

New Upper Bounds for Ramsey Numbers

Huang Yi Ru † and Zhang Ke Min ‡

The Ramsey number $R(G_1, G_2)$ is the smallest integer p such that for any graph G on p vertices either G contains G_1 or \bar{G} contains G_2 , where \bar{G} denotes the complement of G. Let $R(m,n) = R(K_m, K_n)$. Some new upper bound formulas are obtained for $R(G_1, G_2)$ and R(m, n), and we derive some new upper bounds for Ramsey numbers here.

© 1998 Academic Press Limited

The problem of determining Ramsey numbers is known to be very difficult. The few known exact values and several bounds for different G_1 , G_2 or m, n are scattered among many technical papers (see [3]).

A graph G with order p is called a $(G_1,G_2;p)$ -graph ((m,n;p)-graph, resp.) if G does not contain a G_1 and \bar{G} does not contain a G_2 (K_m and K_n , resp.). It is easy to see that $R(G_1,G_2)=p_0+1$ iff $p_0=\max\{p\mid \text{there exists a }(G_1,G_2;p)\text{-graph}\}$. In this paper, $f(G_1)$ ($g(G_2)$, resp.) denotes the number of G_1 (G_2 , resp.) in G (\bar{G} , resp.) as a subgraph. The $(G_1,G_2;p)$ -graph is called a $(G_1,G_2;p)$ -Ramsey graph if $p=R(G_1,G_2)-1$. Let d_i be the degree of vertex i in G of order p, and let $\bar{d}_i=p-1-d_i$, where $1\leq i\leq p$. If G, H are graphs, $G\circ H$ denotes one of $\{G\vee H,G+H\}$ -graph, where ' \vee ' is the join operation (see [1]). Let G_i^k (i=1,2) be a graph with order k and let $G_1=G_1^{m-s}\circ G_1^s$, $G_2=G_2^{n-t}\circ G_2^t$. Taking any vertex x (y, resp.), let $G_1^{s+1}=\{x\}\circ G_1^s$, $G_2^{t+1}=\{y\}\circ G_2^t$. The number of G_1^s (G_2^t , resp.) in G_1^{s+1} (G_2^{t+1} , resp.) as a subgraph is denoted by a_s (b_t , resp.). Thus we have:

THEOREM 1. For any $(G_1, G_2; p)$ -graph, the following inequalities must hold:

$$a_s f(G_1^{s+1}) \le f(G_1^s)[R(G_1^{m-s}, G_2) - 1]$$
 (1)

$$b_t g(G_2^{t+1}) \le g(G_2^t)[R(G_1, G_2^{n-t}) - 1].$$
 (2)

PROOF. In a $(G_1,G_2;p)$ -graph G, by the definition of $R(G_1^{m-s},G_2)$ and for any $G_1^s\subset G$, there are at most $R(G_1^{m-s},G_2)-1$ vertices x in $G-V(G_1^s)$ such that $\{x\}\circ G_1^s=G_1^{s+1}$, otherwise there is a G' $(\subset G-V(G_1^s))$ with order $R(G_1^{m-s},G_2)$, either there is a $G_1^{m-s}\subset G'$ such that $G_1^{m-s}\circ G_1^s=G_1\subset G$, or there is a $G_2\subset \bar{G'}\subset \bar{G}$; a contradiction. Hence by the definition of $f(G_1^{s+1})$ and a_s , (1) follows.

Similarly, (2) is also true.
$$\Box$$

Theorem 1 is a generalization of the theorem in [2].

COROLLARY 1. If $G_1 = K_m$ or $K_m - e$, $G_2 = K_n$ or $K_n - e$, then for any $(G_1, G_2; p)$ -graph G, the following inequalities must hold:

$$(s+1)f(K_{s+1}) \le f(K_s)[R(G_1^{m-s}, G_2) - 1]$$
(3)

$$(t+1)g(K_{t+1}) \le g(K_t)[R(G_1, G_2^{n-t}) - 1]$$
(4)

where $G_1^{m-s} = K_{m-s}$ or $K_{m-s} - e$ and $G_2^{n-t} = K_{n-t}$ or $K_{n-t} - e$. In particular, if $G_1 = G_2 = K_n$, we have

$$f(K_{n-1}) + g(K_{n-1}) \le f(K_{n-2}) + g(K_{n-2}) \tag{5}$$

where 0 < s < m - 1, 0 < t < n - 1 and $3 \le m \le n$.

[†]Project supported by NSF of Shanghai.

[‡]Project supported by NSFC.

PROOF. Note that for any K_{r+1} , it contains exactly r+1 K_r $(r \ge 1)$. Hence, by (1) and (2), (3) and (4) follow. Furthermore, since R(2, n) = R(n, 2) = n, (3) and (4), we obtain (5). \square

COROLLARY 2. For any $(K_m - e, K_n - e; p)$ -graph, we have

$$(s-1)f(K_{s+1}-e) \le f(K_s-e)[R(K_{m-s}, K_n-e)-1]$$
(6)

$$(t-1)g(K_{t+1}-e) \le g(K_t-e)[R(K_m-e,K_{n-t})-1] \tag{7}$$

where 1 < s < m - 1, 1 < t < n - 1 and 4 < m < n.

In particular, if m = n, we have:

$$f(K_4 - e) + g(K_4 - e) \le \frac{1}{4} [R(K_{n-3}, K_n - e) - 1] \sum_{i=1}^{p} d_i \bar{d}_i.$$
 (8)

PROOF. Note that for any $K_{r+1}-e$, it contains exactly r-1 K_r-e . Hence, by (1) and (2), (6) and (7) follow. On the other hand, since $f(K_3-e)+g(K_3-e)=\frac{1}{2}\sum_{i=1}^p d_i\bar{d}_i$, (6) and (7), we obtain (8).

By the way, it is easy to obtain an analogous inequality as follows:

$$(n-3)[f(K_{n-1}-e)+g(K_{n-1}-e)] \le (n-1)[f(K_{n-2}-e)+g(K_{n-2}-e)]. \tag{5'}$$

THEOREM 2. For any graph G_1 with order $m \geq 2$ and any graph G_2 with order $n \geq 2$,

$$R(G_1, G_2) \le R(G_1^{m-1}, G_2) + R(G_1, G_2^{m-1}).$$
 (9)

Furthermore, if $R(G_1^{m-1}, G_2)$ and $R(G_1, G_2^{n-1})$ are both even, the strict inequality holds in (9).

PROOF. Using Theorem 1 for s = t = 1 and $p = R(G_1, G_2) - 1$, we have

$$2f(K_2) \le p[R(G_1^{m-1}, G_2) - 1] \tag{1'}$$

$$2g(K_2) \le p[R(G_1, G_2^{n-1}) - 1]. \tag{2'}$$

Then $p(p-1) = 2\binom{p}{2} = 2[f(K_2) + g(K_2)] \le p[R(G_1^{m-1}, G_2) + R(G_1, G_2^{n-1}) - 2]$. Thus

we obtain (9). If $R(G_1^{m-1}, G_2)$ and $R(G_1, G_2^{n-1})$ are both even, then (1') and (2') are strict when p = odd, hence (9) is strict. When p = even, $R(G_1, G_2)$ is odd, hence (9) is also strict.

Clearly, (9) is a generalization of the classical inequality: $R(m,n) \leq R(m-1,n) + R(m,n-1)$

Using Theorem 1 for s = t = 2, we can obtain a stronger theorem than (9). In the following, we only consider the cases: $G_1 = K_m$ or $K_m - e$ and $G_2 = K_n$ or $K_n - e$.

THEOREM 3. Let $G_1 = K_m$ or $K_m - e$ and $G_2 = K_n$ or $K_n - e$, where $3 \le m \le n$. And let $R(G_1^{m-2}, G_2) \le \alpha + 1$, $R(G_1, G_2^{n-2}) \le \beta + 1$; $R(G_1^{m-1}, G_2) \le \gamma + 1$; $R(G_1, G_2^{n-1}) \le \delta + 1$.

$$R(G_1, G_2) \le \alpha + \beta + 4 + 2\sqrt{\alpha + \beta + 1 + \frac{1}{3}(\alpha^2 + \alpha\beta + \beta^2)},$$
 (10)

$$R(G_1, G_2) \le \max\{2r + 2 + \frac{1}{3}(\beta - \alpha), \frac{1}{2}(\beta + 3\gamma + 5)\}$$

$$+\frac{1}{2}\sqrt{\gamma(4\alpha+2\beta-3\gamma+6)+(\beta+1)^2}$$
, (11)

$$R(G_1, G_2) \le \max \left\{ 2\delta + 2 + \frac{1}{3}(\alpha - \beta), \frac{1}{2}(\alpha + 3\delta + 5) \right\}$$

$$+\frac{1}{2}\sqrt{\delta(2\alpha+4\beta-3\delta+6)+(\alpha+1)^2}$$
. (12)

PROOF. For any $(G_1, G_2; p)$ -Ramsey graph, and letting s = t = 2, then by (3) + (4), we can obtain:

$$3\binom{p}{3} - \frac{3}{2} \sum_{i=1}^{p} d_i \bar{d}_i \le \alpha \binom{p}{2} + \frac{1}{2} (\beta - \alpha) \sum_{i=1}^{p} \bar{d}_i$$

i.e.

$$p(p-1)(p-2-\alpha) \le \sum_{i=1}^{p} (p-1-d_i)(3d_i + \beta - \alpha) \tag{*}$$

Since $h(d) = (p-1-d)(3d+\beta-\alpha) \le h(d_0) = \frac{1}{12}(3p-3+\beta-\alpha)^2$ with $d_0 = \frac{1}{6}(3p-3+\alpha-\beta)$, by (*) we have $(p-1)(p-2-\alpha) \le h(d_0) = \frac{1}{12}(3p-3+\beta-\alpha)^2$. Thus we obtain (10).

In the following, we assume that $\gamma \leq d_0$, i.e. $p \geq 2\gamma + 1 + \frac{1}{3}(\beta - \alpha)$. Since $d_i \leq \gamma$ by the definition of γ , we obtain $h(d_i) \leq h(\gamma)$. Hence we have $(p-1)(p-2-\alpha) \leq h(\gamma) = (p-1-\gamma)(3\gamma + \beta - \alpha)$. Thus (11) follows.

Note that
$$R(G_1, G_2) = R(G_2, G_1)$$
. Hence (12) is true by (11).

Using (10), when $G_1 = G_2$, we have a generalization formula from Walker [4]:

COROLLARY 3.

$$R(G_1, G_1) \le 4R(G_1^{n-2}, G_1) + 2.$$
 (13)

From the tables (1 and 2 here) in [3] we have the known nontrivial values and some upper bounds for R(m, n) and two types of Ramsey number $R(G_1, G_2)$ including all known nontrivial values.

TABLE 1. Known nontrivial values and some upper bounds for R(m, n).

	m										
n	3	4	5	6	7	8	9	10			
3	6	9	14	18	23	28	36	43			
4		18	25	41	61	84	115	149			
5			49	87	143	216	316	442			
6				165	298	495	780	1171			
7					540	1031	1713	2826			
8						1870	3583	6090			
9							6625	12715			

TABLE 2. Two types of Ramsey number $R(G_1, G_2)$ including all known nontrivial values.

	G_1										
		$K_4 - e$	$K_5 - e$	$K_6 - e$	$K_7 - e$	$K_8 - e$	$K_9 - e$	$K_{10} - e$			
$\overline{K_3-e}$	3	5	7	9	11	13	15	17			
K_3	5	7	11	17	21	25	31	36–39			
$K_4 - e$	5	10	13	17	28						
K_4	7	11	19								
$K_5 - e$	7	13	22								
K_5	9	16	30-34								
$K_6 - e$	9	17									
K_6	11										

Now, by Theorems 1–3 and the formulas (9)–(13), and using Tables 1 and 2 we obtain the following 24 new upper bounds for the Ramsey number.

- (1) $R(5, 6) \le 87$ since $(\alpha, \beta, \gamma) = (17, 24, 40)$ and (11);
- (2) $R(5,7) \le 143$ since $(\alpha, \beta, \gamma) = (22, 48, 60)$ and (11);
- (3) $R(6,7) \le 298$ since $(\alpha, \beta, \gamma) = (60, 86, 142)$ and (11);
- (4) $R(7, 8) \le 1031$ since $(\alpha, \beta, \gamma) = (215, 297, 494)$ and (11);
- (5) $R(7, 9) \le 1713$ since $(\alpha, \beta, \gamma) = (315, 539, 779)$ and (11);
- (6) $R(8, 10) \le 6090$ since $(\alpha, \beta, \gamma) = (1170, 1869, 2825)$ and (11);
- (7) $R(K_4, K_6 e) \le 36$ since $(\alpha, \beta, \gamma) = (5, 10, 16)$ and (11) or (9);
- (8) $R(K_5 e, K_6 e) \le 39$ by (9);
- (9) $R(K_5 e, K_6) \le 59$ by Theorem 2;
- (10) $R(K_3 e, K_7) \le 13$ by (9);
- (11) $R(K_4 e, K_7) \le 36$ since $(\alpha, \beta, \gamma) = (1, 15, 12)$ and (11);
- (12) $R(K_4 e, K_8 e) \le 38$ since $(\alpha, \beta, \gamma) = (1, 16, 12)$ and (11);
- (13) $R(K_4, K_7 e) \le 52$ since $(\alpha, \beta, \gamma) = (6, 18, 20)$ and (11);
- (14) $R(K_4, K_8 e) \le 78$ since $(\alpha, \beta, \gamma) = (7, 35, 24)$ and (11);
- (15) $R(K_5 e, K_7 e) \le 66$ since $(\alpha, \beta, \gamma) = (10, 21, 27)$ and (11);
- (16) $R(K_5 e, K_7) \le 92$ since $(\alpha, \beta, \gamma) = (12, 33, 35)$ and (11);
- (17) $R(K_5, K_6 e) \le 67$ since $(\alpha, \beta, \gamma) = (16, 15, 35)$ and (11);
- (18) $R(K_5, K_7 e) \le 112$ since $(\alpha, \beta, \gamma) = (20, 33, 51)$ and (11) or (10);
- (19) $R(K_6 e, K_6 e) \le 70$ by (13);
- (20) $R(K_6 e, K_7 e) \le 135$ by Theorem 2;
- (21) $R(K_6 e, K_6) \le 125$ since $(\alpha, \beta, \gamma) = (25, 35, 58)$ and (11) or (10);
- (22) $R(K_6 e, K_7) \le 207$ since $(\alpha, \beta, \gamma) = (35, 66, 91)$ and (11);
- (23) $R(K_6, K_7 e) \le 224$ since $(\alpha, \beta, \gamma) = (51, 58, 111)$ and (11);
- (24) $R(K_7 e, K_7 e) \le 266$ by (13) etc.

REFERENCES

- 1. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- Huang Yi Ru and Zhang Ke Min, A new upper bound formula for two color classical Ramsey numbers, JCMCC (1997).
- 3. S. P. Radziszowski, Small Ramsey numbers, The Electronic J. Combin. 1 (1996), DSI 1-29.
- 4. K. Walker, Dichromatic graphs and Ramsey numbers, J. Combin. Theory 5 (1968), 238-243.

Received 10 January 1997 and accepted 9 July 1997

HUANG YI RU Department of Mathematics, Shanghai University, Shanghai, 201800, People's Republic of China

ZHANG KE MIN Department of Mathematicas, Nanjing University, Nanjing, 210093, People's Republic of China