- [12] W.T. Tutte, A geometrical version of the four color problem, Combinatorial Mathematics and its Applications, (eds. R. C. Bose and T. A. Dowling), University of North Carolina Press, Chapel Hill, 1967.
- [13] W.T. Tutte, Hamiltonian circuits, Colloquio Internazional sulle Teorie Combinatorics, Atti dei Convegni Lincei 17, Accad. Naz. Lincei, Roma I (1976) 193-199.
- [14] C.-Q. Zhang, Hamiltonian weights and unique edge-3-colorings of cubic graphs, J. Graph Theory 20, No. 1 (1995), 91–99.

Completely Strong Path-Connectivity of Local Tournaments*

Bu Yue Hua
Department of Mathematics
Zhejiang Normal University
Jinhua 321004
China

Zhang Ke Min
Department of Mathematics
Nanjing University
Nanjing 210008
China

ABSTRACT. Let T=(V,A) be an oriented graph with n vertices. T is completely strong path-connected if for each arc $(a,b)\in A$ and k $(k=2,\ldots,n-1)$, there is a path from b to a of length k (denoted by $P_k(a,b)$) and a path from a to b of length k (denoted by $P'_k(a,b)$) in T. In this paper, we prove that a connected local tournament T is completely strong path-connected iff for each arc $(a,b)\in A$, there exist $P_2(a,b)$ and $P'_2(a,b)$ in T, and $T\not\simeq T_0-D'_8$ -type digraph and D_8 .

1 Introduction

Let T=(V,A) be an oriented graph with n vertices. If an arc $(x,y) \in A$, then we say that x dominates y, denoted by $x \to y$. If S_1 and S_2 are disjoint subsets of V such that there is a complete connection between them and all arcs between them are directed toward S_2 , we say that S_1 dominates S_2 , denoted by $S_1 \to S_2$. We write $x \to S_2$ (resp., $S_2 \to x$) instead of $\{x\} \to S_2$ (resp., $S_2 \to x$). For $x \in V$, we define $O(x) = \{y \mid y \in V, (x,y) \in A\}$, $I(x) = \{y \mid y \in V, (y,x) \in A\}$.

^{*}The Project Supported by NSFC No. 19471037 and SFJS.

T is arc-k-cyclic if each arc $(a,b) \in A$, there is a path from b to a of length k-1 in T. T is arc-pancyclic (resp., arc-antipancyclic) if for each arc $(a,b) \in A$, there is a path from b to a (resp., from a to b) of length k $(k=2,3,\ldots,n-1)$ in T, denoted by $P_k(a,b)$, or briefly P_k (resp., $P'_k(a,b)$, P'_k). An oriented graph T is completely strong path-connected if T is arc-pancyclic and arc-antipancyclic. Other notations and terminologies not defined in this paper can be found in [3].

A local tournament T is an oriented graph such that T[O(x)] and T[I(x)] are tournaments for every vertex x in T. Local tournaments were first introduced by J. Bang-Jensen [1], [2]. Clearly, tournaments is a special class of local tournaments. In [1], [2], it was shown that every connected local tournament has a Hamiltonian path, and every strong local tournament has a Hamiltonian cycle. Many other results for tournaments are also shown for local tournaments. In this paper, Zhang and Wu's results in [5] and [6] are extended. We get the following main result.

Theorem. Let T=(V,A) be a connected local tournament with n vertices $(n \geq 3)$. If for each arc $(a,b) \in A$, there exist $P_2(a,b)$ and $P'_2(a,b)$ in T. Then T is completely strong path-connected, except $T \simeq T_0$ - or D'_8 -type digraph or D_8 . (see Figures 1, 2 and 3).

Figure 1. D_8

Figure 2. T_0 -type digraph. (Here T'_0 , T''_0 are tournaments)

Figure 3. D'_8 -type digraph. (Here T_1 is a tournament)

Immediately we have.

Corollary. ([5], Theorem 1) A tournament T=(V,A) with n vertices is completely strong path-connected if and only if for each arc $(a,b) \in A$, there exist $P_2(a,b)$, and $P_2'(a,b)$ in T, and $T \not\simeq T_0$ -type digraph.

2 The Proof of the Theorem

In order to prove the Theorem, we need the following lemmas.

Lemma 1. Let T=(V,A) be a connected local tournament. For each arc $(a,b) \in A$, there exist $P_2(a,b)$ and $P_2'(a,b)$ in T, then there exists a cycle in the induced subgraph $T[O(x_0)]$ (resp., $T[I(x_0)]$ for any $x_0 \in V$. Furthermore, $|O(x_0)| \geq 3$, (resp., $|I(x_0)| \geq 3$).

Lemma 2. Let T=(V,A) be a connected local tournament. For each arc $(a,b) \in A$, there exist $P_2(a,b)$ and $P'_2(a,b)$ in T, then there always exists a $P'_k(a,b)$ in T for each arc $(a,b) \in A$ $(k=2,3,\ldots,6)$.

By the definition of a local tournament, the proof of Lemma 1 and Lemma 2 is an analogous to the proof of Lemma 1 and Lemma 3 in [7].

Lemma 3. ([4] Theorem 1) Except for T_6 -, T_8 -type digraphs and D_8 (see Figures 1 and 5), every arc-3-cyclic connected local tournament is arc-pancyclic.

The proof of the Theorem.

Let T=(V,A) be a connected local tournament of order $n \ (n \geq 3)$ such that for each arc $(a,b) \in A$, there exist $P_2(a,b)$ and $P_2'(a,b)$ in T. For T_6 or T_8 -type digraph, it is easy to find that there exists a vertex x such that |O(x)|=2. So T is not a T_6 - or a T_8 -type digraph by Lemma 1. Hence by Lemma 3 T is an arc-panyclic local tournament except T is isomorphic

to D_8 . And by Lemma 2 there always exists a $P'_k(a,b)$ in T for $k \leq 6$. Therefore it is enough to prove the following.

 T_6 -type digraph (where T_1, T'_1 are tournaments)

 T_8 -type digraph

Figure 5.

The directions of the edges without arrow can be chosen arbitrary.

Proposition. Suppose T is not isomorphic to a T_0 - or D'_8 -type digraph or D_8 . If for each arc $(a,b) \in A$ and k $(7 \le k \le n-1)$, there exists a $P'_{k-1}(a,b)$ in T. Then there exists a $P'_k(a,b)$ in T.

From now on, we shall assume that there is a $P'_{k-1}(a,b)$ in T, and denote it by $(1,2,\ldots,k)$, where a=1 and b=k. The set of vertices $\{1,2,\ldots,k\}$ of $P'_{k-1}(a,b)$ is also denoted by P'_{k-1} . Let $W=V-P'_{k-1}$. Hence $|W|\geq 1$. For any $w\in W$ we define

$$O'(w) \equiv O(w) \cap P'_{k-1}, \quad I'(w) \equiv I(w) \cap P'_{k-1}.$$

When $O'(w) \neq \emptyset$ and $I'(w) \neq \emptyset$ for $w \in W$, set

$$a(w) = \max\{i \mid i \in O'(w)\}, \quad b(w) = \min\{i \mid i \in I'(w)\}.$$

If the condition of the proposition were false, we should assume that

There does not exist any
$$P'_k(a,b)$$
 in T . $(*)$

By the assumption above, we may obtain the following claims.

(1) $O'(w) = \{1, 2, ..., a(w)\}$ and a(w) < k as $O'(w) \neq \emptyset$. Similarly, $I'(w) = \{b(w), ..., k\}$ and b(w) > 1 as $I'(w) \neq \emptyset$.

Suppose $O(w) \neq \emptyset$. If there exists an $i \in O'(w)$ with $i-1 \notin O'(w)$, by the definition of a local tournament and $\{w, i-1\} \subseteq I(i)$, then i-1 and w are adjacent in T. Thus $i-1 \to w$ by the definition of i. Hence

there is a $P'_k(a,b)=(1,\ldots,i-1,w,i,\ldots,k)$ in T. This contradicts (\star) . So $O'(w)=\{1,2,\ldots,a(w)\}$. And if a(w)=k, then $w\to P'_{k-1}$. Note that there exists a $P_2(w,1)=(1,x,w)$. Clearly $x\not\in P'_{k-1}$. Hence $x\in W$. Thus T contains a $P'_k(a,b)=(1,x,w,3,\ldots,k)$. This contradicts (\star) . So a(w)< k.

(2) For any $w \in W$, $O'(w) \neq \emptyset$ if and only if $I'(w) \neq \emptyset$.

If $O'(w) \neq \emptyset$, there is a $P_2(w,1) = (1,x,w)$. If $x \in W$, then $1 \in I'(x)$ and b(x) = 1. This contradicts b(w) > 1 by (1). Hence $x \in I'(w)$ and $I'(w) \neq \emptyset$. Similarly, if $I'(w) \neq \emptyset$, then $O'(w) \neq \emptyset$.

(3) Let $W_1 = \{w \mid w \in W, O'(w) \neq \emptyset\}$ and $W_2 = W - W_1$ then $W_2 = \emptyset$. Furthermore, T[W] is a tournament and $O'(w) \neq \emptyset$, $I'(w) \neq \emptyset$ for every $w \in W$.

Since T is connected, $W_1 \neq \emptyset$. Suppose $W_2 \neq \emptyset$. Let $w_1 \in W_1$ and $w_2 \in W_2$ such that w_1 and w_2 are adjacent. Without loss of generality, we assume $w_2 \to w_1$. Since $k \to w_1$ by (1) and (2), w_2 and k are adjacent. Then $k \to w_2$ and $O'(w_2) \neq \emptyset$ by (1) and (2). This is a contradiction. Hence $W_2 = \emptyset$. i.e. $W = W_1$.

From (1) and (2), we have $W \subseteq I(1)$ and $O'(w) \neq \emptyset$, $I'(w) \neq \emptyset$ for every $w \in W$. Thus T[W] is a tournament by the definition of a local tournament.

(4) b(w) = b(w') and a(w) = a(w') for any $w, w' \in W$.

Suppose there are $w, w' \in W$ such that $b(w) \neq b(w')$. Set $b(w_0) = \min\{b(w) \mid w \in W\}$. Let $W_3 = \{w \mid w \in W, b(w) > b(w_0)\}$ and $W_4 = W - W_3$. Then $W_3 \neq \emptyset$, $W_4 \neq \emptyset$ and $b(w_0) = b(w) \rightarrow w$ for any $w \in W_4$.

Case 1. There exist $w_3 \in W_3$ and $w_4 \in W_4$ such that $w_3 \to w_4$.

Since $b(w_4) = b(w_0) < b(w_3)$ and $b(w_3) - 1 \rightarrow w_4$, w_3 and $b(w_3) - 1$ are adjacent by $w_3 \rightarrow w_4$ and the definition of a local tournament. From (1) we have $w_3 \rightarrow b(w_3) - 1$. Thus $a(w_3) = b(w_3) - 1$. Similarly, since $b(w_4) - 1 < b(w_3) - 1 = a(w_3)$ and $w_3 \rightarrow w_4$, we have $a(w_4) = b(w_4) - 1$.

Now we need the following three Lemmas

Lemma 4. There are no u, v, n and m in P'_{k-1} such that $u < n \le b(w_4) - 1 < b(w_3) \le v < m$ and $(u, v), (n, m) \in A$.

Proof: Otherwise, it will contradict (*).

Now, (n, m), $(u, v) \in A$ are called cis-crosswise arcs with respect to the P'_{k-1} (briefly cis-crosswise arcs) if n, m, u and v are on P'_{k-1} such that u < n < v < m.

Lemma 5. (a) For each $i \in \{3, 4, ..., b(w_4) - 1\}$, we have $(i, 1) \in A$. (b) For each $j \in \{b(w_3), ..., k - 2\}$, we have $(k, j) \in A$.

Proof: (a) Since $\{1, 2, ..., b(w_4) - 1 = a(w_4)\} \subseteq O(w_4), T[\{3, 4, ..., b(w_4) - 1, 1\}]$ is a tournament. If there is an $i_0 \in \{3, 4, ..., b(w_4) - 1\}$ such that $1 \to i_0$, then $w_3 \to i_0 - 1$ by $i_0 - 1 < a(w_3)$. There is a $P_2(w_3, i_0 - 1) = a(w_3)$

 (i_0-1,u,w_3) . By the definition of $b(w_4)$, we have $u \notin W$. Hence $u \in I'(w_3)$. Thus there is a $P'_k(a,b) = (1,i_0,\ldots,u-1,w_4,2,\ldots,i_0-1,u,\ldots,k)$. This contradicts (\star) . So (a) is valid.

An analogous proof of (a), we have that (b) is true.

Lemma 6. If $(b(w_4)-1,b(w_3)) \in A$ and $(b(w_4)-1,b(w_3)) \neq (a,b) = (1,k)$, then there is an arc $(u,v) \in A$ such that (u,v) and $(b(w_4)-1,b(w_3))$ are cis-crosswise arcs.

Proof: By Lemmas 1, 4 and 5, using an analogous proof of Lemma 3 in [5], Lemma 6 follows.

Now, let's back to discuss case 1.

There are $P_2(w_3, a(w_4) = b(w_4) - 1) = (b(w_4) - 1, m, w_3)$ and $P_2(w_3, w_4) = (w_4, w_5, w_3)$, where $m \notin W$ and $w_5 \notin P'_{k-1}$, by the choice of w_4 and $b(w_3) > b(w_4)$. Hence we have that $b(w_3) \le m \le k$ and $w_5 \in W$.

If $b(w_3) - b(w_4) \ge 4$, then $a(w_3) \ge b(w_4) + 3$. There is a $P'_k(a, b) = (1, \ldots, b(w_4), w_4, w_5, w_3, b(w_4) + 3, \ldots, a(w_3), \ldots, k)$. This contradicts (\star) . Hence $b(w_3) - b(w_4) \le 3$.

Subcase 1.1. $(b(w_4) - 1, b(w_3)) \notin A$.

First, we have $m > b(w_3)$. Let $P_2(b(w_3), w_4) = (w_4, y, b(w_3))$. If $y \in W$, then $a(y) \geq b(w_3)$. If $a(y) \geq b(w_4) + 2$, then there is a $P'_k(a, b) = (1, \ldots, b(w_4), w_4, y, b(w_4) + 2, \ldots, a(y), \ldots, k)$. This contradicts (\star) . Hence $a(y) \leq b(w_4) + 1$. Since $a(y) \geq b(w_3) \geq b(w_4) + 1$, we have $a(y) = b(w_3) = b(w_4) + 1$. By Lemma 1, there exists an $x \in O(1) - \{2, k\}$. Obviously, $x \notin W$. And $x \notin \{3, \ldots, b(w_4) - 1\}$ by Lemma 5. So $x > b(w_4)$.

- (a) $x = b(w_4)$. Since $x \ge 3$ and $a(w_4) = b(w_4) 1 \ge 2$, there is a $P'_k(a,b) = (1, x = b(w_4), \ldots, m-1, w_4, 2, \ldots, b(w_4) 1, m, \ldots, k)$. This contradicts (\star) .
- (b) $x = b(w_4) + 1$. Note that $m 1 > b(w_3) 1 = b(w_4)$ and $a(y) = b(w_4) + 1 = a(w_4) + 2 \ge 3$. If $a(w_4) > 1$, then there is a $P'_k(a, b) = (1, x = b(w_3), \ldots, m 1, w_4, y, 2, \ldots, a(w_4) = b(w_4) 1, m, \ldots, k)$. This contradicts (*). Hence $a(w_4) = 1$. Thus we have $I(k) \subseteq \{1, b(w_3) 1 = 2, k 1\}$ by Lemma 5 (b). And then $2 \to k$ by Lemma 1. Hence there is a $P'_k(a, b) = (1, x = b(w_3), \ldots, k 1, w_3, b(w_4) = 2, k)$. This contradicts (*) too.
- (c) $x > b(w_3) = b(w_4) + 1$. Since x < k and $1 \to x$, there is no $j_0 \in \{2, \ldots, b(w_4) 1\}$ such that $j_0 \to k$ by Lemma 4. Then $I(k) \subseteq \{1, b(w_4), k 1\}$ by Lemma 5 (b). Hence $I(k) = \{1, b(w_4), k 1\}$ by Lemma 1. That is, $b(w_4) \to k$. If k = 7, there is a $P'_k(a, b) = (1, x, w_4, y, b(w_3), w_3, b(w_4), k)$. This contradicts (\star) . Hence k > 7. There are two distinct vertices $i, j \in P'_{k-1} \{1, a(w_4), b(w_4) = a(w_4) + 1, b(w_3) = a(w_4) + 2, x, k\}$. Using two arcs (1, x), $(b(w_4), k)$ and w_3, w_4, y , then there is always a $P'_k(a, b)$ in T. e.g., $1 < i < a(w_4)$ and $b(w_3) < j < x$, then there is a $P'_k(a, b) = (1, x, \ldots, k 1, w_4, y, b(w_3), \ldots, x 2, w_3, 3, \ldots, a(w_4), b(w_4), k)$. These contradict (\star) .

Hence $y \notin W$ and $1 \le y \le a(w_4) = b(w_4) - 1$. Since $(b(w_4) - 1, b(w_3)) \notin A$, we have $y < b(w_4) - 1$. Now, there are two arcs $(y, b(w_3))$ and $(b(w_4) - 1, m)$ in T with $y < b(w_4) - 1 < b(w_3) < m$. This contradicts (\star) by Lemma 4. Subcase 1.2 $(b(w_4) - 1, b(w_3)) \in A$.

Since $b(w_3) - b(w_4) \le 3$ and $k \ge 7$, we have $(b(w_4) - 1, b(w_3)) \ne (a, b)$. There exists an arc (u, v) such that (u, v) and $(b(w_4) - 1, b(w_3))$ are ciscrosswise arcs by Lemma 6.

Suppose $u < b(w_4) - 1 < v < b(w_3)$. For $v = b(w_4)$ or $b(w_4) + 1$ or $b(w_4) + 2$, there exists a $P_k'(a,b)$ in T respectively. e.g., we assume $v = b(w_4) + 1$. If $b(w_3) = b(w_4) + 3$, then there is a $P_k'(a,b) = (1,\ldots,u,v = b(w_4) + 1, w_4, w_5, w_3, u + 1,\ldots,b(w_4) - 1, b(w_3),\ldots,k)$. If $b(w_3) = b(w_4) + 2$, then $v = b(w_3) - 1 = a(w_3)$. Since $w_4 \to w_5$ and $w_4 \to a(w_4)$, w_5 and $a(w_4)$ are adjacent. By the definition of $b(w_4) = b(w_0)$, we have $w_5 \to a(w_4)$. Hence $a(w_5) \geq a(w_4) > u$ and $w_5 \to u + 1$. Thus there is a $P_k'(a,b) = (1,\ldots,u,v = b(w_4) + 1, w_4, w_5, u + 1,\ldots,b(w_4) - 1, b(w_3) = b(w_4) + 2,\ldots,k)$. These contradict (\star) .

Using an analogous method, if $b(w_4) - 1 < u < b(w_3) < v$, then there is also a $P'_k(a, b)$ in T. This contradicts (\star) .

Therefore no vertex of W_3 dominates any vertex of W_4 . We have that $W_4 \to W_3$ since T[W] is a tournament.

Case 2. $W_4 \rightarrow W_3$.

П

We choose $w_3 \in W_3$, $w_4 \in W$, such that $b(w_3) = \max\{b(w) \mid w \in W_3\}$. Thus $w_4 \to w_3$. Since $b(w_3) > b(w_4)$, there exists a $P_2'(w_4, w_3) = (w_4, w_6, w_3)$ with $w_6 \in W$. Now, we have the following claims.

 $(4.1) \ b(w_4) \le a(w_3) \le b(w_4) + 1.$

Let $P_2(w_4, w_3) = (w_3, y, w_4)$. Since $W_4 \to W_3$, we have $y \notin W$ and $y \in P'_{k-1}$. Thus $b(w_4) \le y \le a(w_3)$. If $a(w_3) - 2 \ge b(w_4)$, then there is a $P'_k(a, b) = (1, 2, \ldots, a(w_3) - 2, w_4, w_3, a(w_3), \ldots, k)$. This contradicts (\star) . Hence $a(w_3) \le b(w_4) + 1$.

(4.2) $(a(w_4), b(w_3)) \in A$.

Let $P_2(b(w_3), w_4) = (w_4, u, b(w_3))$ and $P_2(w_3, a(w_4)) = (a(w_4), m, w_3)$. By the choice of w_3 and w_4 , we have $u, m \notin W$. Then $u \leq a(w_4)$ and $b(w_3) \leq m$. If $u < a(w_4)$ and $b(w_3) < m$, then

- (a) $a(w_3) \ge a(w_4) + 2$. Since $b(w_3) 1 \ge b(w_4)$, there is a $P_k'(a, b) = (1, \ldots, u, b(w_3), \ldots, m 1, w_3, a(w_4) + 2, \ldots, a(w_3), \ldots, b(w_3) 1, w_4, u + 1, \ldots, a(w_4), m, \ldots, k)$;
- (b) $b(w_4) \leq b(w_3) 2$. There is a $P'_k(a, b) = (1, \dots, u, b(w_3), \dots, m 1, w_3, a(w_4) + 1, \dots, b(w_4), \dots, b(w_3) 2, w_4, u + 1, \dots, a(w_4), m, \dots, k)$;
- (c) $a(w_3) \le a(w_4) + 1$ and $b(w_4) \ge b(w_3) 1$. Since $a(w_3) \ge b(w_4) \ge a(w_4) + 1$ and $b(w_4) \le b(w_3) 1$, we have $a(w_3) = b(w_4) = a(w_4) + 1 = b(w_3) 1$. Thus there is a $P'_k(a, b) = (1, \dots, u, b(w_3), \dots, m 1, w_4, w_3, u + 1)$

 $1,\ldots,b(w_3)-2=a(w_4),m,\ldots,k).$

These contradict (*). So $u = a(w_4)$ or $m = b(w_3)$. Thus (4. 2) is valid. (4.3) $a(w_3) = b(w_3) - 1$ and $a(w_4) = b(w_4) - 1$.

If $a(w_3) < b(w_3) - 1$, then i and w_3 are nonadjacent for each $i \in \{a(w_3) + 1, \ldots, b(w_3) - 1\}$. Since $\{a(w_3) + 1, \ldots, b(w_3) - 1, k\} \subseteq I(w_4)$, k and j are adjacent for each $j \in \{a(w_3) + 1, \ldots, b(w_3) - 1\}$. Since the definition of local tournaments and $k \to w_3$, we have $\{a(w_3) + 1, \ldots, b(w_3) - 1\} \to k$. If $b(w_3) < k$, then there is a $P'_k(a, b) = (1, \ldots, a(w_4), b(w_3), \ldots, k - 1, w_3, a(w_4) + 1, \ldots, b(w_3) - 1, k)$ by (4.2) and $a(w_4) + 1 \le b(w_4) \le a(w_3)$. This contradicts (*). So $b(w_3) = k$. Since $1, k - 1 \in I(k), 1$ and $k - 1 = b(w_3) - 1$ are adjacent, and then $1 \to b(w_3) - 1$ by $w_3 \to 1$. Now, we consider the following two subcases:

(a) $a(w_3) < b(w_3) - 2 = k - 2$.

If $a(w_3) \geq 3$, then there is a $P'_k(a,b) = (1,b(w_3)-1,w_4,w_3,3,\ldots,b(w_3)-2,k)$. This contradicts (*). Hence $a(w_3) \leq 2$. Since $a(w_3) \geq b(w_4) > a(w_4) \geq 1$, we have $a(w_3) = 2$. Then $b(w_3) - 3 > a(w_3)$ by $k \geq 7$. Hence $b(w_3) - 3 \rightarrow k$ and there is a $P'_k(a,b) = (1,b(w_3)-1=k-1,w_4,w_3,a(w_3)=2,\ldots,k-3=b(w_3)-3,k)$. This also contradicts (*).

(b) $a(w_3) = b(w_3) - 2 = k - 2$.

Since $k \geq 7$, we have $a(w_3) \geq 5$ and $b(w_4) \geq a(w_3) - 1 \geq b(w_4) - 1 \geq 4$ by (4.1). If $b(w_4) = a(w_4) + 1$, then $a(w_4) \geq 3$. When $a(w_3) = b(w_4) + 1$, there is a $P'_k(a,b) = (1,b(w_3)-1=k-1,w_4,w_6,w_3,2,\ldots,k-4=a(w_4),b(w_3)=k)$ by (4.2). When $a(w_3) = b(w_4)$, there is a $P'_k(a,b) = (1,b(w_3)-1=k-1,w_4,w_3,2,\ldots,k-3=a(w_4),b(w_3)=k)$. These contradict (*). So $b(w_4) \geq a(w_4) + 2$. Since $a(w_4) \rightarrow b(w_3) = k$ and $a(w_4) \rightarrow a(w_4) + 1$, k and $a(w_4) + 1$ are adjacent, and then $a(w_4) + 1 \rightarrow k$ by $k \rightarrow w_4$ and w_4 and $w_4 \rightarrow w_4 \rightarrow w_4$ and $w_4 \rightarrow w_$

Similarly, we can prove that $a(w_4) = b(w_4) - 1$. (4.3) is valid.

Now, by (4.1), (4.2) and (4.3), we have that $b(w_3) - b(w_4) \le 2$, $a(w_3) = b(w_3) - 1$, $a(w_4) = b(w_4) - 1$ and $(b(w_4) - 1, b(w_3)) \in A$. Using an analogous proof of subcase 1.2, there is a $P'_k(a, b)$ in T. This contradicts (*).

Up to now, we prove that b(w) = b(w') for any $w, w' \in W$. Similarly, we can prove that a(w) = a(w') for any $w, w' \in W$. So (4) is valid.

We denote $a_0 = a(w)$ and $b_0 = b(w)$ for any $w \in W$. Then $O'(w) = \{1, 2, \ldots, a_0\}$ and $I'(w) = \{b_0, \ldots, k\}$ for any $w \in W$, and then $T[\{1, \ldots, a_0\}]$ and $T[\{b_0, b_0 + 1, \ldots, k\}]$ both are tournaments. Clearly for any $i \in \{a_0 + 1, \ldots, k\}$

 $1, \ldots, b_0 - 1$ and any $w \in W$, i and w are nonadjacent.

Now, we shall use the following lemmas and symbols.

For $1 \leq t \leq a_0$ and $b_0 \leq j \leq k$, let $R(t) = \{i \mid (t,i) \in A, b_0 \leq i \leq k\}$ and $L(j) = \{i \mid (i,j) \in A, 1 \leq i \leq a_0\}$. Since there exist $P_2(w,t), P_2(j,w)$ for any $w \in W$ and $1 \leq t \leq a_0, b_0 \leq j \leq k$, it is easy to check $R(t) \neq \emptyset$, $L(j) \neq \emptyset$. Hence we can define,

 $\psi(t)=\max\{R(t)\},\,\psi_1(t)=\min\{R(t)\},\,\varphi_1(j)=\max\{L(j)\}$ and $\varphi(j)=\min\{L(j)\}.$

Then $b_0 \leq \psi_1(t) \leq \psi(t) \leq k$, $1 \leq \varphi(j) \leq \varphi_1(j) \leq a_0$, and $(t, \psi(t))$, $(t, \psi_1(t))$, $(\varphi(j), j)$, $(\varphi_1(j), j) \in A$ for any $1 \leq t \leq a_0$ and $b_0 \leq j < k$.

Lemma 7. If there are $\alpha < \gamma < \delta$ in P'_{k-1} such that $1 \le \alpha \le a_0 - 1$, $\alpha + 1 < \gamma$, $b_0 + 1 \le \delta$ and $(\alpha, \gamma), (\gamma - 1, \delta) \in A$, then T contains a $P'_k(a, b)$ in T.

Proof: Let α , γ and δ satisfy the condition of Lemma 7. Then there is a $P'_k(a,b) = (1,\ldots,\alpha,\gamma,\ldots,\delta-1w,\alpha+1,\ldots,\gamma-1,\delta,\ldots,k)$.

Lemma 8. ([2], Corollary 3.13) Let $P_1 = (x_1, \ldots, x_m)$ and $P_2 = (y_1, \ldots, y_t)$ with $m \geq 2$ and $t \geq 3$ be paths in a connected local tournament T. If there exist i, j with $1 \leq i < j \leq m$ such that $x_i = y_1, x_j = y_t$ and $V(P_1) \cap (v(P_2) - \{y_1, y_t\}) = \emptyset$. Then T has an (x_1, x_m) -path P such that $V(P) = V(P_1) \cup V(P_2)$.

(5) $b_0 = a_0 + 1$

Suppose $b_0 > a_0 + 1$. If $b_0 = k$, then $\psi(i) = k$ for each $i \in \{1, 2, ..., a_0\}$. That is, $\{1, 2, ..., a_0\} \to k$. Let $P_2(a_0, a_0 + 1) = (a_0 + 1, x, a_0)$. Obviously, $x \notin W$. If $x \in \{1, 2, ..., a_0 - 1\}$, then $a_0 + 1$ and w are adjacent by $w \to x$. This is a contradiction. So $x \notin \{1, 2, ..., a_0 - 1\}$. Similarly, $x \notin \{a_0 + 1, ..., b_0 - 1\}$. Thus $x = b_0 = k$. i.e, $k = x \to a_0$. This contradicts $a_0 \to k$. Hence $b_0 \le k - 1$. Similarly, we have $a_0 \ge 2$.

Let $P_2(a_0, a_0+1)=(a_0+1, t, a_0)$. Using an analogous proof as above, we have $t \notin W \cup \{1, 2, \ldots, a_0-1, a_0+1, \ldots, b_0-1\}$. That is, $b_0 \leq t \leq k$. If $t=b_0$, then we have $b_0 \to a_0$, $\varphi(b_0) < a_0$ and $\psi(a_0) > b_0$. $\varphi(b_0)$ and b_0-1 are adjacent by $\varphi(b_0) \to b_0$ and $b_0-1 \to b_0$. Since b_0-1 and w are nonadjacent and $w \to \varphi(b_0)$, we have $\varphi(b_0) \to b_0-1$. Similarly, we can obtain $\varphi(b_0) \to \{a_0+1,\ldots,b_0-1\}$. Let $\alpha = \varphi(b_0)$, $\gamma = a_0+1$ and $\delta = \psi(a_0)$. Then there is a $P'_k(a,b)$ in T by Lemma 7. This contradicts (*). Hence $t > b_0$. Similarly, letting $P_2(b_0=1,b_0) = (b_0,y,b_0-1)$, we have $1 \leq y < a_0$.

If $b_0 > a_0 + 2$, then t and $a_0 + 2$ are adjacent by $a_0 + 1 \to t$ and $a_0 + 1 \to a_0 + 2$. If $t \to a_0 + 2$, then it will deduce that $a_0 + 2$ and w are adjacent by $t \to w$, a contradiction. Hence $a_0 + 2 \to t$. Similarly, we have $\{a_0 + 1, \ldots, b_0 - 1\} \to t$. Let $\alpha = y(< a_0), \gamma = b_0 - 1$ and $\delta = t(> b_0)$. There is a $P'_k(a, b)$ in T by Lemma 7. This contradicts (\star) . Hence $b_0 = a_0 + 2$.

 a_0+1 and t-1 are adjacent since $a_0+1\to t$ and $t-1\to t$. Thus $a_0+1\to t-1$ by $t-1\to w$ and w and a_0+1 are nonadjacent. Similarly, we have

$$a_0 + 1 \to \{b_0 + 1, \dots, t - 1, t\}$$
 (**)

Now, we consider the following four cases.

Case 1. $a_0 > 2$ and $k > b_0 + 2$.

If $\varphi(b_0) < a_0$, letting $\alpha = \varphi(b_0)$, $\gamma = b_0$ and $\delta = t$, then there is a $P_k'(a,b)$ in T by Lemma 7 and $(b_0-1,t)=(a_0+1,t)\in A$. This contradicts (\star) . Hence $\varphi(b_0)=a_0$. That is, $a_0\to b_0$. Since $1,a_0\in O(w)$, 1 and a_0 are adjacent. Suppose $(1,a_0)\in A$. If $\psi(a_0-1)>b_0$, letting $\alpha=1$, $\gamma=a_0$ and $\delta=\psi(a_0-1)$, then there is a $P_0'(a,b)$ in T by Lemma 7. This contradicts (\star) . So $\psi(a_0-1)=b_0$. i.e., $a_0-1\to\psi(a_0-1)=b_0$. Now, letting $\alpha=a_0-1$, $\gamma=b_0$ and $\delta=t$, there is a $P_k'(a,b)$ in T by $(\star\star)$ and Lemma 7. This contradicts (\star) too. Hence in the following we always assume that $(a_0,1)\in A$.

(5.1) $\{1, 2, \dots, a_0 - 1\} \rightarrow a_0 + 1$ and $a_0 + 1 \rightarrow k$.

 $1 \to a_0 + 1$ since $a_0 + 1$ and w are nonadjacent and $1, a_0 + 1 \in O(a_0)$. Furthermore, $2 \to a_0 + 1$ by $1 \to 2$. Similarly, we have that $\{1, 2, \ldots, a_0 - 1\} \to a_0 + 1$ and $a_0 + 1 \to k$ by $1 \to a_0 + 1$ and $1 \to k$.

(5.2) $b_0 \to 1$ and $\{b_0 + 2, \dots, k\} \to b_0$.

Since $a_0 \to 1$ and $a_0 \to b_0$, 1 and b_0 are adjacent. If $1 \to b_0$, then, letting $\alpha = 1$, $\gamma = b_0$ and $\delta = t$, there is a $P'_k(a, b)$ in T by $(\star\star)$ and Lemma 7. This contradicts (\star) . Hence $b_0 \to 1$.

If there exists a $j \in \{b_0 + 2, ..., k\}$ such that $b_0 \to j$, then T contains a $P'_k(a, b) = (1, ..., a_0 - 1, a_0 + 1 = b_0 - 1, b_0 + 1, ..., j - 1, w, a_0, b_0, j, ..., k\}$ by (5.1) and (**). This contradicts (*). Hence $\{b_0 + 2, ..., k\} \to b_0$.

(5.3) $a_0 = 3$, $b_0 = 5$ and $(a_0 - 1, b_0) \notin A$.

If $\psi(a_0-1)=b_0$, then there is a $P_k'(a,b)=(1,\ldots,a_0-1,\psi(a_0-1)=b_0,\ldots,k-1,w,a_0,a_0+1,k)$ by (5.1) . This contradicts (\star) . So $\psi(a_0-1)>b_0$ and $(a_0-1,b_0)\not\in A$.

By $a_0-1 \to \psi(a_0-1) > b_0$, Lemma 7 and (*), we have $a_0 \to 2$. If $a_0 \ge 4$, then there is a $P'_k(a,b) = (1,a_0+1,\ldots,\psi(a_0-1)-1,w,a_0,2,\ldots,a_0-1,\psi(a_0-1),\ldots,k)$ by (5.1). This contradicts (*). Hence $a_0 \le 3$, and then $a_0 = 3$ by $a_0 > 2$. Thus $b_0 = a_0 + 2 = 5$.

 $(5.4) k = b_0 + 2 = 7$

Suppose $k > b_0 + 2$. When $\varphi(b_0 + 1) \in \{1, 2\}$, there is a $P'_k(a, b) = (1, \ldots, \varphi(b_0 + 1), b_0 + 1, \ldots, k - 1, b_0, w, \varphi(b_0 + 1) + 1, \ldots, a_0 + 1, k)$ by (5.1) and (5.2). When $\varphi(b_0 + 1) = a_0 = 3$, letting $\alpha = 1, \gamma = a_0 + 1$ and $\delta = b_0 + 1$, there is a $P'_k(a, b)$ in T by Lemma 7 and (5.1). These contradict (*). Hence $k = b_0 + 2 = 7$ by $k \geq b_0 + 2$.

 $(5.5) k \rightarrow a_0$

 a_0 and k are adjacent since $a_0 \to b_0$ and $k \to b_0$ by (5.2). If $a_0 \to k$, letting $\alpha = 1$, $\gamma = a_0 + 1$ and $\delta = k$, then there is a $P'_k(a, b)$ in T by Lemma 7. This contradicts (\star) . So $k \to a_0$.

Now, 1 and b_0+1 are adjacent since $1, b_0+1=k-1 \in I(k)$. We consider the following two cases.

(a) $b_0 + 1 \to 1$.

 a_0 and b_0+1 are adjacent by $a_0\to 1$. If $a_0\to b_0+1$, then there is a $P_k'(a,b)=(1,a_0+1,b_0,w,2,a_0=3,b_0+1,k)$. This contradicts (\star) . Hence $b_0+1\to a_0$.

Let $P_2'(b_0, b_0 + 1) = (b_0 u, b_0 + 1)$. Obviously, $u \notin W$. Since $b_0 + 1 \to 1$, $a_0 \to b_0 \ a_0 + 1 \to b_0$ and $b_0 + 1 \to k$, we have u = 2. i.e., $b_0 \to u = 2 \to b_0 + 1$. Let $P_2'(1,2) = (1,z,2)$. Obviously, $z \notin W$. Since $a_0 \to 1$, $2 \to a_0 + 1$ by (5.1), $b_0 \to 1$ by (5.2) and $b_0 + 1 \to 1$, we have z = k. i.e., $k = z \to 2$. Suppose |W| > 1. Clearly T contains a $P_k'(a,b)$. This contradicts (*). Hence |W| = 1.

Now, by $a_0 + 1 \rightarrow b_0 + 1$, $a_0 \rightarrow b_0$, $a_0 \rightarrow 1$, (5.1)~(5.5) and (a), we have that $T \simeq D'_0$. This contradicts the assumption of the Theorem.

(b) $1 \to b_0 + 1$.

Since $1\to 2$ and $1\to b_0+1$, we have 2 and b_0+1 are adjacent. If $2\to b_0+1$, then 2 and b_0 are adjacent and $b_0\to 2=a_0-1$ by (5.3). Thus there is a $P_k'(a,b)=(1,b_0+1,w,a_0,b_0,2=a_0-1,a_0+1,k)$ by (5.1) and (5.2). This contradicts (\star) . So $b_0+1\to 2$.

Let $P_2'(b_0+1,k) = (b_0+1,y,k)$. Obviously, $y \notin W$. Note that $1 \to b_0+1$, $k \to a_0$ by (5.5), $a_0+1 \to b_0+1$ by $(\star\star)$ and $b_0 \to b_0+1$. We have y=2. i.e., $2 \to k$.

We easily check that |W|=1 and 3 and 6, 2 and 5 are nonadjacent. Otherwise, T contains a $P_k'(a,b)$. e.g., $(3,6) \in A$, there is a $P_k'(a,b)=(1,a_0+1,b_0,w,2,3,6=b_0+1,k)$ by (5.1). These contradict (\star) .

Now, by $a_0+1 \to b_0+1$, $a_0 \to b_0$, $a_0 \to 1$, (5.1)~(5.5) and (b), we have that $T \simeq D_8$. This contradicts the assumption of the Theorem.

Case 2. $a_0 > 2$ and $k = b_0 + 1$.

Since $b_0 < t \le k$, we have $t = k = b_0 + 1$. i.e., $b_0 - 1 = a_0 + 1 \to t = k$. Since $k = b_0 + 1 = a_0 + 3 \ge 7$, we have $a_0 \ge 4$. If there exists a $j_0 \in \{1, 2, \ldots, a_0 - 1\}$ such that $j_0 \to b_0$, letting $\alpha = j_0$, $\gamma = b_0$ and $\delta = k$, then there is a $P'_k(a, b)$ by Lemma 7. This contradicts (\star) . Hence $(j, b_0) \notin A$ for each $j \in \{1, 2, \ldots, a_0 - 1\}$. Then $I(b_0) \subseteq \{a_0, a_0 + 1 = b_0 - 1\}$ by $b_0 \to W$. This contradicts Lemma 1.

Case 3. $a_0 = 2$ and $k \ge b_0 + 2$.

Consider the converse T of T, thus we change case 3 in T for case 2 in T. So this case is impossible.

Case 4. $a_0 = 2$ and $k = b_0 + 1$.

In this case $k = b_0 + 1 = a_0 + 2 + 1 = 5$, this contradicts k > 7.

Up to now, we have proved that $b_0 = a_0 + 1$. (5) is valid.

(6) Under the condition $b_0 = a_0 + 1$, we can obtain the following claims. For convenience, let $s = a_0 + 1 = b_0$. Then $a_0 = s - 1$, $1 < s \le k$ and $T[\{1, 2, \ldots, s - 1\}]$ and $T[\{s, \ldots, k\}]$ both are tournaments.

(6.1)
$$3 \le s \le k-1$$

T is a T_0 -type digraph when s=2 or k. e.g., s=2, then $O'(w)=\{1\}$ and $I'(w)=\{s=2,\ldots,k\}$ for any $w\in W$. Hence $\varphi(i)=1$ for each $i\in I'(W)$. i.e., $1\to\{2,\ldots,k\}$. Let $T'_0=T[\{2,\ldots,k\}],\, T''_0=T[W]$ and $v_0=1$. Thus $T'_0\to T''_0\to v_0\to T'_0$. Since T'_0 and T''_0 both are tournaments, $T\simeq T_0$ -type digraph. This contradicts the assumption of the Theorem. So $3\leq s\leq k-1$.

(6.2) $\varphi(s) < s-1$, $\psi(s-1) > s$ can not hold simultaneously.

Suppose $\varphi(s) < s-1$, $\psi(s-1) > s$. We may choose $\alpha = \varphi(s)$, $\gamma = s$ and $\delta = \psi(s-1)$. Then there is a $P_k'(a,b)$ in T by Lemma 7. This contradicts (*). Hence we have $\varphi(s) = s-1$ or $\psi(s-1) = s$. We may assume, without loss of generality, $\psi(s-1) = s$. Otherwise, we consider the converse T of T. Then

$$1 \le \varphi(j) \le \varphi_1(j) \le s - 2 \tag{* * *}$$

for each $j \in \{s+1,\ldots,k\}$ by the definition of $\psi(s-1)$. We may define $\tilde{n} = \max\{\varphi_1(j) \mid s+1 \leq j \leq k\}, \ \tilde{m} = \min\{j \mid \varphi_1(j) = \tilde{n}, s+1 \leq j \leq k\}.$ Then $\tilde{n} \leq s-2, s < \tilde{m}, (\tilde{n}, \tilde{m}) = (\varphi_1(\tilde{m}), \tilde{m}) \in A \text{ and } (\tilde{n}, \tilde{m}) \neq (1, k).$ In fact, if $(\tilde{n}, \tilde{m}) = (1, k)$ then every vertex in $\{1, 2, \ldots, s-2\}$ does not dominate every vertex in $\{s+1, \ldots, k\}$ except for an arc (1, k). If k > s+1, then $\varphi(s+1) \leq s-2$ by (***). i.e., $\varphi(s+1) \to s+1$, a contradiction. So k = s+1. Since $k \geq 7$, we have $s \geq 6$. Since $(i, k) \not\in A$ for each $i \in \{2, \ldots, s-2\}$ and $\psi(s-1) = s$, we have $I(k) \subseteq \{1, k-1 = s\}$. This contradicts Lemma 1. Hence $(\tilde{n}, \tilde{m}) \neq (1, k) = (a, b)$.

- **(6.3)** (1°) For each $j \in \{\tilde{n}+1, \dots, s-1\}$ and $i \in \{s+1, \dots, k\}$, we have $(j,i) \notin A$;
 - (2°) $\{\tilde{n}+1,\ldots,s-1\}\to s;$
 - (3°) $\tilde{n} + 1 \to \{1, 2, \dots, \tilde{n} 1\}$ as $\tilde{n} \ge 2$.

By the definition of \tilde{n} and $\psi(s-1)=s$, we easily check that (1°) and (2°) are valid. By $\tilde{n}\to\tilde{m}$, Lemma 7 and (\star) , we have $\tilde{n}+1\to\{1,2,\ldots,\tilde{n}-1\}$.

(6.4) $k \to \{s-1, s, \dots, k-2\}$ as $k \ge s+2$.

If there exists a $j_0 \in \{s, \ldots, k-2\}$ such that $j_0 \to k$, letting $\alpha = \varphi(j_0+1)$, $\gamma = j_0 + 1$ and $\delta = k$, then there is a $P'_k(a, b)$ in T by Lemma 7 and $\varphi(j_0+1) \le s-2$. This contradicts (\star) . Hence $k \to \{s, \ldots, k-2\}$. Since

 $k \to s$ and $s-1 \to s$, we have k and s-1 are adjacent and $k \to s-1$ by (6.3).

(6.5) $\{s+2,\ldots,k-1,k\} \to \{\tilde{n}+1,\ldots,s\} \text{ if } k \geq s+2; \ s+1 \to \{\tilde{n}+1,\ldots,s-1\} \text{ if } k \geq s+3.$

k and s-2 are adjacent since $k\to s-1$ by (6.4). If $s-2\geq \tilde{n}+1$, then $k\to s-2$ by (6.3) (1°). Similarly, we have $k\to s-3,\ldots,k\to \tilde{n}+1$. Thus $k\to \{\tilde{n}+1,\ldots,s-1,s,\ldots,k-2\}$ by (6.4). Hence $T[\{\tilde{n}+1,\ldots,s-1,s,\ldots,k-2,k\}]$ is a tournament. Then by (6.3) we have $\{s+2,\ldots,k-2,k\}\to \{n+1,\ldots,s-1\}$ when $k\geq s+2$, and $s+1\to \{\tilde{n}+1,\ldots,s-1\}$ when $k\geq s+3$. Since $\varphi(s+1)\leq s-2$, we have $\{s+2,\ldots,k-1,k\}\to s$ by Lemma 7 and (*). Since $s-1\to s$ and $k-1\to s$, we have $k-1\to s-1$ by (6.3). Similarly, $k-1\to \{\tilde{n}+1,\ldots,s-1,s\}$. Hence (6.5) is valid.

(6.6) $1 < \varphi_1(k) < \tilde{n}$

Note that $I(k) \subseteq \{1,2,\ldots,\tilde{n},k-1\}$ by (6.3) and (6.4). Then there exists an $i_0 \in I(k) - \{1,k-1\}$ with $1 < i_0 \leq \tilde{n}$ by Lemma 1. Hence $1 < i_0 \leq \varphi_1(k) \leq \tilde{n}$.

In the following we consider two cases.

Case 1. $O(1) \cap \{s, s+1, \dots, k-1\} \neq \emptyset$.

Let $p = \max\{j \mid O(1) \cap \{s, s+1, \dots, k-1\}\}$. Then $s \le p \le k-1$. Subcase 1.1 $|W| \ge 2$. (let $w, w' \in W$ and $w \ne w'$).

(6.7) p = s. That is, $1 \to s$ and $(1,j) \not\in A$ for each $j \in \{s+1,\ldots,k-1\}$. Suppose p > s. Since $k \ge 7$, there exists an $i \in P'_{k-1} - \{1, \varphi_1(k), s-1, s, p, k\}$. If $1 < i < \varphi_1(k)$, then there is a $P'_k(a,b) = (1, p, \ldots, k-1, w, \varphi_1(k) + 1, \ldots, p - 1, w', 3, \ldots, \varphi_1(k), k)$. Similarly, T contains a $P'_k(a,b)$ when $\varphi_1(k) < i < s-1$ or s < i < p or p < i < k. These contradict (\star) . Hence (6.7) is valid.

(6.8) $T[V_1]$ is a strong tournament, where $V_1 = {\tilde{n} + 1, \dots, s - 1}$.

Since $V_1\subseteq O(w)$, $T[V_1]$ is a tournament. If $T[V_1]$ is not strong, then $|V_1|\geq 2$ and $\tilde{n}+1\to s-1$. Let $P_2(\tilde{n}+1,s-1)=(s-1,q,\tilde{n}+1)$ in T. Obviously, $q\not\in W$. Since $T[V_1]$ is not strong, we have $q\not\in V_1$. $q\not\in \{s,s+1,\ldots,k\}$ and $q\not\in \{1,2,\ldots,\tilde{n}-1\}$ by (6.3). Hence $q=\tilde{n}$ and $s-1\to q=\tilde{n}$. Let $P_1=(1,s,\ldots,\tilde{m}-1,w,2,\ldots,\tilde{n},\tilde{m},\ldots,k)$ and $P_2=(w,\tilde{n}+1,\ldots,s-1,\tilde{n})$. Then by Lemma 8 there is a $P'_k(a,b)$ in T. This contradicts (\star) . So $T[V_1]$ is a strong tournament.

(6.9) $\tilde{n} = 2 \text{ and } 2 \to k$.

If $\tilde{n} > 2$, then $\tilde{n} + 1 \to 2$ by (6.3). We may assume that $(\tilde{n} + 1, h, \dots, \tilde{n} + 1)$ is a Hamiltonian cycle in $T[V_1]$ by (6.8). Thus there is a $P'_k(a,b) = (1, s, \dots, \tilde{m} - 1, w, h, \dots, \tilde{n} + 1, 2, \dots, \tilde{n}, \tilde{m}, \dots, k)$. This contradicts (\star) . So $\tilde{n} \le 2$. Thus $\tilde{n} = 2$ and $\varphi_1(k) = 2$ by (6.6). So $2 \to k$.

(6.10)k = s + 1.

Suppose $k-1 \geq s+1$. If there exists a $j_0 \in \{s,\ldots,k-3\}$ such that $j_0 \to k-1$, then, letting $\alpha = \varphi(j_0+1)$, $\gamma = j_0+1$ and $\delta = k-1$, T contains a $P'_k(a,b)$ in T by (6.2) and Lemma 7. This contradicts (\star) . Hence $k-1 \to \{s,\ldots,k-3\}$. By (6.3), (6.7) and (6.9), $I(k-1) \subseteq \{\tilde{n}=2,k-2\}$. This contradicts Lemma 1. So k=s+1.

(6.11)
$$O(1) = \{2, s = k - 1, k\}$$

Otherwise, there exists a $y \in O(1) - \{2, s = k - 1, k\}$. Then $y \in V_1$. Let (y, \ldots, h, y) be a Hamiltonian cycle in $T[V_1]$. Then there is a $P'_k(a, b) = (1, y, \ldots, h, s, w, 2 = \varphi_1(k), k)$ by (6.3). This contradicts (\star) . Hence $O(1) = \{2, s = k - 1, k\}$.

(6.12) $2 \to s$.

Let $P_2'(1,s) = (1, z, s)$, then $z \in O(1) = \{2, s = k - 1, k\}$. Since $s = k - 1 \to k$, we have z = 2. Hence $2 = z \to s$.

So far, since $O(1) = \{2, s = k - 1, k\}$, $2 \to s$ and $2 \to k$ by (6.9), there exists no $P'_2(1,2)$ in T. This contradicts the assumption of the Theorem. Subcase 1.2 |W| = 1.

Using an analogous method of subcase 1.1, we can get $p \neq s$. Hence we may assume that $s+1 \leq p \leq k-1$.

(6.13)
$$k = s + 2$$
 and $p = s + 1$.

If $k \geq s+3$, then $k-1 \to \{\tilde{n}+1,\ldots,s-2,s-1,s\}$ by (6.5). Since $\tilde{n}+2 \leq s$ by the definition of \tilde{n} , we have $k-1 \to \tilde{n}+2$. If $\tilde{n} \geq 3$, then $\tilde{n}+1 \to 2$ by (6.3). Thus there is a $P_k'(a,b)=(1,p,\ldots,k-1,\tilde{n}+2,\ldots,p-1,w,\varphi_1(k)+1,\ldots,\tilde{n}+1,2,\ldots,\varphi_1(k),k)$. This contradicts (*). Hence $\tilde{n}=2$. And then $2=\varphi_1(k)\to k$ since $2\leq \varphi_1(k)\leq \tilde{n}$. Thus there is a $P_k'(a,b)=(1,p,\ldots,k-1,\tilde{n}+1=3,\ldots,p-1,w,2=\varphi_1(k),k)$. This contradicts (*). So k=s+2 and p=s+1 since $s+1\leq p\leq k-1$.

(6.14)
$$2 \rightarrow s$$
 and $\tilde{n} \rightarrow s - 1$ as $\tilde{n} \geq 3$.

Since $\tilde{n}+1\to s$ and $\tilde{n}+1\to 2$ by (6.3), 2 and s are adjacent. If $s\to 2$, then there is a $P_k'(a,b)=(1,p=s+1,w,\varphi_1(k)+1,\ldots,s,2,\ldots,\varphi_1(k),k)$. This contradicts (\star) . So $2\to s$.

If $s-1 \to \tilde{n}$, letting $P_1 = (1,2,s,\ldots,\tilde{m}-1,w,3,\ldots,\tilde{n},\tilde{m},\ldots,k)$ (Note that $s+1 \le \tilde{m} \le k = s+2$) and $P_2 = (w,\tilde{n}+1,\ldots,s-1,\tilde{n})$, than by Lemma 8 there is a $P_k'(a,b)$ in T. This contradicts (\star) . Hence $\tilde{n} \to s-1$.

(6.15) $T[V_1]$ is a strong tournament, where $V_1 = \{\tilde{n}+1, \dots, s-1\}$ and $\tilde{n} \geq 3$.

If not, then $|V_1| \ge 2$ and $\tilde{n}+1 \to s-1$. Let $P_2(\tilde{n}+1,s-1) = (s-1,q,\tilde{n}+1)$. Obviously, $q \notin W$. By (6.3), $q \notin \{1,2,\ldots,\tilde{n}-1\} \cup \{s,s+1,s+2=k\}$. Since $T[V_1]$ is not strong, we have $q \notin V_1$. Then $q = \tilde{n}$. i.e., $s-1 \to q = \tilde{n}$. This contradicts (6.14).

(6.16)
$$V_1 \to \{1,2\}$$
 and $s \to 1$ as $\tilde{n} \ge 3$.

Let (y,\ldots,h,y) be a Hamiltonian cycle in $T[V_1]$. If there exists a $y\in V_1$ such that $1\to y$, then there is a $P'_k(a,b)=(1,y,\ldots,h,s,\ldots,\tilde{m}-1,w,2,\ldots,\tilde{n},\tilde{m},\ldots,k)$ by (6.3). This contradicts (\star) . So $V_1\to 1$. Similarly, we have $V_1\to 2$.

Since $1 \to p = s+1$ and $s \to s+1$, 1 and s are adjacent. If $1 \to s$, then there is a $P'_k(a,b) = (1,s,\ldots,\tilde{m}-1,w,\tilde{n}+1,\ldots,s-1,2,\ldots,\tilde{n},\tilde{m},\ldots,k)$. This contradicts (\star) . So $s \to 1$.

(6.17) $\tilde{n} = 3$.

In fact, if $\tilde{n} \geq 4$, then $\tilde{n}+1 \to 3$ by (6.3). Let $(h, \ldots, \tilde{n}+1, h)$ be a Hamiltonian cycle in $T[V_1]$. There is a $P'_k(a,b) = (1,2,s,\ldots,\tilde{m}-1,w,h,\ldots,\tilde{n}+1,3,\ldots,\tilde{n},\tilde{m},\ldots,k)$ by (6.14). This contradicts (*).

If $\tilde{n}=2$, then $\varphi_1(k)=2$ and $2=\varphi_1(k)\to k$. Since $2,s+1=p\in O(1)$, 2 and s+1 are adjacent. If $2\to s+1$, then by $\tilde{n}+1=3$, $s+1\in O(2)$, $\tilde{n}+1$ and s+1 are adjacent. By (6.3) we have $s+1\to \tilde{n}+1$. There is a $P_k'(a,b)=(1,p=s+1,\tilde{n}+1,\ldots,s,w,2=\varphi_1(k),k)$. This contradicts (\star) . Hence $s+1\to 2$. By (6.3) we have that $I(s+1)\subseteq \{1,s\}$. This contradicts Lemma 1. So $\tilde{n}=3$.

(6.18)
$$3 \rightarrow V_1$$
.

Suppose there exists a $y \in V_1$ such that $y \to 3$. Let (h, \ldots, x, h) be a Hamiltonian cycle in $T[V_1]$. Then there is a $P'_k(a, b) = (1, 2, s, \ldots, \tilde{m} - 1, w, h, \ldots, y, 3 = \tilde{n}, \tilde{m}, \ldots, k)$ by (6.14). This contradicts (\star) . So $3 \to V_1$.

For $2 \le \varphi_1(k) \le n = 3$, we consider the following two cases

(a)
$$\varphi_1(k) = 3$$
. (that is $3 = \tilde{n} \to k$)

Since $\tilde{n}, s+1=k-1 \in I(k)$, \tilde{n} and s+1 are adjacent. If $\tilde{n} \to s+1$, then, by $s+1, \tilde{n}+1 \in O(\tilde{n})$, s+1 and $\tilde{n}+1$ are adjacent. By (6. 3) we have $s+1 \to \tilde{n}+1$. There is a $P'_k(a,b)=(1,p=s+1,\tilde{n}+1,\ldots,s,w,2,3=\tilde{n},k)$. This contradicts (\star) . So $s+1 \to \tilde{n}$.

By (6.3) and Lemma 1, we have $I(s+1) = \{1, 2, s\}$. Then $2 \rightarrow s+1$.

Since $s, \tilde{n} = 3 \in O(2)$ by (6.14), s and \tilde{n} are adjacent. If $s \to \tilde{n}$, then there is a $P'_k(a,b) = (1,2,s+1,w,\tilde{n}+1,\ldots,s,\tilde{n},k)$. This contradicts (\star) . So $3 = \tilde{n} \to s$.

By (\star) and $2 \rightarrow s+1$, we have $3 \rightarrow 1$.

Since $2, k \in O(1)$, 2 and k are adjacent. If $2 \to k$, then there is a $P'_k(a,b) = (1,s+1,\tilde{n},\ldots,s,w,2,k)$. This contradicts (\star) . So $k \to 2$.

If there exists a $y \in V_1$ such that s+1 and y are adjacent, then $s+1 \to y$ by (6.3). Let (y, \ldots, h, y) be a Hamiltonian cycle in $T[V_1]$. There is a $P'_k(a,b) = (1,2,s+1,y,\ldots,h,s,w,3=\tilde{n},k)$ by (6.3). This contradicts (\star) . Hence y and s+1 are nonadjacent for each $y \in V_1$.

So far, by (6.3)~(6.5), (6.13)~(6.18) and (a), we have that $T \simeq D_8'$ -type digraph. This contradicts the assumption of the Theorem.

(b)
$$\varphi_1(k) < \tilde{n} = 3$$
, then $2 = \varphi_1(k) \rightarrow k$.

By the definition of $\varphi_1(k)$ and \tilde{n} , we have $\tilde{m}=s+1$. Hence $\tilde{n}\to\tilde{m}=s+1$. Since $3=\tilde{n},k\in O(2),k$ and \tilde{n} are adjacent. By the definition of $\varphi_1(k)$, we have $k\to\tilde{n}$. Let $P_2'(2,k)=(2,z,k)$. By $k\to\tilde{n}=3,1\to 2$ and (6.5), we have z=s+1. i.e, $2\to s+1$. By (6.16), $2\to s+1$, $2\to k$ and $2\to 3$. Hence there is no $P_2'(1,2)$ in T, a contradiction.

Case 2. $O(1) \cap \{s, s+1, ..., k-1\} = \emptyset$.

(6.19) $s+1 \to \tilde{n}+1$ if k=s+2.

Since s+1=k-1, $l\in I(k)$, 1 and s+1 are adjacent. Then it must be $s+1\to 1$. By (6.3) we have $\tilde{n}+1\to 1$. Hence s+1 and $\tilde{n}+1$ are adjacent. Thus $s+1\to \tilde{n}+1$ by (6.3).

(6.20) $\tilde{m} = s + 1$

If $\tilde{m} \geq s + 2$, then we have $\varphi(s+1) < \tilde{n}$ by the definition of \tilde{m} .

- (a) If $k \geq s+3$, then $\tilde{m}-1 \rightarrow \tilde{n}+1$ by (6.5). There is a $P_k'(a,b)=(1,\ldots,\varphi(s+1),s+1,\ldots,\tilde{m}-1,\tilde{n}+1,\ldots,s,w,\varphi(s+1)+1,\ldots,\tilde{n},\tilde{m},\ldots,k)$. This contradicts (\star) .
- (b) If k = s + 2, then $\tilde{m} = s + 2 = k$. There is a $P'_k(a, b) = (1, ..., \varphi(s + 1), s + 1, \tilde{n} + 1, ..., s, w, \varphi(s + 1) + 1, ..., \tilde{n}, \tilde{m} = k = s + 2)$ by (6.19). This contrdicts (*).

So (6.20) is valid.

(6.21) There exists an arc (u', v') in A such that $u' < \tilde{n} < v' < \tilde{m}$.

If there does not exist any arc (u',v') as mentioned above, then $(1,i) \notin A$ for each $i \in \{\tilde{n}+1,\ldots,s=\tilde{m}-1\}$ and $\psi(j) \geq \tilde{m}=s+1$ for each $j \in \{2,\ldots,\tilde{n}-1\}$. By $j \to \psi(j) \geq s+1$ and (\star) , we have $(1,j+1) \notin A$ for each $j \in \{2,\ldots,\tilde{n}-1\}$. That is, $\{3,\ldots,\tilde{n}\} \to 1$. Thus we have that $O(1)=\{2,k\}$ by the assumption of case 2. This contradicts Lemma 1. Hence (6.21) is valid.

Let $A' = \{(u', v') \in A \mid u' < \tilde{n} < v' < \tilde{m}\}$. Let $\tilde{v} = \min\{v' \mid (u', v') \in A'\}$ and $\tilde{u} = \max\{u' \mid (u', \tilde{v} \in A'\}$. Obviously, $(\tilde{u}, \tilde{v}) \in A' \subset A$ and $\tilde{u} < \tilde{n} < \tilde{v} < \tilde{m}$. By (6.3) we have $\tilde{v} > \tilde{n} + 1$.

(6.22) $\{\tilde{n}+1,\ldots,\tilde{v}-1\} \to \{1,2,\ldots,\tilde{n}-1\}.$

By the definiton of \tilde{v} and $\{1,2,\ldots,\tilde{n}-1,\tilde{n},\ldots,\tilde{v}-1\}\subseteq O'(w),$ (6.22) is valid.

(6.23) $\tilde{u} = \tilde{n} - 1$.

If $\tilde{u}<\tilde{n}-1$, then $\tilde{v}-1\to \tilde{u}+1$ by (6.22). There is a $P_k'(a,b)=(1,\ldots,\tilde{u},\tilde{v},\ldots,s,w,\tilde{n}+1,\ldots,\tilde{v}-1,\tilde{u}+1,\ldots,\tilde{n},\tilde{m}=s+1,\ldots,k)$. This contradicts (\star) .

(6.21) $\tilde{v} \notin \{\tilde{n}+1,\ldots,s-2\}.$

We assume that $\tilde{v} \in \{\tilde{n}+1, \tilde{n}+2, \ldots, s-2, s-1\} = V_1$. Note that $T[V_1]$ is a tournament. Suppose $T[V_1]$ is strong. Let $(h, \tilde{v}, \ldots, h)$ be a Hamiltonian cycle in $T[V_1]$. Then there is a $P'_k(a,b) = (1, \ldots, \tilde{n}-1 = \tilde{u}, \tilde{v}, \ldots, h, s, w, \tilde{n}, \tilde{m} = s+1, \ldots, k)$ by (6.3). This contradicts (\star) . So $T[V_1]$

264

is not strong. Let \hat{T}_1 be a condensation of $T[V_1]$. Then \hat{T}_1 is a transitive tournament (see [3], 10.1.9). Let \hat{v} denote the dicomponent including \tilde{v} in $T[V_1]$ and denote it in \hat{T}_1 too. And let L (resp., R) be the set of vertices corresponding to $I_{\hat{T}_1}(\hat{v})$ (resp. $O_{\hat{T}_1}(\hat{v})$) in T. Obviously, L, R and \hat{v} have Hamiltonian paths, denoted by μ_1 , μ_2 and μ respectively. Since \hat{v} is strong, we may assume that \tilde{v} is a initial vertex of μ . For L, R, and μ , we have

(6.24.1) $L \to R$ and $L \to \hat{v} \to R$. That is, $\mu_1 \to \mu_2$ and $\mu_1 \to \mu \to \mu_2$. (6.24.2) For any $i \in L$, we have $i < \tilde{v}$. Also for any $j \in R$, we have $\tilde{v} < j$.

If there exists an $i \in L$ such that $i > \tilde{v}$, then we have $(i, \tilde{v}, \ldots, (i-1), i)$ and $i \in \hat{v}$. This is a contradiction. Similarly, for any $j \in R$, we have $\tilde{v} < j$. (6.24.3) $L \neq \emptyset$.

If $L = \emptyset$, then there is a $P'_k(a, b) = (1, \dots, \tilde{n} - 1 = \tilde{u}, \mu, \mu_2, s, w, \tilde{n}, \tilde{m}, \dots, k)$ by (6.3). This contradicts (\star) .

 $(6.24.4) R = \emptyset.$

In fact, if $R \neq \emptyset$, we have $L \to R$. By (6.3) and (6.22), $P_2(L,R)$ must be $R \to \tilde{n} \to L$, i.e., $(\mu_1, \mu_2, \tilde{n})$ is a path. Hence there is a $P'_k(a, b) = (1, \ldots, \tilde{n} - 1 = \tilde{u}, \mu, s, w, \mu_1, \tilde{m}, \ldots, k)$ by (6.3) and (6.20). This contradicts (\star) .

 $(6.24.5) \hat{v} = \{\tilde{v}\}.$

Suppose $\hat{v} \neq \{\tilde{v}\}$. Let μ' be a Hamiltonian path in $\hat{v} - \{\tilde{v}\}$. By (6.3), (6.22) and (6.24.1), $P_2(L,\hat{v})$ must be $\hat{v} \to \tilde{n} \to L$, i.e., (μ_1,μ',\tilde{n}) is a path. There is a $P_k'(a,b) = (1,\ldots,\tilde{n}-1=\tilde{u},\tilde{v},s,w,\mu_1,\mu',\tilde{n},\tilde{m},\ldots,k)$. This contradicts (\star) .

So far, by (6.24.2), (6.24.4) and (6.24.5), we have $\tilde{v} = s - 1$. So (6.24) is valid.

(6.25) $\tilde{v} \notin \{s-1, s\}.$

If $\tilde{v} \in \{s-1, s\}$, then T has the following properties

(6.25.1) $\tilde{v} \to \{1, 2, \dots, \tilde{n} - 2\}$ and $s \to \{1, 2, \dots, \tilde{n} - 3\}$ as $\tilde{v} = s - 1$.

Since $\tilde{v}-1 \to \tilde{v}$ and $\tilde{v}-1 \to \{1,2,\ldots,\tilde{n}-1\}$ by (6.22). \tilde{v} and i are adjacent for any $i \in \{1,2,\ldots,\tilde{n}-1\}$. If there exists an $i_0 \in \{1,2,\ldots,\tilde{n}-2\}$ such that $i_0 \to \tilde{v}$, then there is a $P_k'(a,b) = (1,\ldots,i_0,\tilde{v},\ldots,s,w,\tilde{n}+1,\ldots,\tilde{v}-1,i_0+1,\ldots,\tilde{n},\tilde{m}=s+1,\ldots,k)$. This contradicts (*). So $\tilde{v} \to \{1,2,\ldots,\tilde{n}-2\}$. When $\tilde{v}=s-1$, by $s-1=\tilde{v} \to \{1,2,\ldots,\tilde{n}-2\}$ and $s-1 \to s$, we have that s and j are adjacent for any $j \in \{1,2,\ldots,\tilde{n}-2\}$. If there exists a $j \in \{1,2,\ldots,\tilde{n}-3\}$ such that $j \to s$, then there is a $P_k'(a,b) = (1\ldots,j,s,w,\tilde{n}+1,\ldots,s-1=\tilde{v},j+1,\ldots,\tilde{n},\tilde{m}=s+1,\ldots,k)$. This contradicts (*). Hences $s \to \{1,2,\ldots,\tilde{n}-3\}$ as $\tilde{v}=s-1$.

(6.25.2) For each $i, j \in \{1, 2, ..., \tilde{n} - 1\}$ and i > j + 1, we have $(i, j) \in A$, except the case of $\tilde{v} = s - 1$, $(\tilde{n} - 2, s) \in A$ and $(i, j) = (\tilde{n} - 1, \tilde{n} - 3)$.

265

Suppose $j+1 < i < \tilde{n}-1$ and $j \to i$. By $i-1 \le \tilde{n}-3$ and (6.25.1), we have $s \to i-1$ and $\psi(i-1) > s$. Let $\alpha = j$, $\gamma = i$ and $\delta = \psi(i-1)$. There is a $P'_{L}(a,b)$ in T by Lemma 7. This contradicts (\star) . Hence $(i,j) \in A$.

Suppose $j+1 < i = \tilde{n}-1$ and $j \to i$. (a) If $\tilde{v} = s$, then $s = \tilde{v} \to \tilde{n}-2 =$ i-1. Hence $\psi(i-1)>s$. Using an analogous proof as above, T contains a $P'_k(a,b)$. (b) If $\tilde{v}=s-1$ and $(\tilde{n}-2,s)\not\in A$, then $\psi(i-1)=\psi(\tilde{n}-2)>s$ and T contains a $P'_k(a,b)$. (c) If $\tilde{v}=s-1, (\tilde{n}-2,s)\in A$ and $j<\tilde{n}-3$, then $\psi(i-2) = \psi(\tilde{n}-3) > s$ by (6.25.1). Furthermore T contains a $P'_{k}(a,b) = (1,\ldots,j, i = \tilde{n}-1,\ldots,s-1 = \tilde{v}, \tilde{n}-2,s,\ldots,\psi(\tilde{n}-3)-1,w,j+1)$ $1, \ldots, \tilde{n} - 3, \psi(\tilde{n} - 3), \ldots, k$) by (6.25.1). These contradict (*). So (6.25.2) is valid.

(6.25.3) For each $i, j \in \{s, s+1, ..., k\}$ and i > j+1, we have $i \to j$. If there exist $i, j \in \{s, s+1, \dots, k\}$ and i > j+1 such that $j \to i$. By $(\star\star\star)$, $\varphi(j+1) < s-1$. Let $\alpha = \varphi(j+1)$, $\gamma = j+1$ and $\delta = i$. There is a $P'_{b}(a,b)$ in T by Lemma 7. This contradicts (*).

(6.25.4) If s < k - 1, then $k \to \tilde{n}$.

Since $\tilde{n} \to \tilde{n} + 1$ and $k \to \tilde{n} + 1$ by (6.5), k and \tilde{n} are adjacent. Suppose $\tilde{n} \to k$. If $(i, k-1) \in A$ for each $i \in \{1, 2, ..., \tilde{n}-1\}$, then there is a $P'_k(a,b) = (1,\ldots,i,k-1,\tilde{n}+1,\ldots,k-2,w,i+1,\ldots,\tilde{n},k)$ by (6.5) and (6.19). This contradicts (*). Hence $(i, k-1) \notin A$. So far, by (6.3), (6.25.3) and $k-1 \to W$, we have $I(k-1) \subseteq \{k-2, \tilde{n}\}$. This contradicts Lemma 1. So $k \to \tilde{n}$.

 $(6.25.5) \ \tilde{n} = 4.$

By (6.6) we have $\tilde{n} \geq 2$. Thus it is enough to consider the following three cases.

(a) $\tilde{n} = 2$.

 $\tilde{u} = \tilde{n} - 1 = 1$ by (6.23). If $\tilde{v} = s$, then $1 = \tilde{u} \to \tilde{v} = s$. This contradicts the assumption of case 2. So $\tilde{v} = s - 1$. Hence $L = \{\tilde{n} + 1, \dots, \tilde{v} - 1\} \rightarrow \tilde{v}$ by the proof of (6.24). Thus $O(\tilde{v}) \subseteq \{s, \tilde{n}=2\}$ by (6.3). This contradicts Lemma 1.

(b) $\tilde{n} = 3$.

By the assumption of case 2, (6.22) and (6.25.1), we have $O(1) \subseteq \{2, 3 =$ \tilde{n}, k . Thus $O(1) = \{2, 3 = \tilde{n}, k\}$ by Lemma 1. We have $k \to 2$ by Lemma 7 and (*). Hence $\varphi_1(k)=3$. i.e., $\tilde{n}=3=\varphi_1(k)\to k$. And then k=s+1by (6.25.4). $O(2) \subseteq \{3 = \tilde{n}, \tilde{v}, s\}$ by $s + 1 = k \to 2$ and (6.22). Then $O(2)=\{3=\tilde{n},\tilde{v},s\}$ and $\tilde{v}=s-1$ by Lemma 1. There exists a $P_2'(\tilde{u},\tilde{v})=$ $P_2'(2,\tilde{v}) = (2,z,\tilde{v}) \text{ in } T, \text{ then } z \in O(2) = \{3,\tilde{v},s\}. \text{ So } z = 3 \text{ and } 3 \to \tilde{v}.$

Since $\tilde{v}=s-1$, we have $L=\{\tilde{n}+1=4,\ldots,\tilde{v}-1=s-2\}\to \tilde{v}$ by the proof of (6.24). Then $O(\tilde{v}) \subseteq \{1, s\}$ by (6.3). This contradicts Lemma 1.

(c) $\tilde{n} > 4$.

We have, by (6.22), (6.25.1), (6.25.2) and the assumption of the case

2, that $O(1) \subseteq \{2, \tilde{n}, k\}$ and $O(1) = \{2, \tilde{n}, k\}$ by Lemma 1. Thus $1 \to \tilde{n}$. Furthermore, by $\tilde{n}-3>1$ and (6.25.1) we have $s\to \tilde{n}-3$. So $\psi(\tilde{n}-3)>s$. There is a $P'_{k}(a,b) = (1,\tilde{n},...,\tilde{v}-1,\tilde{n}-2,\tilde{n}-1=\tilde{u},\tilde{v},...,\tilde{\psi}(\tilde{n}-3)-1)$ $1, w, 2, \ldots, \tilde{n-3}, \psi(\tilde{n-3}), \ldots, k$) by (6.22). This contradicts (*).

By (a), (b) and (c), (6.25.5) is valid.

 $(6.25.6)\ 1 \rightarrow \tilde{n}.$

If $\tilde{n} \rightarrow 1$, we have, by the assumption of case 2, (6.22), (6.25.1) and Lemma 1, that $O(1) = \{2,3,k\}$. Thus by $1 \to 3$, (*) and Lemma 7, we have $k \to 2$ and $(2,i) \notin A$ for each $i \in \{s+1,\ldots,k-1\}$. Hence $P_2'(1,k)$ must be (1,3,k). And then we have $3 \to k$. We also have $4 = \tilde{n} \to 2$ by Lemma 7 and (\star) . Thus $O(2)\subseteq\{3,s\}$ by (6.22) and (6.25.1). This contradicts Lemma 1. So $1 \to \tilde{n}$.

(6.25.7) $k \to 2$ and $(3, k) \notin A$.

If $2 \to k$, there is a $P_k'(a,b) = (1,\tilde{n},\ldots,\tilde{v}-1,3=\tilde{n}-1=\tilde{u},\tilde{v},\ldots,k-1)$ 1, w, 2, k) by (6.22) and (6.25.6). This contradicts (*). So $k \to 2$. By $1 \to \tilde{n} = 4$, (\star) and Lemma 7, we have $(3, k) \notin A$. So (6.25.7) is valid.

(6.25.8) $s \neq k-1$.

If s = k - 1, then $\tilde{m} = s + 1 = k$ by (6.20). we consider the following two

- (a) $\tilde{v} = s$. Since $k \to 2$, we have $\psi(2) = s$. i.e., $2 \to s = k 1$. There is a $P_k'(a,b) = (1,2,s=k-1,w,\tilde{n}+1,\ldots,s-1,\tilde{n}-1=3,\tilde{n}=4,m=k)$ by (6.22). This contradicts (*).
- (b) $\tilde{v}=s-1$. We have, by $k\to 2$, (6.22), (6.25.1) and Lemma 1, that $O(2) = \{3, 4 = \tilde{n}, s = k-1\}$. Then $P_2'(2,3)$ must be (2, s, 3). So $s \to 3$ and $\psi(3) > s$. Thus $\psi(3) = k$. Let $\alpha = 1$, $\gamma = 4 = \tilde{n}$ and $\delta = \psi(3)$. T contains a $P_k'(a,b)$ by (6.25.6) and Lemma 7. This contradicts (*).

By (a) and (b), (6.25.8) is valid.

 $(6.25.9) k-1 \leq s.$

If k-1 > s, then we have, by (6.4), (6.5), (6.25.4) and (6.25.7), that $I(k) = \{1, k-1\}$. This contradicts Lemma 1. So (6.25.9) is valid.

Since (6.25.8) and (6.25.9) contradict (6.1), we have (6.25) is valid.

Finally, we have $\tilde{v} \notin \{\tilde{n}+1,\ldots,s-1,s\}$ by (6.24) and (6.25). But it contradicts (6.20) and (6.21). On the other hand, note that $\stackrel{\leftarrow}{D_8} \simeq D_8'$. Hence, under the condition of (6) $b_0 = a_0 + 1$, except $T \simeq T_0$ - or D_8' -type digraph, there always exists a $P'_k(a, b)$ in T.

Up to now, under the condition of the Theorem, we have exhausted all possible cases of T and deduced that there always exists a $P_k'(a, b)$ in T. Therefore the proof of the Theorem is completed.

3 Remark

Using the definition to check whether a local tournament of order n is completely strong path-connected needs O(n!) steps. But using the Theorem of this paper it only needs $O(n^3)$ steps. Therefore from the complexity point of view, it can make a polynomial-time good algorithm.

References

- [1] J. Bang-Jensen, Locally semicomplete digraphs. A generalization of tournaments, J. Graph Theory 14 (1990), 371–390.
- [2] J. Bang-Jensen, On the structure of local semicomplete digraphs, Dis. Math, 100 (1992), 243–265.
- [3] J.A. Bondy and U.R.S. Murty, Graph Theory with Applications, Amer. Elsevier, New York, 1976.
- [4] Bu Yue Hua and Zhang Ke Min, On the arc-pancyclicity of local tournaments, Ars Combinatoria (to appear in 1997).
- [5] Zhang Ke Min, Completely strong path-connected tournaments, J. Combin. Theory B33 (1982), 166–177.
- [6] Zhang Ke Min and Wu Zheng Sheng, A necessary and sufficient condition for completely strong path-connectivity of tournaments, *Chinese Ann Math.* 4A(3) (1983), 385–392.
- [7] Zhang Ke Min, Wu Zheng Sheng and Zhou Yuan, On the existence of a class of tournaments with completely strong path connectivity, *J. of Nanjing University* 3 (1981), 303-307.

Some Results on Packing Graphs in their Complements

T. Gangopadhyay XLRI Jamshedpur Post Box 222 Jamshedpur 831 001 India

ABSTRACT. A supergraph H of a graph G is called tree-covered if H - E(G) consists of exactly |V(G)| vertex-disjoint trees, with each tree having exactly one point in common with G. In this paper, we show that if a graph G can be packed in its complement and if H is a tree-covered supergraph of G then G itself is self-packing unless G happens to be a member of a specified class of graphs. This is a generalisation of earlier results that almost all trees and unicyclic graphs can be packed in their complements.

1 Introduction and definitions

The notion of packing a pair of graphs is now fairly old. According to Schuster [10], this notion first appears in 1977 and 1978 (see [1], [2], [9]). We quote the definition from Schuster [10]:

Definition. Let G and G be two graphs of the same order p. A packing of G_1 with G_2 is an isomorphic embedding of G_1 in \overline{G}_2 , the complement of G_2 .

We say that G is self-packing if there is a packing of G with G itself. For a self-packing graph G, let σ denote an injection from G into \overline{G} such that if $uv \in E(G)$ then $\sigma(u)\sigma(v) \in E(\overline{G})$. Such a σ is called an isomorphic embedding (or an isomorphism) from G into \overline{G} . The image of σ in \overline{G} is denoted by G^* and is called a copy of G in \overline{G} under σ . In what follows, letters G, H will always denote simple undirected graphs.

Let G be a self-packing graph on n points. We say that a supergraph H of G is tree-covered if H - E(G) consists of exactly n vertex-disjoint trees