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ABSTRACT. Let T' = (V, A) be an oriented graph with n ver-
tices. T' is completely strong path-connected if for each arc
(a,b) € Aand k (k=2,...,n — 1), there is a path from b to
a of length k (denoted by Px(a,b)) and a path from a to b of
length & (denotod by Py(a,b)) in 7. In this paper, we prove
that a connected local tournament T' is completely strong path-
connected iff for each arc (a,b) € A, there exist Pa(a,b) and
Pi(a,b) in T, and T # Tp — Dj-type digraph and Ds.

1 Introduction

Let T = (V, A) be an oriented graph with n vertices. If an arc (z,7) € 4,
then we say that z dominates y, denoted by =z — y. If §1 and S are disjoint
subsets ol V' such that there is a complete connection between them and all
arcs between them are directed toward Sp, we say that S; dominates Ss,
denoted by S, — Sy. We write z — Sy (resp., S3 — z) instead of {z} — Sy
(resp., S2 — {z}). For z € V, we define O(z) = {y | y € V, (z,y) € A},
I(z)=A{y |y eV, (y,z) € A}.

*The Project Supported by NSFC No. 19471037 and SFJS.
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T is arc-k-cyclic if each arc (a,b) € A, there is a path from b to a of
length k — 1 in T.. T is arc-pancyeclic (resp., arc-antipancyclic) il for each
arc (a,b) € A, there is a path from b to a (resp., from a to b) of length k
(k=2,3,...,n—1) in T, denoted by Py(a, b), or briefly Py (resp., P/(a,b),
P{). An oriented graph T is completely strong path-connected if T' is arc-
pancyclic and arc-antipancyelic. Other notations and terminologies not
defined in this paper can be found in [3].

A local tournament T is an oriented graph such that T[O(z)] and T[I(z))
are tournaments for every vertex z in T. Local tournaments were frst
introduced by J. Bang-Jensen [1], [2]. Clearly, tournaments is a special class
of local tournaments. In [1], [2], it was shown that every connected local
tournament has a Hamiltonian path, and every strong local tournament has
a Hamiltonian cycle. Many other results for tournaments are also shown
for local tournaments. In this paper, Zhang and Wu’s results in (5] and [6]
are extended. We get the following main result.

Theorem. Let T = (V, A) be a connected Jocal tournament with n vertices
(n > 3). If for each arc (a,b) € A, there exist Py(a,b) and Pi{a,b) in T.
Then T is completely strong path-connected, except T ~ Ty- or Dj-type
digraph or Dg. (sce Figures I, 2 and 3).

Figure 1. Dy

Figure 2. Ty-type digraph.
(Here T3, T3’ are tournaments)
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Figure 3. Df-type digraph.
(Here Ty is a tournament)

Immediately we have,

Corollary. ([5], Theorem 1) A tournament T' — (V, A) with n vertices
is completely strong path-connected if and only if for each arc (a,b) € A,
there exist Py(a,b), and Pj(a,b) in T, and T # Tp-type digraph.

2 The Proof of the Theorem
In order to prove the Theorem, we need the following lemmas.

Lemma 1. Let T = (V,A) be a connected local tournament. For each
arc (a,b) € A, there exist Py(a,b) and Pj(a,b) in T, then there exists a
cycle in the induced subgraph T([O(zq)] (resp., T([I(zg)] for any =y € V.
Furthermore, |O(zo)| > 3, (resp., |I(zo)] > 3).

Lemma 2. Let T = (V, A) be a connected local tournament. For each arc
(a,b) € A, there exist Py(a,b) and P;(a,b) in T, then there always exists a
P{(a,b) in T for each arc (a,b) € A (Ri= 2300580

By the definition of a local tournament, the proofof Lemma 1 and Lemma
2 is an analogous to the proof of Lemma 1 and Lemma 3 in [7].

Lemma 3. ([4] Theorem 1) Except for Ts-, Ty-type digraphs and Dy
(see Figures 1 and 5), every arc-3-cyclic connected local tournament is arc-
pancyelic.

The proof of the Theorem.

Let T'= (V, A) be a connected local tournament of order n (rn > 3) such
that for each arc (a,b) € A, there exist Pa(a,b) and Pj(a,b) in T. For Ts-
or T-type digraph, it is easy to find that there exists a vertex z such that
|O(z)| = 2. So T is not a Tg- or a Ts-type digraph by Lemma 1. Hence
by Lemma 3 T is an arc-panyclic local tournament except 7T is isomorphic
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to Dg. And by Lemma 2 there always exists a Pi(a,b) in T for k < 6.
Therelore it is enough to prove the following.

Ts-type digraph

Te-type digraph
(where T}, T{ are tournaments)
Figure 5.
The directions of the edges without arrow can be chosen arbitrary.

Proposition. Suppose T is not isomorphic to a Ty- or Dg-type digraph
or Dg. If for each arc (a,b) € A and k (7T < k < n — 1), there exists a
P{_i(a,b) in T. Then there exists a P{(a,b) in T

Trom now on, we shall assume that there is a P}_,(e, b) in T', and denote
it by (1,2,...,k), where a = 1 and b = k. The set of vertices {1,2,...,k}
of P}_,(a,b) is also denoted by P{_,. Let W =V — P{_,. Hence |W| > 1.
For any w € W we define

O'(w) = O@w) N PL_,, I'(w)=I(w)n Pl ;.
When O'(w) # @ and I'(w) # 0 for w € W, set
a(w) =max{i| i€ O'(w)}, blw)=min{i|ie I'(w)}.
If the condition of the proposition were false, we should assume that
There does not exist any Pg(a,b) in T. . (%)

By the assumption above, we may obtain the following claims.

(1) O'(w) = {1,2,...,a(w)} and a(w) < k as O'(w) # 0. Similarly,
I'(w) = {b(w), ..., k} and b(w) > 1 as I'(w) # 0.

Suppose O(w) # 0. If there exists an i € O'(w) with i — 1 ¢ O'(w),
by the definition of a local tournament and {w,i— 1} C I(i), then i — 1
and w are adjacent in T. Thus i —1 — w by the definition of i. Hence
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there is a Pi(a,b) = (1,...,7i— 1,w,4,...,k) in T. This contradicts (x).
So O'(w) = {1,2,...,a(w)}. And if a(w) = k, then w — P;_,. Note
that there exists a Pp(w, 1) = (1,z,w). Clearly z ¢ P/ ;. Hence z € W.
Thus T contains a Py(a,b) = (1,7,w,3,...,k). This contradicts (x). So
a{w) < k.

(2) For any w € W, O'(w) # 0 if and only if I'(w) # 0.

If O'(w) # @, there is a Py(w,1) = (1,z,w). Tz € W, then 1 € I'(x)
and b(x) = 1. This contradicts b{w) > 1 by (1). Hence z € I'(w) and
I'(w) 5 Q. Similarly, if I'(w) # 0, then O'(w) # 0.

(3) Let Wi ={w | we W,0'(w) # 0} and Wy = W — W, then W, = 0.
Ifurthermore, T'[W] is a tournament and O'(w) # 0, I'(w) # @ [or every
we W.

Since T' is connected, Wi # §. Suppose W, # 0. Let w; € W; and
wy € Wy such that w; and wy are adjacent. Without loss of generality,we
assume wq — wi. Since k — w; by (1) and (2), wy and k are adjacent.
Then k — wo and O'(wp) # @ by (1) and (2). This is a contradiction.
Hence Wo = 0. ie. W =W,.

From (1) and (2), we have W C I(1) and O'(w) # 0, I’(w) # @ for every
w € W. Thus T'[W] is a tournament by the definition of a local tournament.

(4) b(w) = b(w’) and a{w) = a(w’) for any w,w' € W.

Suppose there are w,w’ € W such that b(w) # b(w'). Set b(wp)
min{b(w) | w € W}. Let W3 = {w | w € W,b(w) > b(wp)} and W,
W — W3. Then W3 5 0, Wy # 0 and b(wg) = b(w) — w for any w € Wy,
Case 1. There exist w3 € W3 and wy € Wy such that wy — wy.

Since b(wq) = b(wp) < b(ws) and b(ws) — 1 — wy, wy and b(ws) — 1
are adjacent by ws — wy and the definition of a local tournament. From
(1) we have w3 — b(ws) — 1. Thus a(ws) = b(ws) — 1. Similarly, since
b(wg) — 1 < b(ws) — 1 = a{ws) and ws — wa, we have a(wy) = b(wy) — 1.

Now we need the following three Lemmas
Lemma 4. There are no u, v, n and m in P/ _, such that u < n <
b(wg) —1 < b(wz) < v < m and (u,v), (n,m) € A.
Proof: Otherwise, it will contradict (). O

Now, (n,m), (u,v) € A are called cis-crosswise arcs with respect to the
P{_, (briefly cis-crosswise arcs) if », m, u and v are on P} _; such that
u<n<y<m.

Lemma 5. (a) For each i € {3,4,...,b(w4) — 1}, we have (i,1) € A. (b)
For each j € {b(ws),..., k —2}, we have (k,j) € A.

Proof: (a) Since {1,2,...,b(ws)—1 = a(wy)} C O(ws), T[{3,4, .. ., blws)—
1,1}] is a tournament. If there is an 4o € {3,4,...,b(wy4) — 1} such that
1 — idp, then w3 — iy — 1 by ip — 1 < a(wsz). There is a Pa(ws,ig — 1) =
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(i0—1, u,ws). By the definition of b{wy), we have u @ W. Hence u € I'(w3).
Thus there is a P(a,b) = (1,%,...,2— 1,w4,2,...,%9 — 1,%,..., k). This
contradicts (x). So (a) is valid.

An analogous proof of (a), we have that (b) is true. O

Lemma 6. If (b(w4)—1,b(ws)) € A and (b(w4s)—1, b(ws)) # (a,b) = (1, k),
then there is an arc (u,v) € A such that (u,v) and (b(w4) — 1, b{ws)) are
cis-crosswise arcs.

Proof: By Lemmas 1, 4 and 5, using an analogous proof of Lemma 3 in
[5], Lemma 6 follows. O

Now, let’s back to discuss case 1.

There are Pa(ws, a{ws) = b{ws)—1) = (b(wq)—1,m, w3) and Py (w3, ws) =
(w4, ws, ws), where m ¢ W and ws & P[_,, by the choice of ws and
b(ws) > b(ws). Hence we have that b(ws) <m < k and ws € W.

If b(w3) — b(ws) > 4, then a(ws) > b(wy) + 3. There is a Pl(a,b) =
,...,b(wa), ws, ws, w3, b(ws) + 3,...,a(ws), ..., k). This contradicts (x).
Hence b(ws) — b(wyg) < 3.

Subcase 1.1. (b(w,) — 1, b(w3)) € A.

First, we have m > b(ws). Let Po(b(ws),ws) = (wq, v, b(ws)). lHy €
W, then a(y) > b(ws). If a(y) > b(w,) + 2, then there is a P{(a,b) =
(1,...,b(wy), ws,y, b(wa) +2,...,a(y),..., k). This contradicts (x). Henee
a(y) < b(wy) + 1. Since a(y) > b(ws) > b(wa) + 1, we have a(y) = b(ws) =
b(ws) + 1. By Lemma 1 ,there exists an = € O(1) — {2,k}. Obviously,
g W. And z ¢ {3,...,b(ws) — 1} by Lemma 5. So = > b(wy).

(a) = = b{w,). Sinee z > 3 and a{wy) = b(wg) —1 > 2, there is a
Pl(a,b) = (1,z = b{wa),...,m — 1,wq,2,...,b(wy) — 1,m,...,k). This
contradicts (x).

(b) = = b(wy4) + 1. Note that m — 1 > b(wz) — 1 = b(ws4) and a(y) =
b(wq) + 1 = a(ws) +2 > 3. If a(wy) > 1, then there is a P{(a,b) = (1,z =
b(ws),...,m—1,w4,%,2,...,a(ws) = b(ws)—1,m,..., k). This contradicts
(x). Ience a{wy) = 1. Thus we have I(k) C {1,b{ws) — 1= 2,k — 1} by
Lemma 5 (b). And then 2 — k by Lemma 1. Hence there is a Pj(a,b) =
(1,z = b(ws),..., k —1,ws, b(ws) = 2,k). This contradicts (x) too.

(¢) z > b{ws) = b{wy) + 1. Since z < k and 1 — =, there is no jo €
{2,...,b(ws)—1} such that jo — k by Lemma 4. Then I(k) C {1, b{ws), k—
1} by Lemma 5 (b). Hence I(k) = {1,b(ws), k — 1} by Lemma 1. That is,
b(wg) — k. If k = 7, there is a Pf(a,b) = (1,z,ws,y, b{ws), ws, b(wy), k).
This contradicts (x). Hence k > 7. There are two distinct vertices i,7 €
Pl —{1,a(ws), b(ws) = a(wa)+1, b(ws) = a(ws)+2, z, k}. Using two arcs
(1,z), (b(ws), k) and ws, ws, y, then there is always a P{(a,b) in T. e.g.,
1 < i < a(wy) and b(wz) < 7 < z, then there is a Pl(a,b) = (1,z,...,k —
L,wq,y, b(ws), ...,z — 2,ws,3,...,a(ws),b(ws), k). These contradict (%).
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Hencey ¢ Wand 1 <y < a(ws) = b(ws) — 1. Since (b(ws) —1, blws)) & A,
we have y < b(wy) —1. Now, there are two arcs (y, b(ws)) and (b(wg)—1,m)
in T with y < b(ws) — 1 < b(un) < m. This contradicts (%) by Lemma, 4.
Subcase 1.2 (b(wy) — 1, b(ws)) € A.

Since b(ws) — b(wy) < 3 and k > 7, we have (b(w,) — 1,b(ws3)) # (a,b).
There exists an arc (u,v) such that (u,v) and (b(uy) — 1,b(ws)) are cis-
crosswise arcs by Lemma 6.

Suppose u < b(w4) —1 < v < blws). For v = b(ws) or b(ws) + 1
or b(ws) + 2, there exists a Pi(a,b) in T respectively. e.g., we assume
v = b(wy)+ 1. If b(w3) = b(wsg) +3, then there is a Pl(a,b)=(1,...,u,v =
b(wa)+1, wa, ws, wa, u+1, ..., b(ws) ~1, b(ws), ..., k). If b(ws) = b{wy)+2,
then v = b(ws) —1 = a(ws). Since wy — ws and wy — a(wys), ws and a(w,)
are adjacent. By the definition of b(wy) = b(wp), we have ws — alwy).
Hence a(ws) > a(ws) > w and ws — u + 1. Thus there is a Pl{a,b) =
(1, 0, v = blwg)+1,we, ws, ut1, ..., blwy) -1, b(ws) = b(wa)+2,...,k).
These contradict (#). '

Using an analogous method, if b(w4) — 1 < u < b(ws) < v, then there is
also a Fy(a,b) in T. This contradicts ().

Therefore no vertex of W5 dominates any vertex of Wy. We have that
W4 — Wj since T'[W] is a tournament.

Case 2. Wy — Ws.

We choose w3 € W3, wq € W, such that b{ws) = max{b{w) | w €
W3}, Thus wgs — ws. Since b(ws) > b(wa), there exists a Pi(wy,w3) =
(w4, ws, ws) with wg € W. Now, we have the following claims.

(4.1) b(wy) < a(wn) < blwy) + 1.

Let Py(wg,ws) = (ws,y,wy). Since Wy — W3, we have y € W and
y ’E P_,. Thus b(wy) <y < a(ws). If a(ws) — 2 > b(w,), then there is a
Pela,b) = (1,2,...,a(ws) — 2, ws, w3, a(ws),..., k). This contradicts (x).
Hence a(ws) < b(wy) + 1.

(4.2) (a(ws), b(ws)) € A.

Let Py(b(ws), ws) = (waq,u,b(ws)) and Py(ws,a(uy)) = (alwy), m, ws).
By the choice of wy and wy, We have u,m & W. Then u < a{wy) and
b(ws) < m. Il w < a(wy) and b(ws) < m, then

(a) a{ws) > a(ws) + 2. Since blws) — 1 > b(ws), there is a P/(a,b) =
(1.0, blun), ..., m— Liws,a(ws) +2,...,a(ws),...,b(ws) — 1, wq,u +
1,...,a(w4),m,...,k);

(b) b(ws) < b(ws) — 2. There is a Pl(a,b) = (1,...,u,b(ws),...,m —

Lws, a(wa) +1,...,b(wg), ..., b(ws) = Zywg, u+ 1, vy (i), ms oo K);
(c) a(ws) < a(wq) + 1 and blw,) > b{ws) — 1. Since a(ws) > b(ws) >
a(ws) + 1 and b(ws) < b(ws) — 1, we have a(ws) = b(un) = alwy) +1 =

b(w3) — 1. Thus there is a Pia,b) = (1,...,u,b(ws),...,m —1,w,, wy, u+
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1,...,b(ws) — 2 = a(wy),m,..., k).

These contradict (x). So u = a(w4) or m = b(ws). Thus (4. 2) is valid.

(4.3) a(ws) = b(ws) — 1 and a(ws) = b(w,) — 1.

Il a(w3) < b(ws)—1, then i and wy are nonadjacent for each i € {a(ws)+
1,...,b(ws) —1}. Since {a(ws) +1,...,b(ws) —1,k} C I(ws), k and 5 are
adjacent for each j € {a(ws) +1,...,b(ws) — 1}. Since the definition of
local tournaments and k — ws, we have {a(ws) + 1,...,b(w3) — 1} —
k. 1f b(w3) < k, then there is a Pl(a,b) = (1,...,a(wd),b(ws), ..., k —
L,ws, a(ws) +1,...,b(wz) — 1,k) by (4.2) and a(ws) + 1 < b(ws) < alws).
This contradicts (*). So b(ws) = k. Since 1,k —1 € I(k),1 and k — 1 =
b(wz) — 1 are adjacent, and then 1 — b(ws) — 1 by w3 — 1. Now, we
consider the following two subcases:

(a) a(ws) < blwz) —2=Fk—2.

If a(ws) > 3, then thereis a Pf(a,b) = (1,b(ws)—1, ws, ws, 3, . . ., b(ws) —
2,k). This contradicts (x). Hence a(ws) < 2. Since a(ws) > b(wy) >
a(ws) = 1, we have a(ws) = 2. Then b(ws) — 3 > a(ws) by k > 7. Hence
b(ws) —3 — k and there is a P{(a,b) = (1,b(w3) —1 = k—1, wy, ws, a(ws) =
2,...,k —3=>b(ws) —3,k). This also contradicts ().

(b) a(wz) =b(ws) — 2=k — 2.

Since k > 7, we have a(ws) > 5 and b(wg) > a(ws) —1 > blwg) —1 >4
by (4.1). If b(ws) = a(wa) + 1, then a(ws) > 3. When a(ws) = b(wy) -+
1, there is a Pi(a,b) = (1,b(ws) — 1 = k — 1wy, we,ws,2,... .k —4 =
a(ws),b(ws) = k) by (4.2). When a(ws) = b(wy), there is a Pl(a,b) =
(1,6(1‘1)3) -1 =k-— 1,‘1&?4,‘1113,2,...,]&' -3 = a,(w.4),b(w3) = k) These
contradict (). So b(ws) > a(ws) + 2. Since a(wy) — b(ws) = k and
a(ws) — a(ws) + 1,k and a(w4) + 1 are adjacent, and then a(wq) + 1 — k
by £ — w4 and w4 and a(w4) + 1 are nonadjacent. Similarly, we can get
that {a(ws)+1,...,b0(ws)—1} - kand 1 — {a(w4)+1,...,b(ws)—1)} since
{1,a(ws)+1,...,b(wg) —1} C O'(w3). If blwy) —2 > a(w,4)+1, then there
is a Pgla,b) = (1,b(ws) — 1,...,a(ws) = k — 2, wq, ws, 2, . ooy b(wg) — 2, k)
by (4.1) and b(w4) > 4. I b(wa) = a(w,) + 2, then there is a Pl(a,b) =
(La{wa)+1,...,k—1,ws,2,...,a(ws),b(ws) = k) by (4.2) and a(wy) > 2.
These contradict (x). So a(ws) = b(ws) — 1.

Similarly, we can prove that a(ws) = b(w4) — 1. (4.3) is valid.

Now, by (4.1), (4.2) and (4.3), we have that b(ws) — b(ws) < 2, a(ws) =
b(ws) —1, a(wq) = b(wys) —1 and (b(wq) — 1, b(ws)) € A. Using an analogous
proof of subcase 1.2, there is a P{(a,b) in 7. This contradicts (x).

Up to now, we prove that b(w) = b(w’) for any w,w’ € W. Similarly, we
can prove that a(w) = a(w’) for any w,w’ € W. So (4) is valid.

We denote ap = a(w) and by = b(w) for any w € W. Then O'(w) =
{1,2,...,a0} and I'(w) = {bo, ..., k} for any w € W, and then T{L, ..., ag}]
and T'[{bo, by + 1,...,k}] both are tournaments. Clearly for any i € {ao +
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1,...,b0 —1} and any w € W, i and w are nonadjacent.

Now, we shall use the following lemmas and symbols.

For 1 < ¢ < ag and b <7<k letR(t)={il(t,i)EA,bggisk}
and L(5) = {i | (i,7) € A,1 <i < ag)}. Since there exist Poy(w, t), Pa(j,w)
forany w e Wand 1 <t < ag, by < J <k, it is easy to check R(t) 5 @,
L(j) # 0. Hence we can define,

$(t) = max{R(t)}, ¢1(t) = min{R()}, 1 (j) = max{L(5)} and w(7) =
min{L(j)}.

Then bo < 9y(t) < %(t) < k, 1 < 9(4) < ¢1(5) < ag, and (t, (1)),
(& ¥1(0)), (2(4), 4), (21(5),7) € A for any 1 < ¢ < ag and by < < k.

Lemma 7. If there are o < Y <&in P, | such that 1 < o < ap — 1,
a+1<y,by+1<6and (a,7),(y- 1,6) € A, then T contains a Pl(a,b)
inT.

Proof: Let @, v and § satisfy the condition of Lemma 7. Then there is a
Pl{a,b) = (1,...,&,7,...,5—1w,a+1,...,7—1,6,...,k). O

Lemma 8. ([2], Corollary 3.13) Let Py = (z1,...,2m) and Py = (W1, 90)
with m > 2 and t > 3 be paths in a connected local tournament T. If
there exist 4,7 with 1 < § < J £ m such that z; = y, T; = vy, and
V(P1) N (v(P2) — {y1,5}) = 0. Then T has an (z1,Zm)-path P such that
V(P) =V (P)UV(P,).

(5) bo =ag+1

Suppose by > ag + 1. If by = k, then Y(i) = k for each i € {1, 2,008}
That is, {1,2,..., ao} — k. Let Py(ag, ag + 1) = (ag + 1, z, ag). Obviously,
z g W. Ifz e {1,2,...,a0 — 1}, then ap + 1 and w are adjacent by
w — z. This is a contradiction. So z & {1,2,...,a0 — 1}. Similarly,
z & {ag+1,...,by — 1}. Thus = = by = k. ie, k = z — ayg. This
contradicts ag — k. Hence by < k — 1. Similarly, we have ag > 2.

Let Pa(ag,a0 +1) = (ag + 1,1, ao). Using an analogous proof as above,
we have ¢ & WU{L,2,...,a0 —Lag+1,...,b —1}. That is, by < ¢t < k.
If ¢ = by, then we have by — ay, w(bo) < ag and (ag) > bo. w(bo) and
bg — 1 are adjacent by w(bo) — by and by — 1 — by. Since bp — 1 and w
are nonadjacent and w — (by), we have w(bg) — by — 1. Similarly, we
can obtain @(by) — {ag +1,...,by — 1}. Let a = (), v = ag + 1 and
6 = 1b(ag). Then there is a P}(a,b) in T by Lemma 7. This contradicts
(x). Hence t > by. Similarly, letting Po(by = 1, ba) = (b, y,bo — 1), we have
1<y <ap.

If bo > ag + 2, then ¢ and ap + 2 are adjacent by ag +1 — ¢ and
a+1—ay+2 I[t—apt 2, then it will deduce that ap + 2 and w are
adjacent by ¢ — w, a contradiction. Hence ag + 2 — t. Similarly, we have
{ao+1,...,00—1} > t. Let a = y(< ao),y=b—1and 6§ = ¢(> by). There
is a P[(a,b) in T by Lemma 7. This contradicts (*). Hence by = ag + 2.
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ag + 1 and t — 1 are adjacent since ap+1 — t and ¢t — 1 — £. Thus
ag+1—-t—1byt—1— wand wand ay+ 1 are nonadjacent. Similarly,
we have

ag+1—{bop+1,...,0 —1,t} (k)

Now, we consider the following four cases.
Case 1. ag > 2 and k > by + 2.

If (bo) < ag, letting @ = ¢(bg), v = by and § = ¢, then there is a P/(a,b)
in T by Lemma 7 and (bg — 1,#) = (ap + 1,) € A. This contradicts ().
Hence ¢(by) = ap. That is, ap — by. Since 1,ap € O(w), 1 and ag are
adjacent. Suppose (1,ap) € A. If ¥(ap —1) > bg, letting a =1, v = ap and
§ = 1(ag — 1), then there is a P{’a, b) in T by Lemma 7. This contradicts
(x). So ¥(ap —1) = bo. ie,a—-1— ¥(ag — 1) = bp. Now, letting
a=ay9—1,v="b and § =t, there is a P[(a,b) in T by (*%) and Lemma
7. This contradicts (*) too. Hence in the following we always assume that
(a0,1) € A.

(5.1) {1,2,...,a0—1} s agp+1landap+1— k.

1 — ap + 1 since ag + 1 and w are nonadjacent and 1,ap + 1 € O{ag).
Furthermore, 2 — ag + 1 by 1 — 2. Similarly, we have that {1,2,...,a0 —
1} wap+landap+1—-kbyl—a+1landl — k.

(5.2) bg — 1 and {bo+2,...,k}—> bo.

Since ag — 1 and ay — by, 1 and by are adjacent. If 1 — by, then, letting
a =1,y =by and § = t, there is a P/(a,b) in T' by (+x) and Lemma 7.
This contradicts (x). Hence by — 1.

If there exists a 7 € {bo + 2,...,k} such that by — 7, then T contains a
Pl(a,b)=(1,...,a0—1,a0+1=bg—1,bo+1,...,5 —1,w,a0,b0,3,..., k}
by (5.1) and (#x). This contradicts (x). Hence {bp +2,...,k} — bo.

(5.3) ap =3, bp=52and (ap — 1,b0) &€ A.

If 9(ag — 1) = bo, then there is a Pi(a,b) = (1,...,a0 — 1,9%(ag — 1) =
bo,...,k—1,w,ap,ap+1, k) by (5.1) . This contradicts (*) . So ¢(ap—1) >
bo and (ao — 1, b0) & A. .

By ap—1 — v¥(ap—1) > by, Lemma 7 and (%), we have ag — 2. Il ap > 4,
then there is a Pj{a,b) = (1,a0 +1,...,%(ac — 1) — 1,w,a0,2,...,ap —
1,9¢(ap — 1),...,k) by (5.1). This contradicts (*). Hence ap < 3, and then
ag=3 by ay > 2. Thus by =ap+2=25.

(5.4) k=bg+2="7T

Suppose k > by + 2. When (b + 1) € {1,2}, there is a P}(a,b) =
(1, ¢(bo+ 1), bo +1,....,k — Lbo,w,e(bo +1) +1,...,a0 + 1,k) by
(6.1) and (5.2). When @(bo+1) =ap =3, lettinga =1, y =09+ 1 and
§ =bp+1, there is a P/(a,b) in T' by Lemma 7 and (5.1). These contradict
(¥). Hence k =bg+2=T7by k > by + 2.
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(6.5) k — ag

ag and k are adjacent since ap — bp and k — by by (5.2). If ag — k,
letting @ = 1, v = ag+1 and § = k, then there is a P{(a,b) in T by Lemma
7. This contradicts (). So k — ag.

Now, 1 and by -1 are adjacent since 1,bp+1 = k—1 € I(k). We consider
the following two cases.

ag and by + 1 are adjacent by ag — 1. If ag — by + 1, then there is a
Pl(a,b) = (1,a0 + 1, by, w,2, a0 = 3,bo + 1, k). This contradicts (x). Hence
bg+1 — ag.

Let Pj(bp,bo + 1) = (bou,bo + 1). Obviously, u ¢ W. Since bg+1 — 1,
ag — bp ag+1 — bgpand bg+1 — k, wehaveu = 2. i.e,, bp = u=2 — bp+1.
Let P5(1,2) = (1,2,2). Obviously, z ¢ W. Sinceag — 1,2 — ap +1 by
(5.1), bp — 1 by (5.2) and by +1 — 1, we have z = k. ie, k=2 — 2.
Suppose |W| > 1. Clearly T contains a P/(a,b). This contradicts ().
Hence |W| = 1.

Now, by ag+1 — bg+ 1, ag — by, ag — 1, (5.1)~(5.5) and (a), we have
that T~ Df. This contradicts the assumption of the Theorem.

(b) 1 — bg+1.

Since 1 — 2 and 1 — by + 1, we have 2 and by + 1 are adjacent. If
2 — by -+ 1, then 2 and by are adjacent and bp — 2 = ag — 1 by (5.3). Thus
there is a Pl(a,b) = (1,bo+ 1,w, a0, b0, 2 = ag — 1,a0 + 1, k) by (5.1) and
(5.2) . This contradicts (*). So bp +1 — 2.

Let Pi(bo+1,k) = (bo+1,y,k). Obviously, y & W. Note that 1 — bp-+1,
k — ag by (5.5), ap+1 — bg+1 by (%x) and bp — bg + 1. We have y = 2.
ie, 2—k.

We easily check that |W| = 1 and 3 and 6, 2 and 5 are nonadjacent.
Otherwise, T contains a Pi(a,b). e.g., (3,6) € A, there is a P/(a,b) =
(1,a0 +1,bg,w,2,3,6 = by + 1,k) by (5.1). These contradict (x).

Now, by ag+1—bg+1, ag — by, ap — 1, (5.1)~(5.5) and (b), we have
that T' ~ Dg. This contradicts the assumption of the Theorem.

Case 2. ag > 2 and k=by + 1.

Since bg <t <k, wehavet =k =bg+1. ie,bp—1=ao+1—ot=k.
Since k = by +1 =ap+3 > 7, we have ay > 4. If there exists a jp €
{1,2,...,a0 — 1} such that jo — b, letting & = jo, v = bp and & = k, then
there is a P/(a,b) by Lemma 7. This contradicts (x). Hence (4, bo) ¢ A for
each j € {1,2,...,a0 —1}. Then I(by) C {ag,a0+1="0by—1} by b = W.
This contradicts Lemma 1.

Case 3. qg =2 and k > by + 2.

Consider the converse "f of T, thus we change case 3 in T for case 2 in
T. So this case is impossible.
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Case 4. ap=2and k= by + 1.

In this case k = bp+ 1 = ag + 2+ 1 = 5, this contradicts k > 7.

Up to now, we have proved that by = ap + 1. (5) is valid.

(6) Under the condition by = ag + 1, we can obtain the following claims.

For convenience, let s =ag+1=15p. Thenag=s—1,1 < s < k and
T[{1,2,...,s—1}] and T{s, ..., k}] both are tournaments.

(6.1)3<s<k-1

T is a To-type digraph when s = 2 or k. e.g.,s = 2, then O'(w) = {1}
and I'(w) = {s = 2,...,k} for any w € W. Hence (i) = 1 for each
i€ I'(W). e, 1 — {2,...,k}. Let T§ = T[{2,...,k}], T{ = T[W] and
vp = 1. Thus Ty — Ty’ — vo — T. Since T} and Ty’ both are tournaments,
T =~ Ty-type digraph. This contradicts the assumption of the Theorem. So
3<s<k~-1.

(6.2) (s) <s—1, ¢(s—1) > s can not hold simultaneously.

Suppose ¢(s) <s—1, ¥(s—1) > s. We may choose o = ¢(s), v = s and
6 = 1(s — 1). Then there is a P/(a,b) in T by Lemma 7. This contradicts
(*). Hence we have p(s) = s —1 or 9(s — 1) = 5. We may assume, without
loss of generality, (s — 1) = 5. Otherwise, we consider the converse ’_I*: of
T. Then

1< (i) Spi(s) S5 -2 (x4 %)

for each j € {s +1,...,k} by the definition of ¢(s — 1). We may define
i = max{pi(j) | s+1<j <k}, i =min{j | ¢1(j) =, s +1 < j < k).
Then 74 < s — 2,5 < m,(R,m) = (p1(), M) € A and (#,7n) £ (1,k).
In fact, if (7,7m) = (1,k) then every vertex in {1,2,...,s — 2} does not
dominate every vertex in {s+1,..., k} except for an arc (1,k). Il k > s+1,
then (s +1) < 5—2 by (xx+). ie., ¢(s+1) — s+ 1, a contradiction.
So k = s+ 1. Since k > 7, we have s > 6. Since (i,k) ¢ A for each
i €{2,...,5—2} and 9(s — 1) = 5, we have I(k) C {1,k —1 = s}. This
contradicts Lemma 1. Hence (71, ) # (1,k) = (a,b).

(6.3) (1°) For each j € {fi+1,...,s—1}and i € {s+1,..., k}, we have
(7,2) & 4

2){n+1,...,s—1} > s

(3°)A~+1—{1,2,...,i—1} as 7 > 2.

By the definition of i and ¢(s—1) = s, we easily check that (1°) and (2°)
are valid. By # — 7, Lemma 7 and (x), we have n+1 — {1,2,..., 7 — 1}

(64)k—{s—1,5,...,k—2}ask>s+2.

If there exists a jo € {s,...,k—2} such that jo — k, letting @ = p(jo+1),
Y = Jo+1and § = k, then there is a P{(a,b) in T' by Lemma 7 and
¢(jo+ 1) < s — 2. This contradicts (x). Hence k — {s,...,k — 2}. Since
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k—sands—1—s wehave k and s — 1 are adjacent and k — s — 1 by
(6.3).

(6.3) {s+2,... .k~ 1Lk} - {A+1,...,s}ifk>s+2 s+1 —
{A+1,...,s—1}ifk>s+3.

k and s — 2 are adjacent since k — s — 1 by (64). If s —2 >/ +1,
then k& — s — 2 by (6.3) (1°). Similarly, we have k — s — 3. ., k—n4+1.
Thus k — {fi+1,...,s—1,s,...,k -2} by (6.4). Hence T[{fi+1,...,5—
1,s,...,k —2,k}] is a tournament. Then by (6.3) we have {s+2,...,k—
2,k} - {n+1,...,s—1} when k>s+2 and s+ 1 — {fi+1,...,5—1)}
when k > s 4 3. Since (s +1) < s — 2, we have {s+2,...,k—1,k} - s
by Lemma 7 and (%). Since s—1 — sand k—1 — s,wehavek—1 — s—1
by (6.3). Similarly, k—1 — {a+1,...,s—1, s}. Hence (6.5) is valid.

(6-6) 1 <py(k) <7

Note that I(k) C {1,2,...,7,k — 1} by (6.3) and (6.4). Then there
exists an 49 € I(k) — {1,k — 1} with 1 < ip < 7 by Lemma 1. Hence
1 <ido < ¢u(k) < 7

In the following we consider two cases.

Case 1. O(1)N{s,s+1,...,k— 1} # 0.

Let p=max{j | O(1)N{s,s+1,...,k—1}}. Then s<p<k-1.
Subcase 1.1 [W| > 2. (let w,w' € W and w # w').

(6.7) p=s. Thatis, 1 — sand (1,5) € A for each j € {s+1,...,k—1}.

Suppose p > s. Since k > 7, there exists an i € P —{1,p1(k),s —
Lis,p,k}. I 1 < i < i(k), then there is a P(a,d) = (1,p,...,k —
Lw,o1(k)+1,...,p—1,w",3,..., t01(k), k). Similarly, T' contains a Pl(a,b)
when ¢1(k) <i<s—lors<i<porp<i<k These contradict (*).
Hence (6.7) is valid.

(6.8) T[V1] is a strong tournament, where V; = {A+1,...,8—=1}.

Since Vi € O(w), T[Vi] is a tournament. If T[Vi] is not strong, then
Vi] 2 2 and i+ 1 — s —1. Let P+ 1,8-1) = (s —1,q,2a+ 1)
in T. Obviously, ¢ & W. Since T[Vi] is not strong, we have ¢ & V;.
g€ {s,s+1,...,k} and g ¢ {1,2,...,72 =1} by (6.3). Hence ¢ = &
and s —1 — g =#. Let P, = (1,s,...,7" — Lw?2...,f,m,...,k) and
Py = (w,i4+1,...,5 — 1,). Then by Lemma 8 there is a Pl(a,b) in T.
This contradicts (). So T[V4] is a strong tournament.

(6.9) A=2and 2 — k.

If 72 > 2, then 241 — 2 by (6.3). We may assume that (n+1,h,...,7+
1) is a Hamiltonian cycle in T[V;] by (6.8). Thus there is a Pl(a,b) =
(l,s,...,ﬁzml,w,h,...,ﬁ+1,2,...,ﬁ,ﬁz,...,k). This contradicts (x). So
fi < 2. Thus 7i = 2 and (k) = 2 by (6.6). So 2 — k.

(6.10) k=s+1.
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Suppose k — 1 > s+ 1. If there exists a jo € {s,...,k — 3} such that
Jo — k —1, then, letting @ = p(jo+ 1),y =jo+1land 6§ =k -1, T
contains a Fj(a,b) in T by (6.2) and Lemma 7. This contradicts (). Hence
k—1-{s,...,k—3}. By (6.3), (6.7) and (6.9), I(k—1) C {f = 2,k —2}.
This contradicts Lemma 1. So k = s+ 1.

(6.11) O(1) ={2,s =k - 1,k}

Otherwise, there exists a y € O(1) — {2,s =k —1,k}. Then y € V. Let
(y,---,h,y) be a Hamiltonian cycle in T[Vy]. Then there is a P}(a,b) =
(L,y,...,h,5,w,2 = p1(k), k) by (6.3). This contradicts (x). Hence O(1) =
{2,s=k—-1,k}.

(6.12) 2 — =.

Let P;(1,5) = (1,2,s), then z € O(1) = {2,5s = k — 1,k}. Since s =
k—1—>k, wehave 2 =2. Hence 2=2 — s.

So far, since O(1) = {2,s = k —1,k}, 2 > s and 2 — k by (6.9), there
exists no P5(1,2) in T. This contradicts the assumption of the Theorem.
Subcase 1.2 |W|=1.

Using an analogous method of subcase 1.1, we can get p # s. Hence we
may assume that s+1<p<k—1.

(613) k=s+2andp=s+1.

Ifk>s+3 thenk—1— {fi+1,...,8—2,5—1,5} by (6.5). Since
f+ 2 < s by the definition of 7, we have k -1 - a4+ 2. If & > 3,
then 7 41 — 2 by (6.3). Thus there is a P/(a,b) = (1,p,...,k— 1,7 +
2., p=Liwpi(k)+1,...,i+1,2,...,p1(k), k). This contradicts (*)-
Hence 7t = 2. And then 2 = ¢;(k) — k since 2 < (k) < 7. Thus there
is a P{(a,b) = (1,p,....,k = 1,i+1=3,...,p— 1,w,2 = p1(k), k). This
contradicts (%). So k=s+2andp=s+1sinces+1<p<k-—1.

(6.14) 2 »sandfi —s—1asf > 3.

Since fs +1 — s and 7a+ 1 — 2 by (6.3), 2 and s are adjacent. If s — 2,
then there is a Pi(a,b) = (1,p = s+ 1w, p1(k) +1,...,5,2,...,01(k), k).
This contradicts (x). So 2 — s.

Ifs—1—#,letting Py = (1,2,s,...,% — 1,w,3,...,7,m,...,k) (Note
that s+1 <M < k=s5+2) and P, = (w,a+1,...,8 — 1,7), than by
Lemma 8 there is a Py(a,b) in T. This contradicts (*). Hence 2 — s — 1.

(6.15) T'[V1] is a strong tournament, where V; = {fi+1,...,s — 1} and
7L > 3.

Ifnot, then |[V1| > 2 and 741 — s—1. Let Py(fi+1, s—1) = (s—1, g, i+1).
Obviously, ¢ ¢ W. By (6.3), ¢ & {1,2,...,Aa—1}U{s,s+ 1,842 = k}.
Since T[V1] is not strong, we have ¢ € Vi. Then ¢ =#. ie.,, s —1 — g = f.
This contradicts (6.14).

(6.16) V; — {1,2} and s —» 1 as i > 3.
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Let (y,...,h,y) be a Hamiltonian cycle in T[Vi]. If there exists a v &
Vi such that 1 — v, then there is a Pl(e,b) = (1,4,...,h,s,..., 70 —
1,w,2,...,7,m,..., k) by (6.3). This contradicts (x). So V; — 1. Similarly,
we have V| — 2.

Sincel = p=s+1and s — s+ 1, 1 and s are adjacent. If 1 — s, then
there is a P/(a,b) = (l,s,...,ﬁl—1,w,ﬁ.+1,...,5—1,2,...,73,77?,,...,k).
This contradicts (). So s — 1.

(6.17) o = 3.

In fact, if fi > 4, then 2a+1 — 3 by (6.3). Let (k... ,7+1, k) be a Hamil-
tonian cycle in T'[V1]. There is a P{(a,b) = (1,2,s,...,7m —1,w,h, .. LR+
L,3,...,7,m,..., k) by (6.14). This contradicts ().

If i = 2, then (k) = 2 and 2 = (k) — k. Since 2,s+1=p 0(1),
2 and s +1 are adjacent. If 2 — s+ 1, then by i 4+ 1 = 3,s+1€0(2),
n+1 and s+ 1 are adjacent. By (6.3) we have s+1 — # + 1. There is a
Pla,b)=(L,p=s+1,Aa+1,...,5w,2= 1(k), k). This contradicts (x).
Hence s+1 — 2. By (6.3) we have that I(s+1) C {1, s}. This contradicts
Lemma 1. So i = 3.

(6.18) 3 — V4.

Suppose there exists a y € V; such that y — 3. Let (fy...,z,h) be a
Hamiltonian cycle in T[V;]. Then there is a Pi{a,b) = (1,2,5,...,m —
Lw,h,...,y,3="n,7,...,k) by (6.14). This contradicts (*). So 3 — V;.

For 2 < 1(k) < n =3, we consider the lollowing two cases

(a) pi1(k) =3. (thatis 3 =7 — k)

Since fi, s+1 = k—1 € I(k), 7 and s+1 are adjacent. If 7 — s+1, then,
by s+1,7i+1 € O(@), s+ 1 and 7 + 1 are adjacent. By (6. 3) we have
s+1—n+1. Thereisa Pl(a,b) = (1,p = s+1,7+1,... ySw, 2,3=n,k).
This contradicts (x). So s+ 1 — 7.

By (6.3) and Lemma 1, we have I(s+1) = {1,2,s}. Then 2 — s +1.

Since 5,7 = 3 € O(2) by (6.14), s and 7 are adjacent. I s — f1, then
there is a P{(a,b) = (1,2,s + L, w,fi +1,..., 5,7, k). This contradicts ().
So3=n—s.

By (x) and 2 — s +1, we have 3 — 1.

Since 2,k € O(1), 2 and k are adjacent. If 2 — k, then there is a
Pia,b) = (1,s+1,7,...,s,w,2,k). This contradicts (x). So k — 2.

If there exists a y € V; such that s+1 and y are adjacent, then s+1 — y
by (6.3). Let (y,...,h,y) be a Hamiltonian cycle in T[V}]. There is a
Pi(a,b) =(1,2,5+1,y,...,h,5,w,3 =1, k) by (6.3). This contradicts (x).
Hence y and s+ 1 are nonadjacent for each y € V.

So far, by (6.3)~(6.5), (6.13)~(6.18) and (a), we have that T~ Di-type
digraph. This contradicts the assumption of the Theorem.

(b) @1(k) <7 =3, then 2 = (k) — k.
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By the definition of ¢ (k) and 7i, we have . = s--1. Hence i — m = s+1.
Sinee 3 = 7, k € O(2), k and 2 are adjacent. By the definition of ¢, (k), we
have k — 7. Let P3(2,k) = (2,2,k). By k > 72=3,1 — 2 and (6.5), we
have z =s54+1. ie, 2 — s+ 1. By (6.16),2 - s+1,2 — k and 2 — 3.
Hence there is no P}(1,2) in T, a contradiction.

Case 2. O(1)N{s,s+1,...,k—1)=0.

(6.19) s-+1 - n+lifk=s+2.

Since s+1=Fk—1,l € I(k), 1 and s+ 1 are adjacent. Then it must be
s+1— 1. By (6.3) we have n+1 — 1. Hence s+ 1 and 72+ 1 are adjacent.
Thus s+ 1 — 7+ 1 by (6.3).

(6.20) m=s5+1

If i > s 4 2, then we have (s + 1) < 7t by the definition of 7.

(a) If k > s+3, then /o —1 — 7+ 1 by (6.5). There is a Pf(a,b) =
(1,.. ., 0(s+1),s4+1,...,m—1,7+1,...,5,w,o(s+1)+1,...,/,m,..., k).
This contradicts (x).

(b) If k = 5+2, then o = s+ 2 = k. There is a P}(a,b) = (1,..., (s +
D,s+1L,8+1,...,5we(s+1)+1,...,7%m=k=s+2) by (6.19). This
contrdicts ().

So (6.20) is valid.

(6.21) There exists an arc (u/,2') in A such that o’ < 7 < v’ < 7.

If there does not exist any arc (u’,v’) as mentioned above, then (1,4) & A
for each i € {ft+1,...,s = m — 1} and ¥(j) > m = s+ 1 for each
7€{2,...,i—1}. By j— ¥(j) > s+ 1 and (%), we have (1,7 +1) & A
for each j € {2,...,7 —1}. That is, {3,...,”2} — 1. Thus we have that
O(1) = {2,k} by the assumplion of case 2. This contradicts Lemma 1.
Hence (6.21) is valid.

Let A" = {(v,v") € A | v/ < # <v' <m}. Let & = min{o' | (u/,v') €
A’} and & = max{u’ | (v, € A’}. Obviously, (%,7) € A’ C A and
@ <f<¥ <. By (6.3) we have ¥ > f1 4 1.

(6.22) {A+1,...,5—1} = {1,2,...,7 —1}.

By the definiton of 4 and {1,2,...,7—1,%,...,7 — 1} C O'(w), (6.22)
is valid.

(6.23) 4 =7 —1.

Ifa <n—1, then % -1 — @+ 1 by (6.22). There is a Pl(a,b) =
(..., 8,...,s,w, i+ 1,...,0 = L,a+1,...,7,m =s+1,..., k). This
contradicts ().

(6.21) 5 & {A+1,...,5 — 2}

We assume that ¥ € {fn + 1,7+ 2,...,5 — 2,5 — 1} = V;. Note that
T[Vi] is a tournament. Suppose T[V1] is strong. Let (h,%,...,k) be a
Hamiltonian cycle in T[V;]. Then there is a P{(a,b) = (1,...,A—1 =
U, 7,...,h, s, w, i, = s+1,...,k) by (6.3). This contradicts (). So T[Vi]
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is not strong. Let T be a condensation of T[Vi]. Then T\ is a transitive
tournament (see [3]. 10.1.9). Let © denote the dicomponent including ¥ in
T[V4] and denote it in Ty too. And let L (resp., R) be the set of vertices
corresponding to I'p () (resp. Op (7)) in T. Obviously, L, R and & have
Hamiltonian paths, denoted by 1, 22 and p respectively. Since 4 is strong,
we may assume that 7 is a initial vertex of u. For L, R, and y, we have

(6.24.1) L - Rand L — & — R. That is, g1 — pg and p1 — p — pa.

(6.24.2) For any i € L, we have 1 < ¥. Also for any j € R, we have
v < 7.

If there exists an i € L such that ¢ > 4, then we have (3,%,...,(z — 1), 1)
and 7 € 9. This is a contradiction. Similarly, for any 7 € R, we have ¥ < j.
(6.24.3) L #9.

If L = 0, then thereisa P[(a,b) = (1,...,A—1 =4, 4, p2, 8, w, 7, 0, ..., k)
by (6.3). This contradicts (x).

(6.24.4) R=0.

In fact, if R # 0, we have L — R. By (6.3) and (6.22), P»(L, R) must
be R — 7 — L, i.e,, (b1, p9,%) is a path. IHence there is a Pi(a,b) =
(1,...,”—1=1a,u,s,w,p,m,..., k) by (6.3) and (6.20). This contradicts
().

(6.24.5) © = {v}.

Suppose © # {8}. Let 4’ be a Hamiltonian path in % — {#}. By (6.3),
(6.22) and (6.24.1), Ps(L, %) must be & —» 72 — L, i.e., (u1, 1, 7t) is a path.
There is a Pi(e,b) = (1,..., 72— 1 = &,7,s,w, p1, ', 7,7, ..., k). This
contradicts (x).

So far, by (6.24.2), (6.24.4) and (6.24.5), we have i = s — 1. So (6.24) is
valid.

(6.25) 0 ¢ {s—1,s}.

If o € {s — 1, s}, then T has the following properties

(6.25.1) 5 — {1,2,...,i—2} and s — {1,2,...,A—3} as 5 = s — L.

Sincei—1 — and -1 — {1,2,...,7—1} by (6.22). ¢ and i are adjacent
forany i€ {1,2,...,7i—1}. Il there exists an ip € {1,2,...,—2} such that
ig — ¥, then there is a P(a,b)=(1,...,%0,7,...,s5,w,n+1,...,09—1,i0+
1,...,7,Mm =s-+1,...,k). This contradicts (%). So o — {1,2,...,71 —2}.
When 2 =s5—-1,bys—1=% — {1,2,...,n—2} and s — 1 — s, we
have that s and j are adjacent for any 7 € {1,2,...,2 — 2}. If there
exists a 7 € {1,2,...,7 — 3} such that j — s, then therc is a P/(qa,b) =
A....5swi+1...,s—1=55+1,..7m=s+1,...,k). Thi
contradicts («). Hences ¢ — {1,2,...,7—3}as =3 1.

(6.25.2) Foreachi,j € {1,2,...,a—1}and i > j+1, we have (i,7) € A,
except the case of 9 =s—1,(R —2,5) € A and (4,7) = (n — 1,7 — 3).
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Suppose‘j+1 <i<ii—landj—i Byi—1 < #i—3 and (6.25.1), we
ba.ves—»z—l and ¥(i—1) >s Leta=3,7= iand 6§ = (i —1). There
is a Pl(a,b) in T by Lemma 7. This contradicts (x). Hence (i,7) € A.

Suppose j+1<i=n—1andj — 1. (a)If5=s,thens=9 > A—2=
i—1. Hence (i —1) > s. Using an analogous proof as above, T' contains a
Pi(ab). (b) 115 =5—1and (7 —2,5) ¢ A then p(i—1) = b(i—2) > s
and T contains a Pl(a,b). (¢) f9 =s—1,(R - 2,s)€ Aand j <f—3
then (i — 2) = (7 —3) > s by (6.25.1). Turthermore T' contains ;;.
Pla,b)=(L,...,dri=P—1...,s=1 —5,7—2,5,...,b(R—3)—Lw,j+
L. 3'?'1 —3,9(R—3),...,k) by (6.25.1). These contradict (x). So (‘6.2,5.2)
is valid.

(6.25.3) For each 4,5 € {s,s+1,...,k}and i > j+1, we have 1 — j.

If there exist 4,7 € {s,s+1,...,k}and i > j+1 such that 7 — i. By
(%% %), (,cf(j—l—l) cs—1 Leta=p(+1),y=7+1andé =i Thereisa
P/(a,b) in T by Lemma 7. This contradicts (%).

(6.25.4) If s < k —1, then k— .

) Since 72 — fb-‘r- 1 and k — A+ 1 by (6.5), k and 7 are adjacent. Suppose
& = k. If (t’k_.l) e A for each i € {1,2,...,7 — 1}, then there is a
Pia,b) = (1.yik = Lt 1ok = 2w, 4 1,...,7,k) by (6.5) and
(6.19). This contradicts (x). Hence (i,k—1) € A. So far, by (6.3), (6.25.3)
and k ~} — W, we have I(k—1) C {k—2,7}. This contradicts Lemma 1.
So k — 7.

(6.25.5) 7o = 4.

By (6.6) we have 72 > 2. Thus it is enough to consider the following three
cases.

(a) n=2.
u=n—1 = 1by (623). fi=s,thenl =8 —1=s This contradicts
the assumption of case 2. So @ = s — 1. Hence L={fa+1,...,0-1} =@

by the proof of (6.24). Thus O(#) C {s,7 = 2} by (6.3). This contradicts
Lemma 1.

(b) 2 =3.
) By the assurz’nption of case 2, (6.22) and (6.25.1), we have O(1) € {2,3=
fi, k}. Thus O(1) = {2,3 = 7, k} by Lemma 1. We have k — 2 by Lemma
7 and (). Hence p1(k) =3. le,n=3= @i1(k) — k. And then k =s+1
by (6.25.4). ?(?) c{3=nd,s}bys+1=4%k— 2 and (6.22). Then
OI(Z) = {3=+, v_,s} and © = s — 1 by Lemma 1. There exists a P3(@, V) =
Py(2,3) = (2,2,©) in T, then z € 0(2) = {3,9,s}. So z=3 and 3 = 7.

Since# =s—1, wehave L={f+1=4 t—1=s 0]

} v —4,...,5—1=s5—2} — 7 by the

proof of (6.24). Then O(%) C {1, s} by (6.3). This contradicts Lemma 1.

(c) v > 4.

We have, by (6.22), (6.25.1), (6.25.2) and the assumption of the case
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2, that O(1) C {2,7,k} and 0Q1) = {2,7,k} by Lemma 1. Thus 1 — 7.
Furthermore, by ai—3 > 1 and (6.25.1) we have s — 7—3. Soh(R—3) > s
There is a Pj(a,b) = 1 R 1,i—2,7—1= b, 0, .., PR — 3 —
Lw,2y...,t— 3 p(H —3),....K) bY (6.22). This contradicts (%).

By (a), (b) and {c), (6.25.5) is valid.

(6.25.6) 1 — .

If 7 — 1, we have, by the assumption of case 2, (6.22), (6.25.1) and
Lemma 1, that O(1) = {2,3,k}. Thus by 1 — 3, (%) and Lemma 7, we
have k — 2 and (2,3) ¢ Aforeachie {s+ 1,...,k—1}. Hence Pi(1,k)
must be (1,3,k). And then we have 3 — k. We also have 4 = 2 — 2
by Lemma 7 and (x). Thus O(2) € (3,5} by (6.22) and (6.25.1). This
contradicts Lemma 1. So 1 — .

(6.25.7) kE — 2 and (3,k) € A.

1f2 — k, there is a Pi(a,b) = (L, 7y = L, F= =L =iy k
1,w,2,k) by (6.22) and (6.25.6). This contradicts (x). So k — 2. By
1 — 7, =4, (%) and Lemma 7, we have (3,k) & A. So (6.25.7) is valid.

(6.25.8) s # k— 1.

Ifs=k—1,thenm=s+1= k by (6.20). we consider the following two
cases. :
(a) © = s. Since k — 2, we have $(2) = s. ie,2—2s=k—1 There is
a Pi(a,b) =(L,2,5= k—1lwn+l,....,8— L,a—1=3n=4m= k) by
(6.22). This contradicts ()-

(b)ys=s5—1 We have, by k — 2, (6.22), (6.25.1) and Lemma 1, that
0@2)={3,4=n5= k—1}. Then P3(2, 3) must be (2,5,3). Sos — 3 and
$(3) > s. Thus p(B)=k. Leta=1,7= 4=nand 6=93). T contains
a P[(a,b) by (6.25.6) and Lemma 7. This contradicts (x).

By (a) and (b), (6.25.8) is valid.

(6.25.9) k—1<s.

If k—1 > s, then we have, by (6.4), (6.5), (6.25.4) and (6.25.7), that
I(k) ={L,k - 1}. This contradicts Lemma 1. So (6.25.9) is valid.

Since (6.25.8) and (6.25.9) contradict (6.1), we have (6.25) is valid.

Finally, we have ¥ ¢ {(A+1,...,8— 1,5} by (6.24) and (6.25). But

!
it contradicts (6.20) and (6.21). On the other hand, note that Dg= Dj.
Hence, under the condition of (6) bo =a0+1, except T' =~ To- or Dj-type
digraph, there always exists a Pp(a,b) in T.

Up to now, under the condition of the Theorem, we have exhausted all
possible cases of T and deduced that there always exists a Py(a, b) in T.
Therefore the proof of the Theorem is completed. 0
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3 Remark

Using the definition to check whether a local tournament of order n is com-
pletely strong path-connected needs O(n!) steps. But using the Theorem of
this paper it only needs O(n?) steps. Therefore from the complexity point
of view, it can make a polynomial-time good algorithm.
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Some Results on Packing Graphs in their
Complements
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ABSTRACT. A supergraph H of a graph G is called tree-covered
if H— E(G) consists of exactly |V(G)| vertex-disjoint trees,
with each tree having exactly one point in common with G.
In this paper, we show that if a graph G can be packed in its
complement and if H is a tree-covered supergraph of G then
H itself is self-packing unless I/ happens to be a member of
a specified class of graphs. This is a generalisation of earlier
results that almost all trees and unicyclic graphs can be packed
in their complements.

1 Introduction and definitions

The notion of packing a pair of graphs is now fairly old. According to
Schuster [10], this notion first appears in 1977 and 1978 (see [1], (2], [9])-
We quote the definition from Schuster [10]:

Definition. Let G and G be two graphs of the same ngder p. A packing
of G, with Gy is an isomorphic embedding of G in G, the complement
of Gz.

We say that G is sclf-packing if there is a packing of G with G itsell.
For a self-packing graph G, let o denote an injection from @ into G such
that if uv € E(G) then o(u)o(v) € E(G). Such a o is called an isomorphic
embedding (or an isomorphism) from G into G. The image ol o in Gis
denoted by G* and is called a copy of G in G under . In what follows,
letters G, H will always denote simple undirected graphs.

Let G be a sell-packing graph on n points. We say that a supergraph f{
of G is tree-covered if H — E(G) consists of exactly n vertex-disjoint Lrecs
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