On the Arc-Pancyclicity of Local Tournaments*

Bu Yue Hua

Department of Mathematics Zhejiang Normal University Jinhua 321004, China

Zhang Ke Min

Department of Mathematics Nanjing University Nanjing 210093, China

ABSTRACT. Let T=(V,A) be a digraph with n vertices. T is called a local tournament if for every vertex $x \in V$, T[O(x)] and T[I(x)] are tournaments. In this paper, we prove that every arc3-cyclic connected local tournament T is arc-pancyclic except $T \cong T_6$ -, T_8 -type digraphs or D_8 .

1 Introduction

A digraph D=(V,A) consists a pair of V, A, where V is a vertex set and A is an arc set. We say that x dominates y where $x,y\in V$, denoted by $x\to y$, if (x,y) is an arc of a digraph D. Let S_1 and S_2 be two vertex subsets of V. We say that S_1 dominates S_2 , denoted by $S_1\to S_2$, if there is a complete connection between S_1 and S_2 and all arcs between S_1 and S_2 are directed toward S_2 . For convenience, we write $x\to S_2$ (resp., $S_2\to x$) instead of $\{x\}\to S_2$ (resp., $S_2\to \{x\}$). For any $x\in V$ and any $S\subseteq V$, We define

$$O(x) = \{y | y \in V, (x, y) \in A\}, \ I(x) = \{y | y \in V, (y, x) \in A\}$$

 $O_s(x) = O(x) \cap S, I_s(x) = I(x) \cap S.$

A directed path of length k from x to y is denoted by $P_k(x,y)$. A k-cycle containing arc (x,y) is denoted by $C_k(x,y)$. The converse of D=(V,A)

^{*}The project supported by NSFC.

is defined as a digraph $\overset{\leftarrow}{D}=(V,\overset{\leftarrow}{A})$ such that $(x,y)\in \overset{\leftarrow}{A}$ if and only if $(y,x)\in A$.

A semicomplete digraph is a digraph without nonadjacent vertices. A locally semicomplete digraph is a digraph D that satisfies the following condition for every vertex x of D, D[O(x)] and D[I(x)] are semicomplete digraphs. A local tournament is a locally semicomplete digraph without directed cycles of length 2 and loops. A digraph D is said to be arc-k-cyclic if each arc of D is contained in a cycle of length $k(3 \le k \le n, n = |V|)$. An arc e of D is said to be pancyclic if it is contained in cycles of all length m, $3 \le m \le n$. A digraph D is said to be arc-pancyclic if each arc of D is pancyclic.

Other notations and definitions not defined here can be found in [3].

2 The Main Results

The concept of locally semicomplete digraphs, which is a generalization of semicomplete digraphs or tournaments, was first introduced by J. Bang-Jensen [1]. Using this new concept, many classical theorems for tournaments have been generalized. For example:

Lemma 1 ([1] Theorems 3.2 and 3.3). A connected locally semicomplete digraph has a directed Hamiltonian path, and a strong locally semicomplete digraph has a directed Hamiltonian cyclic.

In this paper, we prove the following two theorems, which extend two theorems in [4] and [5] respectively. (See Corollaries 2 and 3 below)

Theorem 1. Every arc-3-cycle connected local tournament T of order $n \ (n \geq 3)$ is arc-pancyclic, except $T \cong T_6$ -, T_8 -type graphs or D_8 . (See Figures 1, 2 and 3).

Figure 1. D_8

Figure 2. T_8 -type digraphs (The orientation of the edges without arrow can be chosen arbitrarily.)

Figure 3.

 T_6 -type digraphs (T_1 and T_2 both are arc-3-cyclic tournament. The orientation of the edges without arrow can be chosen arbitrarily.)

Theorem 2. At most one arc of an arc-3-cycle connected local tournament is not pancyclic.

Corollary 1. Let T be a connected local tournament of order n. Then T is arc-pancyclic if and only if T is arc-3-cyclic and arc-n-cyclic.

Corollary 2 ([5], Theorem 1). Let T be a tournament of order n. Then T is arc-pancyclic if and only if T is arc-3-cyclic and arc-n-cyclic.

Corollary 3. ([4], Theorem 1). Except for T_6 -type digraphs and T_8 -type digraphs, every arc-3-cyclic tournament is arc-pancyclic.

The proofs of our results are given in the next section.

3 The Proofs Of Theorems

In the following, we shall assume that T = (V, A) is an arc-3-cyclic connected local tournament of order n. In order to prove Theorem 1, we need the following lemmas.

Lemma 2. ([2], Corollary 3.13). Let $P_1 = (x_1, x_2, ..., x_m)$ and $P_2 = (y_1, y_2, ..., y_t)$, $m \ge 2$, $t \ge 3$, be paths in T. If there exist $i, j, 1 \le i < j \le m$ such that $x_i = y_1$ and $x_j = y_t$ and $V(P_1) \cap V(P_2) - \{y_1, y_t\} = \emptyset$, then T has an (x_1, x_m) -path P such that $V(P) = V(P_1) \cup V(P_2)$.

If T were not arc-pancyclic, then there is an arc e = (k, 1) in T such that e is contained in one of m-cycles, $3 \le m \le k < n$, but e is not contained in any (k+1)-cycle. i. e.

There does not exist any
$$P_k(1, k)$$
 in T . $(*)$

Let $C=C_k(e)=(1,2,\ldots,k,1)$ be a k-cycle containing e. Without ambiguity, we also let C be the set of itself's vertices. Let $W=V-C=V-\{1,2,\ldots,k\}$, thus $|W|\geq 1$. If $O_c(w)\neq\emptyset$ and $I_c(w)\neq\emptyset$ for $w\in W$, we define:

$$a(w) = \max\{i | i \in O_c(w)\}, b(w) = \min\{i | i \in I_c(w)\}.$$

Lemma 3. If T satisfies (\star) , then T[W] is a tournament, and then $O_c(w) = \{1, 2, \ldots, a(w)\} \neq \emptyset$ and $I_c(w) = \{b(w), b(w) + 1, \ldots, k\} \neq \emptyset$ for any $w \in W$.

Proof: We prove the following two assertions:

(a) $O_c(w) \neq \emptyset$ for $w \in W$ if and only if $I_c(w) \neq \emptyset$.

If $O_c(w) \neq \emptyset$, set $i = \min\{j | j \in O_c(w)\}$. Suppose that i > 1. By the definition of a local tournament and $\{w, i-1\} \subseteq I(i)$, we have that i-1 and w are adjacent in T. Thus by the definition of i, we have $i-1 \to w$. Hence T contains a $P_k(1,k) = (1,2,\ldots,i-1,w,i,\ldots,k)$. This is a contradiction to (\star) . So i=1.

From the above arguments, we also have $O_c(w) = \{1, 2, ..., a(w)\}$. If a(w) = k, then $w \to C$. Hence, since T is arc-3-cyclic, there exists a 3-cyclic $C_3(w, 1) = (w, 1, x, w)$ with $x \in W$. Thus T contains a $P_k(1, k) = (1, x, w, 3, ..., k)$. This is a contradiction to (\star) . So a(w) < k.

Similarly, we have $I_c(w) = \{b(w), \dots, k\}$ and b(w) > 1 when $I_c(w) \neq \emptyset$.

Now if $O_c(w) \neq \emptyset$, then there is a $C_3(w,1) = (w,1,x,w)$. If $x \in W$, then $1 \in I_c(x)$ and b(x) = 1. This contradicts b(w) > 1 for any $w \in \{w | w \in W, I(w) \neq \emptyset\}$. Hence $x \in C$, i.e., $x \in I_c(w)$ and $I_c(w) \neq \emptyset$. Similarly, if $I_c(w) \neq \emptyset$, then $O_c(w) \neq \emptyset$ for $w \in W$.

(b) Let
$$W_1 = \{w | w \in W, O_c(w) \neq \emptyset\}$$
 and $W_2 = W - W_1$. Then $W_1 = W$.

Since T is connected and arc-3-cyclic, we have $W_1 \neq \emptyset$. Suppose that $W_2 \neq \emptyset$. Thus for any $z \in W_2$, we have $O_c(z) = I_c(z) = \emptyset$ by (a). Since T is connected, there exist $x \in W_1$ and $y \in W_2$ such that x and y are adjacent. Without loss of generality, we assume $x \to y$. (Otherwise, we consider the converse of T). Since $O_c(x) \neq \emptyset$ and $x \to 1$, 1 and y are adjacent and $1 \in O_c(y)$ by (a), which is a contradiction. Hence $W_2 = \emptyset$. i.e, $W = W_1$.

From (a) and (b), we have that $W \subseteq I(1)$. Hence T[W] is a tournament by the definition of a local tournament. So Lemma 3 is valid.

For any $w \in W$, we define:

$$p(w) = \min\{i | i \in O(1) \cap I_c(w)\}, \ q(w) = \max\{i | i \in I(k) \cap O_c(w)\}.$$

Lemma 4. If T satisfies (\star) , then $O(1) \cap I_c(w) \neq \emptyset$, $I(k) \cap O_c(w) \neq \emptyset$ and $2 \leq q(w) \leq a(w) < b(w) \leq p(w) \leq k-1$ for any $w \in W$.

Proof: There is a $C_3(w,1)=(w,1,x,w)$. We have $x\notin W$ by Lemma 3. Thus $x\in O(1)\cap I_c(w)$ by $x\to w$. And $b(w)\le x\le k-1$ since $k\to 1$. Similarly, we have $y\in I(k)\cap O_c(w)$ and $2\le y\le a(w)$. By the definitions of p(w) and q(w), we have $2\le y\le q(w)\le a(w)< b(w)\le p(w)\le x\le k-1$ for every $w\in W$. So Lemma 4 is valid.

Lemma 5. If T satisfies (\star) , then b(w) = b(w') and a(w) = a(w') for every $w, w' \in W$. And T[W] is an arc-3-cyclic tournament.

Proof: Suppose that there are two distinct vertices w, w' in W such that $b(w) \neq b(w')$. Let $w_0 \in W$ be chosen such that $b(w_0) = \min\{b(w)|w \in W\}$. Let $W_1 = \{w|w \in W, b(w) > b(w_0)\}$ and $W_2 = W - W_1$. Then $W_1 \neq \emptyset$, $W_2 \neq \emptyset$ and $b(w_0) = b(w) \to w$ for every $w \in W$. Suppose that there exist $w_1 \in W_1$ and $w_2 \in W_2$ such that $w_1 \to w$. Since $w_1 \to w_2$ and $b(w_2) \to w_2$, we know that w_1 and $b(w_2)$ are adjacent and $w_1 \to b(w_2)$ by $b(w_1) > b(w_0) = b(w_2)$. Hence $a(w_1) \geq b(w_2)$. By the definitions of $p(w_1)$ and $q(w_2)$, we have that

$$2 \le q(w_2) \le a(w_2) < b(w_2) \le a(w_1) < b(w_1) \le p(w_1) \le k - 1$$
 (A)

and hence $q(w_2) + 1 \le p(w_1) - 1$.

When $q(w_2)+1=p(w_1)-1$, we have that $q(w_2)=a(w_2)=b(w_2)-1$ and $b(w_2)=a(w_1)=b(w_1)-l=p(w_1)-1$ from (A). Then we have $P_k(1,k)=(1,p(w_1),\ldots,k-1,w_1,w_2,2,\ldots,q(w_2),k)$ in T, a contradiction. Hence $q(w_2)+1\leq p(w_1)-2$. Thus it follows that either $p(w_1)-2\geq b(w_2)$ or $q(w_2)+2\leq a(w_1)$ by (A). We have either $P_k(1,k)=(1,p(w_1),\ldots,k-1,w_1,q(w_2)+1,\ldots,p(w_1)-2,w_2,2,\ldots,q(w_2),k)$ if $p(w_1)-2\geq b(w_2)$ or $P_k(1,k)=(1,p(w_1),\ldots,k-1,w_1,q(w_2)+2,\ldots,p(w_1)-1,w_2,2,\ldots,q(w_2),k)$

if $q(w_2) + 2 \le a(w_1)$. These are contradictions. Hence no vertex of W_1 dominates any vertex of W_2 . $W_2 \to W_1$ since T[W] is a tournament.

Let $w_1 \in W_1$ and $w_2 \in W_2$, then $w_2 \to w_1$ and $b(w_0) = b(w_2) \to w_2$. There is a $C_3(w_2, w_1, x, w_2)$. $x \notin W$ since $W_2 \to W_1$. Hence we have $x \in C$ and $a(w_1) \geq x \geq b(w_2)$. Thus we have that: $q(w_2) \leq a(w_2) < b(w_2) \leq a(w_1) < b(w_1) \leq p(w_1)$. And hence $q(w_2) + 1 \leq p(w_1) - 1$. As above, we can also prove that T contains a $P_k(1, k)$, a contradiction. Therefore $b(w_1) = b(w_2)$ for any $w_1, w_2 \in W$. Similarly, we can prove $a(w_1) = a(w_2)$ for any $w_1, w_2 \in W$. Hence T[W] is an arc-3-cyclic tournament. So Lemma 5 is valid.

By Lemma 5, we denote a=a(w) and b=b(w) for each $w\in W$. Thus by Lemma 3 and Lemma 4, We have $2\leq a< b\leq k-1,\ O_c(w)=\{1,2,\ldots,a\},$ and $I_c(w)=\{b,b+1,\ldots,k\}$. Hence $T[\{1,2,\ldots,a\}]$ and $T[\{b,b+1,\ldots,k\}]$ both are tournaments.

Lemma 6. If there are $a < \gamma < \delta$ in C such that $1 \le \alpha \le a - 1$, $a+1 < \gamma < \delta \le k$, $b+1 \le \delta$, $(a,\gamma) \in A$ and $(\gamma - 1, \delta) \in A$. Then T contains a $P_k(1,k)$.

Proof: Let α , γ and δ satisfy the conditions of Lemma 6 and $w \in W$. Then there is $P_k(1, k) = (1, 2, ..., \alpha, \gamma, ..., \delta - 1, w, \alpha + 1, ..., \gamma - 1, \delta, ..., k)$.

Furthermore, we shall use the following symbols. For $1 \le m \le a, b \le l \le k$, we denote:

$$R(m) = \{i | b \le i \le k, (m, i) \in A\}, \ L(l) = \{i | 1 \le i \le a, (i, l) \in A\}.$$

Thus for any $w \in W$, $1 \le m \le a$ and $b \le l \le k$, since there exist $C_3(w, m)$ and $C_3(l, w)$, it is easy to see that $R(m) \ne \emptyset$, $L(l) \ne \emptyset$ and $k \notin R(1)$, $1 \notin L(k)$. Hence we can define:

$$\begin{split} & \psi(m) = \max\{i | i \in R(m)\}, \\ & \varphi(l) = \min\{i | i \in L(l)\}, \\ & p = \min\{i | b \le i \le k - 1, (1, i) \in A\}, \\ & q = \max\{i | 2 \le i \le a, (i, k) \in A\}. \end{split}$$

Then $(m, \psi(m))$, $(\varphi(l), l)$, (1, p), $(q, k) \in A$ and $b \le \psi(m) \le k$, $1 \le \varphi(l) \le a$, $2 \le q \le a < b \le p \le k-1$ for any $1 \le m \le a$ and $b \le l \le k$.

Lemma 7. If T satisfies (\star) and b > a + 1, then $T \cong D_8$.

Proof: First, we have $\{a+1,\ldots,b-1\} \neq \emptyset$, and i and w are nonadjacent for any $i \in \{a+1,\ldots,b-1\}$ and any $w \in W$. There is a $C_3(a,a+1) = (a,a+1,x,a)$ in T. Obviously $x \notin W$. If $x \in \{a+2,\ldots,b-1\}$, then x and w are adjacent by $x \to a$ and $w \to a$, a contradiction. So $x \notin \{a+2,\ldots,b-1\}$. Since $w \to i$ for $i \in \{1,2,\ldots,a-1\}$, $a+1 \to x$, a+1 and w are nonadjacent.

We have $x \notin \{1, 2, \ldots, a-1\}$. Thus, $x \in \{b, b+1, \ldots, k\}$. Suppose x = b, i.e, $b \to a$, then $\varphi(b) < a$ and $\psi(a) > b$. $\varphi(b)$ and b-1 are adjacent by $\varphi(b) \to b$ and $b-1 \to b$. Since b-1 and w are nonadjacent and $w \to \varphi(b)$, $\varphi(b) \to b-1$. Similarly, we can get $\varphi(b) \to \{a+1, \ldots, b-1\}$. Let $\alpha = \varphi(b)$, $\gamma = a+1$ and $\delta = \psi(a)$, then by Lemma 6 there is a $P_k(1, k)$ in T. This is a contradiction to (\star) . Hence x > b. Similarly, using $C_3(b-1, b) = (b-1, b, y, b-1)$, we have y < a.

If b > a+2, x and a+2 are adjacent since $a+1 \to x$ and $a+1 \to a+2$. Since a+2 and w are nonadjacent and $x \to w$ for any $w \in W$, $a+2 \to x$ by the definition of a local tournament. Similarly, $\{a+1,\ldots,b-1\} \to x$. Let $\alpha = y(< a)$, $\gamma = b-1$ and $\delta = x(> b)$. By Lemma 6 there is a $P_k(1,k)$ in T, a contradiction. Hence b=a+2.

Furthermore, a+1 and x-1 are adjacent since $a+1 \to x$ and $x-1 \to x$. Then $a+1 \to x-1$ by the fact that $x-1 \to w$, w and a+1 are nonadjacent. Similarly, we have

$$b-1 = a+1 \to \{b+1, \dots, x-1, x\}$$
 (B)

Now the following three cases must be considered:

Case 1. k > b + 1 and a > 2.

If $\varphi(b) < a$, then we may choose $\alpha = \varphi(b)$, $\gamma = b$ and $\delta = x$. Hence there is a $P_k(1,k)$ in T by Lemma 6. This is a contradiction. So $\varphi(b) = a$, i.e, $a \to b$. Since $1, a \in O(w)$, 1 and a must be adjacent. Suppose $1 \to a$. If $\varphi(a-1) > b$, then we may choose $\alpha = 1$, $\gamma = a$ and $\delta = \psi(a-1)$. There is a $P_k(1,k)$ in T by Lemma 6. This is a contradiction. So $\psi(a-1) = b$ since $\psi(a-1) \geq b$, i.e. $a-1 \to b$. Now, let $\alpha = a-1$, $\gamma = b$ and $\delta = x$, there is also a $P_k(1,k)$ in T by Lemma 6, a contradiction. Hence we always assume that

$$a \to 1 \text{ and } a \to b$$
 (C)

in the following arguments.

1) $\{1, 2, \ldots, a-1\} \rightarrow a+1$.

 $1 \to a+1$ since a+1 and w are nonadjacent and 1, $a+1 \in O(a)$. Furthermore, $2 \to a+1$ since $1 \to 2$ and $1 \to a+1$. Similarly, we have $\{1, 2, \ldots, a-1\} \to a+1$.

2) $b \to 1$, $a+1 \to k$ and $j \to b$ for each $j \in \{b+2, \ldots, k\}$.

If there exists a $j \in \{b+2,\ldots,k\}$ such that $b \to j$. Then T contains a $P_k(1,k) = (1,2,\ldots,a-1,a+1,b+1,\ldots,j-1,w,a,b,j,\ldots,k)$ by 1), (B) and (C). This is a contradiction. So $\{b+2,\ldots,k\} \to b$.

Since k, $a+1 \in I(b)$, we have that k and a+1 are adjacent. Furthermore, $a+1 \to k$ since $k \to w$ and a+1 and w are nonadjacent.

Since 1, $b \in O(k)$, 1 and b are adjacent. If $1 \to b$, then we may choose $\alpha = 1$, $\gamma = b$ and $\delta = k$. Then there is a $P_k(1, k)$ in T by Lemma 6. This is a contradiction. Hence $b \to 1$.

3) k = b + 2 and p = b + 1.

p>b since $b\to 1$. If $k-1\geq b+2$, then T contains a $P_k(1,k)=(1,p,\ldots,k-1,b,\ldots,p-1,w,2,\ldots,b-1=a+1,k)$ by 2). This is a contradiction. Hence k=b+2 and p=b+1.

4) $(a-1,b) \notin A$, a = 3, p = 6 and k = 7.

Note that $\psi(a-1) \in \{b, b+1, b+2=k\}$. If $\psi(a-1)=b$, then we may choose $\alpha=a-1$, $\gamma=\psi(a-1)=b=a+2$ and $\delta=k$. By 2) and Lemma 6, there is a $P_k(1,k)$ in T. This is a contradiction. So $\psi(a-1)>b$ and $(a-1,b) \notin A$.

If a-1>2, then we have either $P_k(1,k)=(1,2,a,\ldots,\psi(a-1)-1,w,3,\ldots,a-1,\psi(a-1),\ldots,k)$, if $2\to a$ or $P_k(1,k)=(1,a+1,\ldots,\psi(a-1)-1,w,a,2,\ldots,a-1,\psi(a-1),\ldots,k)$ by 1), if $a\to 2$. These contradict to (\star) . Hence $a\le 3$. Thus a=3 by the assumption that a>2. Finally by 3) we have p=b+1=a+3=6 and k=b+2=a+4=7.

5) x = k and q = 2 (hence $a + 1 \rightarrow x = k \rightarrow a$).

Suppose x < k = b + 2. x = b + 1 since x > b. By 3) and the choice of x, we have $p = b + 1 = x \rightarrow a$. Hence there is a $P_k(1, k) = (1, p = x, a, b, w, 2, a + 1, k)$ by 1), 2) and (C). This is a contradiction to (\star) . Hence x = k and q = 2.

6) $b + 1 \rightarrow 2$.

2 and b+1 are adjacent since 2, $b+1=p\in O(1)$. If $2\to b+1$, then 2 and b are adjacent by $b\to b+1$. $b\to 2$ since $(2,b)=(a-1,b)\notin A$ by 4). Then there is a $P_k(1,k)=(1,p=b+1,w,a,a+1,b,2=q,k)$. This is a contradiction. So $b+1\to 2$.

7) |W| = 1.

Suppose that there is a $w_0 \in W - \{w\}$. Without loss of generality, let $w \to w_0$. Then there is $P_k(1, k) = (1, p = b + 1, w, w_0, 2, a, a + 1, k)$ by 2). This is a contradiction.

8) 2 and 5, 3 and 6 are nonadjacent.

Otherwise, there is a $P_k(1, k)$ in T. For example if $(6, 3) \in A$, there exists a $P_k(1, k) = (1, p = 6, 3 = a, a + 1, b, w, 2 = q, k)$. This is a contradiction.

Up to now, we have proved that $T \cong D_8$ (See Figure 1) in this subbase.

Case 2. k = b + 1 and $a \ge 2$.

Since $b < x \le k = b+1$ and $b \le p < k = b+1$, x = k and p = b, i.e. $a+1 \to x = k$ and $1 \to p = b = a+2$. Let $\alpha = 1$, $\gamma = a+2$ and $\delta = k$, there is a $P_k(1,k)$ in T by Lemma 6. This is a contradiction.

Case 3. a = 2 and $k \ge b + 2$.

Consider the converse of T. Note that Case 3 in T is Case 2. in T. So Lemma 7 is valid.

Lemma 8. If T satisfies (\star) and b=a+1, then T is a T_6 - or T_8 -type digraph.

Proof: We consider the following two cases.

Case 1. $|W| \ge 2$ (let $w, w' \in W$)

Suppose p>a+1, q< a and k>6. Then there exists an $i\in\{1,2,\ldots,k\}-\{1,q,a,a+1,p,k\}$. If 1< i< q, then $q\geq 3$ and there is a $P_k(1,k)=(1,p,\ldots,k-1,w,q+1,\ldots,a,a+1,\ldots,p-1,w',3,\ldots,q,k)$. Similarly, T contains a $P_k(1,k)$ when q< i< a or a+1< i< p or p< i< k. These are contradictions. If p>a+1, q< a and k=6, then q=2, a=3 and p=5. Because $|W|\geq 2$ and T[W] is an arc-3-cyclic tournament by Lemma 5, we have $|W|\geq 3$. Let $\{w_1,w_2,w_3\}\subseteq W$ and $w_1\to w_2\to w_3$. Then T contains a $P_k(1,k)=(1,p,w_1,w_2,w_3,q,k)$. This is a contradiction. Hence we have p=a+1 or q=a.

In the following we may assume that, without loss of generality, p = a+1 (Otherwise q = a, we can consider the converse of T). Thus $1 \to a+1 = b$. Now we can obtain the following assertions.

9) q < a (therefore $(a, k) \notin A$).

If q = a, then $a = q \to k$. There is a $P_k(1, k) = (1, p = a + 1, ..., k - 1, w, 2, ..., a, k)$, a contradiction.

10) k = a + 2, $V_1 = \{q + 1, ..., a\} \rightarrow a + 1$ and $T[V_1]$ is a tournament.

Suppose k>a+2. If $\varphi(a+2)=a$, let $\alpha=1,\ \gamma=a+1$ and $\delta=a+2$, then there is a $P_k(1,k)$ in T by Lemma 6. This is a contradiction. Hence $\varphi(a+2)< a$. Since $a+1,\ k\in I(w),\ a+1$ and k are adjacent. If $a+1\to k$, let $\alpha=\varphi(a+2),\ \gamma=a+2$ and $\delta=k$ in Lemma 6, then there is a $P_k(1,k)$ in T, a contradiction. Hence $k\to a+1$. Thus a and k are adjacent by $a\to a+1$. Hence $k\to a$ by 9). There is a $C_3(k,a)=(k,a,z,k)$. Obviously, $z\notin W,\ z\neq 1,\ z\neq a+1$ and $z\notin \{q+1,\ldots,a-1\}$ by the definition of q. Let $P_1=(1,p=a+1,\ldots,k-1,w,2,\ldots,z,k)$ and $P_2=(w,z+1,\ldots,a,z)$. If $z\in \{2,\ldots,q\}$, then P_1 and P_2 satisfy the condition of Lemma 2, hence there is a $P_k(1,k)$ in T. This is a contradiction. So $z\in \{a+2,\ldots,k-1\}$. Thus there is a $P_k(1,k)=(1,p=a+1,\ldots,z-1,w,2,\ldots,a,z,k)$ in T, a contradiction too. Hence k=a+2.

Let $V_1 = \{q+1,\ldots,a\}$. Then $T[V_1]$ is a tournament by $V_1 \subseteq O(w)$. Since k=a+2 and by the definition of q, $\psi(j)=a+1$ for each $j \in V_1$, that is $V_1 \to a+1$.

11) $T[V_1]$ is a strong tournament.

If not, then $|V_1| \ge 2$ and $q+1 \to a$. There is a $C_3(q+1,a) = (q+1,a,y,q+1)$. Obviously $y \notin W$. By $q \to k$ and Lemma 6, $y \notin \{1,2,\ldots,q-1\}$. $y \neq k$ by 9). And $y \neq a+1$ by 10). Since $T[V_1]$ is not strong, $y \notin V_1$.

Hence y=q. i.e. $a \to y=q$. Let $F_1=(1,p=a+1,w,2,\ldots,q,\kappa)$ and $P_2=(w,q+1,\ldots,a,q)$. Then P_1 and P_2 satisfy the conditions of Lemma 2 and there is a $P_k(1,k)$ in T, a contradiction. So $T[V_1]$ is a strong tournament.

12) q=2 (therefore $2 \to k$) and $V_1 \to 1$.

Suppose $q \geq 3$. By $q \to k$ and Lemma 6, we have $q+1 \to 2$. We may assume that $(q+1,h,\ldots,q+1)$ is a Hamilton cycle in $T[V_1]$ by 11). Then there is a $P_k(1,k)=(1,p=a+1,w,h,\ldots,q+1,2,\ldots,q,k)$, a contradiction. Hence q=2.

Now we show that $V_1 \to 1$. $T[\{1,2\} \cup V_1]$ is a tournament since $\{1,2\} \cup V_1 \subseteq O_c(w)$. Suppose there exists an $x \in V_1$ such that $1 \to x$. Let (x,\ldots,h,x) be a Hamilton cycle in $T[V_1]$. Then there is a $P_k(1,k) = (1,x,\ldots,h,a+1,w,2,k)$ by 10). This is a contradiction. Hence $V_1 \to 1$.

13) T is a tournament.

In fact, $T[\{1,2\} \cup V_1]$ is a tournament since $\{1,2\} \cup V_1 \subseteq O(w)$. $T[V_1 \cup \{k\}]$ is a tournament since $V_1 \cup \{k\} \subseteq I(1)$, 2 and a+1 are adjacent by $1 \to 2$ and $1 \to p = a+1$. Hence T is a tournament by 10) and 12).

Therefore by 13) and p = a + 1, using the result of (9) case (i) in the proof of Theorem 1 of [4], we get that T is a T_6 -type digraph (See Figure 3) in this case.

Case 2. |W| = 1.

Let $W = \{w\}$. If p = a + 1 or q = a, then we can obtain that T is a T_6 -type digraph by a similar argument in Case 1. Hence in the following we may assume that p > a + 1 and q < a. And we can obtain the following assertions.

14) There is either $\psi(a) = a + 1$ or $\varphi(a + 1) = a$.

Suppose $\psi(a) > a+1$ and $\varphi(a+1) < a$, let $\alpha = \varphi(a+1)$, $\gamma = a+1$ and $\delta = \psi(a)$ in Lemma 6, then there is a $P_k(1,k)$ in T. This is a contradiction. Hence $\psi(a) = a+1$ or $\varphi(a+1) = a$.

Without loss of generality, let $\psi(a) = a+1$. Otherwise we can consider the converse of T. Then $(a, j) \notin A$ and $1 \le \varphi(j) < a$ for each $j \in \{a+2, \ldots, k\}$. Because $\psi(\varphi(j)) \ge j \ge a+2$ for each $j \in \{a+2, \ldots, k\}$, we may define:

$$m = \max\{i | 1 \le i \le a - 1, \psi(i) \ge a + 2\}, \ V_2 = \{m + 1, \dots, a\}.$$

By the definition of m and q, we have that $2 \le q \le m < a$, $\psi(m) \ge a + 2$ and i does not dominate any vertex of $\{a+2,\ldots,k\}$ for each $i \in V_2$. Hence

$$\psi(i) = a + 1 \text{ for each } i \in V_2. \tag{D}$$

15) $m+1 \to \{1, 2, \dots, m-1\}$ and $q+1 \to \{1, 2, \dots, q-1\}$.

Suppose there exists $j \in \{1, 2, ..., m-1\}$ such that $j \to m+1$. Let $\alpha = j$, $\gamma = m+1$ and $\delta = \psi(m)$. Then there is a $P_k(1, k)$ in T by Lemma 6. This is

a contradiction. Hence $m+1 \to \{1, 2, ..., m-1\}$ since $I\{1, 2, ..., q, ..., a\}$ is a tournament. Similarly, we have that $q+1 \to \{1, 2, ..., q-1\}$.

16)
$$k = a + 3$$
, $p = a + 2$ and $(a + 1, 1) \in A$.

Since $a+1 , <math>k \ge a+3$. Suppose k > a+3. Then we can obtain the following results.

(a)
$$k-1 \rightarrow a+1$$
.

Suppose $a+1 \to k-1$. By $\psi(a)=a+1$, we have $\varphi(a+2) < a$. Then let $\alpha=\varphi(a+2), \ \gamma=a+2$ and $\delta=k-1$, there is a $P_k(1,k)$ in T by Lemma 6. This is a contradiction. Hence $k-1 \to a+1$ since $k-1, \ a+1 \in I(w)$.

(b)
$$k-1 \to V_2 = \{m+1,\ldots,a\}.$$

a and k-1 are adjacent since k-1, $a \in I(a+1)$. So $k-1 \to a$ since $\psi(a) = a+1$. Similarly, by (D), we have $k-1 \to V_2 = \{m+1, \ldots, a\}$.

(c)
$$m=2$$
.

Suppose $m \ge 3$. Since $m+1 \to 2$ by 15) and $k-1 \to m+2$ by $a+1 \ge m+2$ and (a), (b), there is a $P_k(1,k) = (1, p, ..., k-1, m+2, ..., p-1, w, q+1, ..., m+1, 2, q, k)$. This is a contradiction. So m=2.

Now we have $2 = q \to k$ since $2 \le q \le m = 2$. And $k - 1 \to m + 1$ by (b). Thus there is a $P_k(1, k) = (1, p, \dots, k - 1, m + 1 = 3, \dots, p - 1, w, 2 = m = q, k)$. This is a contradiction. Hence k = a + 3 and p = a + 2.

Since $1 \to p = a+2$ and $a+1 \to a+2$, 1 and a+1 are adjacent. Thus $a+1 \to 1$ by the definition of p.

17)
$$k \to \{q+1,\ldots,a,a+1\}$$
. Therefore $k \to V_2$.

Suppose $a+1 \to k$, let $\alpha=1$, $\gamma=p=a+2$ and $\delta=k$ in Lemma 6, then there is a $P_k(1,k)$ in T. This is a contradiction. Hence $k \to a+1$. Since $k \to a+1$, $a \to a+1$ and $\psi(a)=a+1$, we have $k \to a$. Since $a-1 \to a$, $a-2 \to a-1, \ldots, q+1 \to q+2$ and the definition of q, we can obtain $k \to a-1, \ldots, k \to q+1$ one by one. That is, $k \to \{q+1, \ldots, a, a+1\}$ and $k \to V_2$.

18)
$$m \ge 3$$
.

Suppose m < 3. Then m = 2 and q = 2. By 17) $(k, a) \in A$. There is a $C_3(k, a) = (k, a, x, k)$. Obviously, $x \neq w$, $x \neq a + 1$ since $k \to a + 1$ in 17). We also have $x \neq a + 2$ since $\psi(a) = a + 1$. $x \neq 1$ since $k \to 1$, and $x \notin V_2$ by 17). Hence x = 2 = m. That is, $a \to 2$.

By 16) we have $a+2=p\in O(1)$. So 2 and a+2 are adjacent. If $2\to a+2$, a+2 and m+1 are adjacent since $2=m\to m+1$. Thus $a+2\to m+1$ by the definition of m. There is a $P_k(1,k)=(1,p=a+2,m+1=3,\ldots,a+1,w,m=2=q,k)$, a contradiction. Hence $a+2\to 2$. Since $a\to 2$, a and a+2 are adjacent. $a+2\to a$ since $\psi(a)=a+1$. When $m+1\le a-1$, we have $a+2\to a-1$ since $a-1\to a$ and the definition of m. Similarly, we have $a+2\to a-2,\ldots,a+2\to m+1$. Then there is a

 $n \ge 3$.

19) $2 \rightarrow a + 1$ and $m \rightarrow a$.

In fact, we have $m+1 \to a+1$ by (D), and $m+1 \to 2$ by 15) and 18). Hence 2 and a+1 are adjacent. If $a+1 \to 2$, then there is a $P_k(1,k) = (1, p = a+2, w, q+1, \ldots, a+1, 2, \ldots, q, k)$. This is a contradiction. So $2 \to a+1$.

Suppose $a \to m$. Since $\psi(m) \in \{a+2, a+3=k\}$, we have $P_1 = (1, 2, a+1, w, 3, \ldots, m, a+2, k)$ (if $\psi(m) = a+2$) or $P_1 = (1, 2, a+1, a+2, w, 3, \ldots, m, k)$ (if $\psi(m) = a+3$) and $P_2 = (w, m+1, \ldots, a, m)$. Clearly P_1 and P_2 satisfy the conditions of Lemma 2, hence T contains a $P_k(1, k)$. This is a contradiction. So $m \to a$.

20) $T[V_2]$ is a strong tournament.

If not, then $|V_2| \geq 2$ and $m+1 \to a$. There is a $C_3(m+1,a) = (m+1,a,x,m+1)$ in T. Obviously, we have $x \neq w, x \notin \{1,2,\ldots,m-1\}$ by 15), $x \neq k$ by 17), $x \neq a+1$ by (D), $x \neq a+2$ by 14), $x \neq m$ by 19), and $x \notin V_2$ since $T[V_2]$ is not strong. Thus there is no $C_3(m+1,a)$ in T. This contradicts the fact that T satisfies the arc-3-cyclic property.

21) m = 3.

If $m \geq 4$, then $m+1 \rightarrow 3$ by 15). Let $(m+1,h,\ldots,m+1)$ be a Hamilton cycle in $T[V_2]$. Since $\psi(m) \in \{a+2,a+3=k\}$ and 19), we have $P_k(1,k) = (1,2,a+1,w,h,\ldots,m+1,3,\ldots,m,\psi(m)=a+2,k)$ (if $\psi(m)=a+2$) or $P_k(1,k)=(1,2,a+1,a+2,w,h,\ldots,m+1,3,\ldots,m,k)$ (if $\psi(m)=k$). Hence T contains a $P_k(1,k)$ by Lemma 2. This is a contradiction. Hence m=3 by 18).

22) q < m (that is, q = 2) and $(k, m) \in A$.

By 17) there is a $C_3(k,a)=(k,a,x,k)$. Using a similar proof of 18), we have $x \notin V_2 \cup \{1,a+1,a+2,w\}$, and $x \neq m$ by 19). So x=2 and $2=x \to k$.

If q=m, then q=3 and $m=q\to k$. Since $a+2=k-1\to k$, m and a+2 are adjacent. If $a+2\to m$, then there is a $P_k(1,k)=(1,p=a+2,m=3,m+1,\ldots,a+1,w,2,k)$, a contradiction. So $m\to a+2$. We have $a+2\to m+1$ since $m\to m+1$ and the definition of m. Thus T contains a $P_k(1,k)=(1,p=a+2,m+1,\ldots,a+1,w,2,3=q,k)$, a contradiction. Hence q< m and q=2. Thus $k\to m=3$ by 17).

23) $m \to a + 2$, $a + 2 \to a$, a = 4 and k = 7.

 $\psi(m)=a+2$ since 22) and $a+2\leq \psi(m)\leq a+3=k$. That is, $m\to a+2$. And note that $m\to a$ by 19), hence a and a+2 are adjacent. Then $a+2\to a$ since $\psi(a)=a+1$.

By the definition of m and $a-1 \rightarrow a, a-2 \rightarrow a-1, \ldots, m+1 \rightarrow m+2$ and $a+2 \rightarrow a$, we have that $a+2 \rightarrow \{a-1, a-2, \ldots, m+1\}$. If a>4,

 $a+2, m+2, \ldots, a, a+1, w, m=3, m+1, m-1=2=q, k$) by 15). This is a contradiction. Hence $a \le 4$. So we have a=4 since 3=m < a. And then k=a+3=7.

24) 6 and 2, 5 and 3 are adjacent respectively, where the orientation can be chosen arbitrarily.

Because 6 = a + 2 = p, $2 \in O(1)$ and 3, $5 = a + 1 \in O(2)$ by 19), hence 24) is true.

Up to now, if p > a + 1, q < a and |W| = 1, we have proved that T is a T_8 -type digraph (see Figure 2).

Note that the converse of ${}^{\bullet}T_{6}$ - $(T_{8}$ -, resp.) type digraphs is a T_{6} - $(T_{8}$ -resp.) type digraphs. Therefore the proof of Lemma 8 is a completed.

Proof of Theorem 1: Let T=(V,A) be an arc-3-cyclic connected local tournament of order n. If T is not arc-pancyclic, then there is an arc e in T such that e is not pancyclic. Thus T satisfies (*). By Lemmas 3, 4 and 5, we only consider the following two cases: b > a+1 and b=a+1. And then by Lemma 7 and Lemma 8, T is a T_6 - or T_8 -type digraph or D_8 . Therefore the proof of Theorem 1 is completed.

Proof of Theorem 2: By Theorem 1, if T is an arc-3-cyclic connected local tournament and an arc e is not pancyclic, then T must be a T_6 - or T_8 -type digraph or D_8 . It is easy to check that in each of T_6 -, T_8 -type digraph and D_8 , there exists only one arc (k,1) which is not pancyclic.

Proof of Corollary 1: Note that for T_6 - or T_8 -type digraph or D_8 , they are not arc-n-cyclic.

References

- [1] J. Bang-Jensen, Locally semicomplete digraphs: A generalization of tournaments. J. Graph Theory 14 (1990), 371–390.
- [2] J. Bang-Jensen, On the structure of locally semicomplete digraphs. *Dis. Math.* 100 (1992), 243–265.
- [3] J.A. Bondy, and U.S.R. Murty, "Graph theory with applications". Amer. Elsevier, New York, 1976.
- [4] Tian Feng, Wu Zheng Sheng and Zhang Cun Quan, Cycles of each length in tournaments. J. Combin. Theory B 33 (1982), 245-255.
- [5] Wu Zheng Sheng, Zhang Ke Min and Zou Yuan, A necessary and sufficient condition for arc-pancyclicity of tournaments. *Scientia Sinica* **25**(3) (1982), 249–254.