions imply that Ct2 is not similar to W_, a contradiction. Hence,
without loss of generality, we can assume that ¢ = p; thus D(A) is isomor-
phic to W(r, p). [ ]

LEMMA 2.10. Suppose A € IBM(n, p) with n=1p, and r>2. If
ng=n,= " =n,=randy, = r?—2r + 2, wherei =1,2,..., p, then
h(k)=(r*-3r+2)p + k.

Proof. By Lemma 2.9, D(A) is isomorphic to W(r, p). Thus we have
R(n)=R,_,, (i) if 1 <i<n Now Ryn)={n}={mp}, R(n)={p+
L1h..., R(n)=p,p).... R,(n)={rp,2p.pk...; Rio_grrn,(n)
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={rp,(r — Dp,...,2pk Ri2griayyi(m) ={(r—Dp + 1L,(r —2)p +
1,....,2p + 1, p + 1,1} and so on. Thus we have that [R,(n)l < r — 1 if
t<(r?=38r+2) IR =r if t=(>~3r+2p+1 and |R,(l <
IR, ()lif t, < #, and 1 < i < n. By Theorem 1.3, we have h,(k) = (r* - 3r
+ 2p + k. [

LEMMA 2.11.  Suppose A € IBM(n, p) with n = rp and in the normal
form of A there are ny =ny, = -+ =n, = r. Then for any 2 <k < n, we

have hy(k) < h(k — 1) + 1. ’

Proof. 1f the number of nonzero elements of the jth row of A' is r,
then there are walks with length ¢ from v; € V; to all vertices of V,, ,, where
(V,V,,.. "Vp) is the partition of D(A). Since D(A) is strong, there are
walks with length ¢ + 1 from V, to all vertices of V,,,.,. Hence the number
of nonzero elements of the jth row of A'*!is r too.

For any 2 < k < n, let B =h,(k — 1). There are at least k — 1 rows of
AP whose number of nonzero elements is 7. Let U denote the set of vertices
which correspond to previous rows in the digraph D(A). Thus |U| > k — 1.

If |U|=n, we have h(k — 1) = h(k) = - = h,(n) = B and h,(k)
<h k-1 +1.

If [U} < n, since D(A) is strong, there must be a vertex v, of D(A) with
vy & U such that there is an arc from v, to a vertex of U. So |U U {vp}l > k
in AP*'. Hence h(k) < B+ 1 =h,(k — 1) + L ]

LEMMA 2.12.  Suppose A € IBM(n, p) withn =rp +s,1 <s<p — L
If min; ;. ,{n;} = rin the normal form of A, then h,(r) < (r* — 2r + 2)p.

Proof. Without loss of generality, we assume n, = max, _, p{ni} >r
+1 and n, > n, >r. If maxlgigp{ni} =r + 1, then n,=r. If
max; ; c {n} =7 + 2, then s > 2 and n, =r,where p —s+2<qg <p.
We consider the following two cases:

Case 1. vy, <r®=2r+ 1. Sincey, <r?—2r+ 1, max, ., {7} <
r? —2r 4+ 2. S0 h,(r) < (r* — 2r + 2)p.

Case 2. 7, < r?2 — 2r + 2. Label the vertices of Vv, with {1,2,..., r}
so that C, = W,. Thus there is a path with length p from i to i + 1 where
1 <i<r—1, and there is a path with length p from r to 1. Obviously,
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each pair of these paths are disjoint unless they are in V,, for otherwise
C, # W,. Hence each of these r paths reaches only one distinct vertex in
each V, (i = 1,2,..., p). Denote by v(x, i) the vertex that the path depart-
ing from the ith vertex in V, reaches in V,. All these r paths together form a
cycle C with length rp. There is another path with length p from vertex r to
vertex 2 in V,, and this path must intersect with the path from vertex 1 to
vertex 2 in a subset of the partition of D(A), say V,, where ¢ is the smallest
such integer in 1 < t < p. We consider two subcases

(1) g+1<t<port=1 There is a path with length p — ¢ + 1
from vertex r to v(1, 1). Denote by X the set of vertices in V, not belonging
to the cycle C. Suppose there exists a vertex v(1,0) of X from which there is
a path with length ¢ — 1 reaching a vertex in {2,3,..., r} of V,. By Lemma
2.2, for any iof {2,3,....7}of v, and any j of V,, there emsts a path with
length (r* — 2r + 2)p —qg+1 from i to j. Hence from any vertex of
{v(1,0),v(1,1),...,0v(1, r — 1)} one can reach any vertex of V, through a
path with length [ 2)p. That, is h(r) < (r* — 2r + 2)p. Sup-
pose, on the other hand, that from any vertex of X one can only reach vertex
lin V, through paths with length ¢ — 1. Then from vertex r one can reach
any vertex of X U {v(1, 1), v(1, r)} through a path with length p — g + L.
Hence, by Lemma 2.2, from vertex r one can reach any vertex of V, through
a path with length (+* — 3r + 2)p + p — g + L. So from vertex i of V, one
can reach any vertex of V, through a path with length (r*> — 3r + 2)p + (r
—i+Dp—q+1<(r*—2r+ 2)p — g — 1. Hence we have

hA(r)<(r2—2r+2)p—q+1<(r2—2r+2)p.

(2) 2 <t <gq. Let v,_, be the vertex in V,_, which locates the path
with length p from r to 2. Then v,_; # v(t — 1,i), where i = 1,2,...,r —
1; otherwise C, # W,. If v,_, = o(t — 1, r), then from it one can reach any
vertex in V, through paths with length (1" —3r+2)p+q —t+ 1 Hence
from any vertex of {v(t — 1,1),0v(¢t — 1,2),...,v(t — 1, r)}, one can reach
any vertex of V| through paths with length (r ~2r+2)p —t+ 2. So we
have h,(r) < (r® —2r + 2)p —t + 2. Since 2 < t < g, we have h,(r) <
(r> = 2r + 2p. If v,_, #o(t — 1,r), from any vertex of {v(t — 1, 1), v(t
= 1,2),...,0(t = 1,r — 1), v,_,}, one can reach some vertices of {2, 3, .. ., r}
inV, through a path with length ¢ — ¢ + 1. And then, by Lemma 2 2 one
can reach any vertex of V| through paths with length (r> — 2r + 2)p — ¢t +
2. So we have h,(r) < (r -2r+2p+2—-t< (r* —2r+ 2)p. The
proof is completed. [ ]
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4. THE PROOF OF THE MAIN THEOREM
In order to prove the Theorem, we divide the proof into six lemmas.
LeEmMa 4.1, If n = p then

h(n,p, k) =1, where 1 <k <n.

The proof is obvious.

LemMa 4.2, Ifn = 2p, then

p—1, &k
h(n,p, k) = {p, 2 <
k, pt

Proof. For any A € IBM(n, p), we consider the following two cases:

Case 1. Inthenormal formof A, wehaven) =n, = =+ =n, =r =2

(1) Forany i = 1,2,..., p, we have y, = r® — 2r + 2. By Lemma 2.10, we
have

hy(k) =(r*=3r+2)p+k=k (1 <k<n).

(2) For some ¢, vy, = 1. That is,

so there are two nonzero entries in a row of A. By Theorem 1.3 we can see
that h,(1) = 1. And by Lemma 2.11, we have

ho(k) <hy (1) +k — 1 =k.

Case 2. In the normal form of A, there are ¢, j, with n, # n;. In this
case, there must exist n, = 1. By Lemma 2.7, we have y, =1 for any
i=12,..., p. Hence h,(k) < p, where 1 < k < n. Without loss of general-
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F16.3. D,

ity, we assume n, = 1; then the number of nonzero entries in the first row of
A'is n,, . So h,(1) <p — 1. On the other hand, if D(A) is isomorphic to
D; (see Figure 3), then h,(1) =p — 1. If D(A) is isomorphic to D, (see
Figure 4), then we have h,(1) = 1 and h (k) = p, where 2 <k <p.

Combining cases 1 and 2, Lemma 4.2 follows. |
LEMMA 43. If n = rp and r > 4, we have
h(n,p.k) =(r? = 3r+2)p + k.
Proof. For any A € IBM(n, p) there are two cases:
c=n =1

Case 1. In the normal form of A, we have n, =n, = - »
Ify,=r*—=2r+2foranyi=12,..., p, by Lemma 2.10, we have

hyk) =(r® = 3r +2)p + k.

If v, <r? —2r + 2 for some t, let s be the length of a minimum cycle of
D(C,).
(1) If s < r — 2, then by Lemma 2.4,

hal) <(r®*—=3r+2)p <(r*—=3r+2)p + 1.

Fic. 4. D,.
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(2) If s = r — 1, then there is an r-cycle in D(C,). Since C, is not similar to
W,, D(C,) must be isomorphic to D(B,) in Lemma 2.6. Hence

(D) <(rP=3r+2)p<(r*-3r+2)p+ 1.
By Lemma 2.11 we have
ha(k) <h (k—1)+1< - <h, (1) +k—-1,

ie., hy(k) <(r®—3r+2p + k.

Case 2. In the normal form of A, if there is some ¢ with n, <r — 1,
then by Lemma 2.1 we have 5, < (r — 1> = 2(r — 1) + 2 =r> — 4r + 5,
and by Theorem 1.2, ‘yi<'yt+l<r2—4r+6<r2—3r+2 (i =
1,2,..., p) when r > 4. By Lemma 2.8, we have

ha(k) < (r2=3r+p<(r*-3r+2)p+k (1<k<n).

Combining cases 1 and 2, we can see that when r > 4 for any A €
IBM(n, p),

huk) < (r*-=3r+2)p +k.
Recalling the result of case 1, we have
h(n,p, k) =(r*—-3r+2)p+k, where n=rpand r>4. B

LEMMA 44. Ifn = 3p, then

_ [ 3p, 3<k<p,
h(n. p.k) = 2p + k  otherwise.

Proof. For any A € IBM(n, p), there are two cases:

Case 1. 1In the normal form of A, suppose n, =ny, = - =n, =3.
Thus a similar argument to the proof of Lemma 4.3 yields

ho(k) < (r*=3r+2)p +k=2p +k,

and these upper bounds can be attained.
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Case 2. In the normal form of A, there exist 1 < i, j < p with n, # n,.
If min, _, _ p{ni} =1, by Lemma 2.7, v, = 1 (i = 1,2,..., p). Hence h,(k)
<p(k=12,...,n).If minKKp{ni} = 2, without loss of generality, we
assume that n;, = 2.

(1) If y, = 1, then for any 1 < i < p we have vy, < 2; thus
h(k) <2p (1 <k<n).

@) If y, =2, ie. C, = W,, then for any 1 <i <p we have y, < 3. By
Lemma 2.8, we have

h (k) <3p (1 <k<n).

Next, let n, = max,_,  {n}. If there exists i,, 2 <i, <t such that
R, (@) =V, then h,(1) <t — 1. Since C, = W,, we have R,y -p(D=
R, (2 =V, and R,,,_2) =R, ,(2) = V,. Hence h,(2) <p + (t — 1.
Since 2 < ¢t < p, we have h,(2) < 2p — 1 < 2p. Now for any 2 <i <, we
have R,_(2) # V,. Hence there exists v; € V; such that v, € R,_ (2). Since
D(A) is strong, v, € R,_|(1). In particular, there exists v, € V, such that
v, € R,_((1), v, € R,_(2). Thus from v, we can reach vertex 2, but not 1, in
V, through a path with length p — ¢ + 1. Since C, = W,, there exists a
vertex v, € R,_(2) such that from it we can reach vertex 2 through a path
with length p —t + 1. On the other hand, from vertex 2 we can reach all
vertices of V, through paths with length p +t — 1, ie., R, ., 2=V,
Thus from v, and v, we can reach any vertex of V, through a path with
length(p +t ~ D+ (p—t+1)=2p, ie, h(2 < 2 p. Furthermore, we
have h (1) < h,(2) < 2p. So in case 2, we have

2p, k=12,
halk) < {3p, 3<k<gn
Combining cases 1 and 2, we have
3<k<p,

3p,
ha(k) < {2;9 + k  otherwise.

Consider the digraph Dy (see Figure 5). Its adjacency matrix A €
IBM(n, p) with h,(3) = h,(4) = -+ = h,(3p) = 3p. Hence we have
h(n, p, k) = 3p 3 < k < p). The proof is completed. ]
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F16.5. Ds.

LEMMA 45, Ifn=rp+swithl <s<p~1, and r > 2, we have

(r®=3r+2+k)p+max{l,s -1}, 1<k<r-—1,
h(n,p, k) = (r* = 2r+ 2)p, k=r
(r* = 2r+3)p, r+1<k<n.

Proof. We consider two cases:

Case 1. s=1. Forany A € IBM(n, p) with n=rp + 1 and r > 2,
we have:

(1) In the normal form of A, it has min,_,_,{n;} <7r; let n, =
min; (;{n} <r—1. So vy, <(r - 12— 2r — 1§+2 =r?2—4r+5.

Thus v, <y, + 1 <r>—4r+6 for any 1 <i <p. Since r> —4r + 6 <
r® — 3r + 3 where r > 3,

hy(k) <(r*—4r+6)p<(r*=3r+3)p+1 (1 <k <n).

If r =2, then min, _;_,{n;} = 1. By Lemmas 2.7 and 2.8 we have y, = 1
(i=12....p)and hytk) <p (1 < k < n).

(2) In the normal form of A, it has min, _; _ p{ni} = r. When s = 1, without
loss of generality, we assume n; = r + land n, = ny; = - =n_ = r. Thus
v, <r?—2r+2(G=23,...,p) and v, <r* — 2r + 3. By Lemmas 2.5
and 2.12, for any A € IBM(n, p) with n = rp + 1 and r > 2, we have

(r*=3r+2+k)p+1, l<k<r-—1,
ha(k) < {(r® = 2r +2)p, k=r, )
(r* —3r + 3)p, r+1<k<n.
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Consider the p-partite digraph Dy (see Figure 6) with |V)| =+ 1 and
Vil=r,i=2.3,..., p. Its adjacency matrix A € IBM(n, p) has

(r?-3r+2+k)yp+1, 1<k<r-1,
hy(k) = {(r? = 2r + 2)p, k=r,
(r*—2r+3)p, r+l<k<n.

So the upper bound of (A) can be attained.

Case 2. 2<s<p=—1. For any A € IBM(n, p) with n=1rp +s,
2<s<p~1 and r > 2, we consider two cases:

(1) In the normal form of A, it has min, _; . ,{n;} < r. A similar argument
to case 1(1) yields

(r’=3r+2+k)p+s—1, l<k<r-1,
ha(k) < { (= 27 + 2)p, k=r,
(r2_2r+3)p’ r+l1<ks<n.

(2) In the normal form of A, it has min, ;. {n,} = r. Without loss of
generality, we assume that n, = max, ., {n} > n,. It's obvious that there
exists t where p —s +2<t<p sach that n,=r. f 1 <k <r—1, by
Lemma 2.5, we have h (k) < (r = 3r+ 2+ K)p +(p -t + 1) < (r? -
3r+2+Kkp+s—1. If k=r, we have h,(r) <(r®’~2r+2p by
Lemma 2.12; if r+ 1<k <n, noting that y,<r®~2r+3 (=
1,2,..., p), we have h, (k) < (r* — 2r + 3)p.
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Combining cases 1 and 2, for any A € IBM(n, p) with n =1 + 35,
r>2 and s > 2, we have

>

r, (B)

1<k <n.

(r*=3r+2+k)p+s—-1, 1<k<r-1
h,(k) < (r2—2r+2)p, k=
(r2—2r+3)p, r+

For r > 2 and 2 < s < p — 1, consider the p-partite digraph D, (see
Figure 7) with [V|| = [V,l= - =|V,_,l=r+ 1, |V,_||=r+ 2, and |V

=|Viul =+ =V, =7 It is easy to check that its adjacency matrix
A € IBM(n, p) has

(r*=3r+2+k)p+s—1, 1<ks<sr-1,
hu(k) = (r2 = 2r + 2)p, k=

(r*—2r+3)p, r+l<ks<sn

r,

So the upper bounds of (B) can be attained.
Hence Lemma 4.5 follows.

LEMMA 46. Ifn=p +swithl <s <p — 1, we have

_ max{1l,s — 1}, k=1,
o) = | ken
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Fi1c. 8. Ds.

Proof. We consider the following two cases:

Case 1. s =1. For any A € IBM(n, p) with n = p + 1, D(A) must
be isomorphic to the digraph Dy in Figure 8. So we have

Case 2. 2<s<p—1. For any AEIBM(n,p) with n =p + s, in
the normal form of A, there must exist n, = 1. By Lemma 2.7 we have
v,=1 for any i =1,2,..., p. By Lemma 2.8, we have h,(k) <p for
1 <k < p. If max{n,} = 2, then there are s subsets of the partition contain-
ing two vertices. Without loss of generality, we assume n, =2 and n, = 1.
It's obvious that h,(1) = 1. If max{n,} > 3, we assume n, = max{n ). There
exists with p — s + 2 <t < p such that n, = 1. Hence the vertex of V, can
reach all vertices of V, through some paths with length p —t + 1. So

h, (1) <p —t+1<s — 1. Hence we have
s — =1,
b =07 Sl (©

Consider the digraph Dy in Figure 9. Its adjacency matrix A € IBM(n, p)
withn=p+5s52<s<p—1and

ha(k) = {‘:,— 8

So the upper bounds of (C) can be attained.
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Combining cases 1 and 2, we have

max{l,s—l, k=1,
h(n, p. k) = p } 2 <k<n. "

The problem of determining h(n, p, k) is completely solved.
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