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SOME LOCAL CONDITIONS FOR HAMILTON-CONNECTED
GRAPHS*
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Abstract. In this paper, the following results are proved: Let G be a 3-connected
graph of order n(> 3). If I(u,v) > a2(u,v)+3 whenever d(u,v) = 2 and max{d(u),
d(v)} < (n+1)/2, then G is Hamilton-connected. Here I(u,v) = |[N(u) N N(v)|,
az(u,v) = a(G[N2(u) N N2(v)]), and N2(u) = {v € V(G)|d(u,v) = 2}.

Let G be a 3-connected graph of order n(> 3). If I(u,v) > S(u,v) + 1 whenever
d(u,v) = 2 and max {d(u),d(v)} < (n + 1)/2, then G is Hamilton-connected. Here
S(u,v) denotes the number of edges of maximum star containing u, v as an induced
subgraph in G.

1. Introduction

We refer to [2] for terminology and notation not defined here and consider
finite simple graphs only.

A path with z and y as end vertices is called an z-y path. A path is called
a Hamilton path if it contains all the vertices of G. A graph G is Hamilton-
connected if every two vertices of G are connected by a Hamilton path.

Let P be a path of G. For convenience, P will also denote the vertex set
of the path P. We denote by ﬁ the path P with a given orientation, and }3
the path P with the reverse orientation. If u,v € V(P), then u}_;v denotes the
consecutive vertices of B from u to v. We use u™ to denote the successor of u on
P and u™ to denote its predecessor. If A C V(P), we define AT = {vF|v € A}

and A~ = {v~|v € A}. The distance between vertices u and v is denoted by
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d(u,v). For each vertex u € V(G), we denote by N(u) the set of all vertices of G
adjacent to u and by Na(u) the set of all vertices from u whose distance are two.
The subgraph of G induced by N(u) U {u} is denoted by G(u). If uv & E(G), we
denote by S(u,v) the number of edges of maximum star including u,v. We use
a(G) to denote the independence number of G. Let z and y be two vertices in
G with d(z,y) = 2. We define I(z,y) = |[N(z) N N(y)| and

o(G[N2(z) N Na(y)]),  if Na(z) N Na(y) # 0,
0, otherwise.

a2(wa y) = {

In this paper, we get the following results.

Theorem 1. Let G be a 3-connected graph of order n(> 3). If I(u,v) >
az(u,v) + 3 whenever d(u,v) = 2 and max{d(u),d(v)} < (n + 1)/2, then G is

Hamilton-connected.

Theorem 2. Let G be a 3-connected graph of order n(> 3). If I(u,v) >
S(u,v) + 1 whenever d(u,v) = 2 and max{d(u),d(v)} < (n + 1)/2, then G is

Hamilton-connected.

2. Proof of Theorems 1 and 2
We first present the following lemma.

Lemma. Let G be a 3-connected graph of order n, then for any distinct
vertices u and v, there is an u-v path passing through all vertices of degree at
least (n +1)/2.

Proof. By contradiction. Let P = vjv; - - - v; be a path containing as many
vertices of degree at least %’i as possible with vy = u,vy = v. We give P
an orientation from v; to vx. Set R = V(G)\V(P). Since G is 3-connected,
there exists a path P’ connecting two vertices of P with internally disjointing
from P and containing an internal vertex z of degree at least ﬂ%‘—l Assume
vs, vt € V(P)NV(P') and 1 < s < t < k. We may assume P and P’ are chosen
in such a way that ¢ — s is as small as possiblé. We give P’ an orientation from
vs to v;. By the choice of P’ and P, there exists a vertex v; with s < [ < t such
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that d(v;) > %+ and d(v;) < 24 for s <i < L. If | > s + 1, then
(Ne(w)\{v1})"\{vs}, Np(2), Nr(v), Nr(z), {z,v1-1}

are pairwise disjoint. For suppose vm, € ((Np(v;)\{v1}~\{vs})NNp(z), then v, €
{v1,v2,...,v5_1} or vy, € {v,9441,...,vc}. There is u — v path vivg - v,z F’
vs(}; Umn+1UV41 * * - Vg OF VU9 - -+ Vg I;)’ xvm;;vlvm“ «--vg. These two u — v path
all contain more vertices of degree at least "TH than P, which contradict the
choice of P. We can similarly prove other pairs of set are disjoint. This implies

that

n 2 [(Np(u)\{v1})"\{vs}] + [Np(z)| + |[Nr(v)| + | Nr(z)| + 2
>dp(v) — 2+ dp(z) + dr(v)) + dr(z) + 2
2 d(u) + d(z)
>n+1,

a contradiction. If [ = s + 1, then the sets

(NP(’U[)\{’Ul})_, NP(:E)’ NR(Ul)a NR(iE), {‘T}
are pairwise disjoint, yielding a similar contradiction.

Proof of Theorem 1. For any distinct vertices u,v € V(G), by Lemma
there exists an u-v path containing all vertices of degree at least ”T‘H Among such
paths, let P =v1v; -+ - v be one of maximum length. We give P an orientation
from v; to v;. We assume R = V(G)\V (P) # 0.

There exists a path P’ of length at least 2 connecting two vertices of P
with internally disjointing from P since G is a 3-connected. Suppose vs,v; €
V(P)NV(P'), where 1 < s < t < k. For G is 3-connected, we may assume
vy # vg. We give P’ an orientation from v, to v;. Let z be the successor
of v; on P’ and z' the predecessor of vy on P', (possibly z = 2’ ) Clearly,
d(w) < (n+1)/2, d(z') < (n+1)/2. We denote the vertices of levs+1 and
V42 ka by S; and the vertices of vsy 9 P'ut+1 by S3. By the choice of P’ and
P the sets (Ng, (vs+1)\{ve})*, Ns,(ve41), Ns,(vsi1), (Ns,(vi41))t, Nr(vstr),
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Ng(ves1), {z} are pairwise disjoint. This implies that

n > |(Ns, (vs41)\{vs ) *| + |Ns, (v41)] + [Nz (vs41)]
+|(Nsy (ve41)) 7| + INR(vsr1)} + [NR(ve41)] +1
> dp(vs41) — 1+ dp(ve41) + dr(vs+1) + dr(ve1) + 1
= d(vs41) + d(ve41).

So we have d(vsy1) +d(ver1) <n+1. ie. min{d(vs41),d(ves1)} < ntl | say
d(vs41) < %L, Then I(x,v541) > 02(2,v541) + 3.

It is obvious that N(z)NN (vs4+1) C V(P). Let N(2)NN (vsy1) = {Vs, Viy» Via,
... 05}, where 1 < 4y < i3 < --- < 4 < k. The choice of P implies that
d(z,vs41) = 2 and N(z) N N(vs31) € N(P). Thus I(z,vs41) — 2 < o2(z, vs+1),
a contradiction.

Proof of Theorem 2. By contradiction. Let G be a non-Hamilton-connected
graph satisfying the condition of Theorem 2. Then there exist vertices u,v €
V(G) such that there is no Hamilton path between u and v. By Lemma there
is an u-v path passing through all vertices of degree at least ’—‘—2+—1 Among such
paths, let P = vv3---vx be one of maximum length. Let R = V(G)\V(P).
Then R # 0. There exists a path P’ of length at least 2 connecting two vertices
of P with internally disjointing from P since G is 3-connected. Suppose vs,v; €
V(P)NV(P'), where 1 < s < t < k. For G is 3-connected, we may assume v; # k.
We give P' an orientation from v, to v;. Using an analogous method in the proof of
Theorem 1, we have d(vs41) + d(vi41) < n+ 1 ie. min{d(vsy1),d(ve+1)} < ol
say d(vsy1) < %1- So there is a vertex v € R such that d(vi;+1) < ’i;—l,
where v;; € Np(v) = {vi,Vig,---, Vi, }, 1 <41 <d2 < -+- < gp < k. Since
d(v,vi;41) = 2, I(v,vi;41) 2 S(v,v5;+1)+1 > 3 and by the definition of P, p > 3,
we can obtain the following two claims.

(1) M = {v,vi,41,Viy+1,. - -, Vi,_;+1} i an independent set.

(2) d(v,vi;41) = 2 and N(v) NN(vi;41) C Np(v),j=1,2,...,p - 1.

By the similar proof of Theorem 1, we have for any distinct vertices z,y €

{Vi1 41, Vig41, - - > Vi1 41}, 4(z) +d(y) <n+ 1. So there is at most one vertex
of degree at least %1 in the set {v,vi,41,...,%i,_;+1}. 1f such vertex exists, we

assume d(vj,+1) > ﬂ‘zﬂ, 1 < s < p—1. Now we consider the following two cases.



SOME LOCAL CONDITIONS FOR HAMILTON-CONNECTED GRAPHS 181

Case 1. d(vy,+1) < 2£L for any j € {1,2,...,p— 1}.

Consider the following iterated definition.

Let A} = {v,vi;+1}, le- ={v;},5=12,...,p—1. Clearly A]l C N(v;;)NM,
B} C N(vi;11) N Np(v) and |A}| > |Bj|.

Assume A?, Bf with A;? C N(uv;)N M, B;“ C N(vi;+1) N Np(v) and |A§| >
|B§“|, j=1,2,...,p—1, k > 1 are well defined, such that there exists ¢t (1 < ¢ <
p-1), |4f > |Bf| |

By (1),(2) and the condition of Theorem we have I(v,v;,41) > S(v,vi41) +
1> |A% +1 > |BF| + 2. So |[(N(vi,+1) N Np(v))\BF| > 2. Thus there exists r
(1 <r<p-—1)such that v;, € (N(vi,4+1) N Np(v))\BF.

Hence we can define A?H = Af, B;-“'H = B;-“, whenj#rtandl <j<p-1;
Akl = Ak BFTL = BFU {v;.} and AFt! = AFU {vi,+1}, BFt1 = BE.

Clearly A%*1 C N(v;) " M, Bt C N(vi;41) N Np(v) and |A¥*] > |BF ],
j=1,2,...,p— 1. Particularly |A¥*!| > |B¥*!| and |Bf*!| = |Bf| + 1.

Clearly the above iterative process can be continued infinitely.

p—1
Set by = . |B¥|, k =1,2,...,then 0 < by < by < --- < b <---. On
=1

J:
p—1
the other hand, by = > |B§°| < (p-1p, k& =12,..., since B;-“ C Np(v), a
=1

J:
contradiction.

Case 2. d(v;,+1) > %+

Let I = {il + 1,10 +1,... ,’ip_l + 1} and J = {]‘] < Iandvisvj € E(G)} In
this case we define A} = {v,vi;41}, le- ={v;}ifj€{1,2,...,s-L,s+1,...,p~
10\J; A} = {v,vi; 41, Y, +1}, BJI- = {v;;,v;,} ifj €{1,2,...,s-Ls+1,...,p—
1}nJ A?, B;-‘, k>1,1<j# s<p-—1can be defined as case 1. We will also

deduce a similar contradiction as case 1. This completes the proof of Theorem.

Corollary 1.([1]) Let G be a 3-connected graph of order n. If max{d(u),
d(v)}z'i—“;l for any vertices u,v € V(G) with d(u,v) = 2, then G is Hamulton-

connected.

Corollary 2.([3]) Let G be a graph of order n. If d(u) +d(v) > n+1 for

each pair u,v of nonadjacent vertices, then G is Hamilton-connected.
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Corollary 3. Let G be a connected graph of order n. If dg(yy () +dg)(y) >
d(u) + 2 for any u € V(G), {z,y} C V(G(u)), zy & E(G), then G 1s Hamilton-
connected.

Proof. It is sufficient to prove that G satisfies the condition of Theorem
2. Let u,v € V(G), d(u,v) = 2. By the definition of S(u,v), there exists
w € V(G) such that {u,v,71,...,2,—2} € N(w) is an independent set, where
s = S(u,v) > 2. By the condition of Corollary 3, we have
daaw)(¥) + dow)(v) 2 d(w) +2 = |V(G(w))}| + 1,
V(G(w)) = N(w) U {w} 2 (Ng(w)(u) U Ngw)(v)) U {u,v, 21, ... ,Ts—2},
(Ng(w)(®) U Ng@) (v)) N {u, v, 21, -, Bs-2} = 0.
So \
[V(G(w))] > |Ng(w) (1) U No(w) (v)| + 5
= |Ngw) ()| + |Ngw) ()] = [Naw)(®) N New)(v)] + 5.
Hence
I(u,v) = |N(u) N N(v)| > |Ng)(u) N Now)(v)]
> | Ngw)(@)| + [Ng@w) )| = [V(G(w))] + s
> dgw)(u) + dgw)(v) — (d(w) +1) +
>s+1=5(,v)+1L
On the other hand, |N(u) N N(v)] > S(u,v) +1 > 3 implies that G is 3-
connected. Therefore Corollary 3 follows from Theorem 2.

Note that Corollary 3 is localization of Corollary 2, it can be used to some
sparse graphs with large diameter.
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