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Abstract

Thomassen (J. Combin. Theory Ser. B 28, 1980, 142–163) proved that every strong tournament
contains a vertex x such that each arc going out from x is contained in a Hamiltonian cycle.
In this paper, we extend the result of Thomassen and prove that a strong tournament contains a
vertex x such that every arc going out from x is pancyclic, and our proof yields a polynomial
algorithm to �nd such a vertex. Furthermore, as another consequence of our main theorem, we
get a result of Alspach (Canad. Math. Bull. 10, 1967, 283–286) that states that every arc of a
regular tournament is pancyclic. ? 2000 Elsevier Science B.V. All rights reserved.

1. Terminology and introduction

We denote the vertex set and the arc set of a digraph D by V (D) and E(D),
respectively. A subdigraph induced by a subset A⊆V (D) is denoted by D[A]. In
addition, D − A= D[V (D)− A].
If xy is an arc of a digraph D, then we say that x dominates y and write x → y.

We also say that xy is an out-arc of x or xy is an in-arc of y. More generally, if A
and B are two disjoint subdigraphs of D such that every vertex of A dominates every
vertex of B, then we say that A dominates B and write A→ B.
Let x be a vertex of D. The number of out-arcs of x is called the out-degree of x

and denoted by d+D(x), or simply d
+(x). Note that a tournament Tn is regular if and

only if all vertices of Tn have the same out-degree.
We consider only the directed paths and cycles. A digraph D is strong if for every

pair of vertices x and y; D contains a path from x to y and a path from y to x, and
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D is k-connected if |V (D)|¿k+1 and for any set A⊂V (D) of at most k−1 vertices,
D − A is strong.
A k-cycle is a cycle of length k. An arc of a digraph on n¿3 vertices is said to be

pancyclic if it is contained in a k-cycle for all k satisfying 36k6n.
In [4], Thomassen proved that every strong tournament contains a vertex x such

that each out-arc of x is contained in a Hamiltonian cycle and this extends the re-
sult of Goldberg and Moon [2] that every s-strong tournament has at least s distinct
Hamiltonian cycles (a digraph D is s-strong if for any set F ⊂E(D) of at most s− 1
arcs, D − F is strong).
In this paper we extend the result of Thomassen and prove that every strong tourna-

ment contains a vertex x such that all out-arcs of x are pancyclic, and our proof yields
a polynomial algorithm to �nd such a vertex. In addition, as another consequence of
our main theorem, we get a result of Alspach [1] that states that every arc of a regular
tournament is pancyclic.

2. Preliminaries

To prove our main theorem, we consider only the strong tournaments with minimum
out-degree at least 2 in this section.

De�nition 2.1. Let T be a strong tournament with minimum out-degree at least two.
A vertex v of T is called a bridgehead if there is a partition (A; B) of V (T ) such that
the following conditions are satis�ed:
(1) v ∈ A; T [A] is non-trivial and strong;
(2) B→ A\{v}.
We denote a bridgehead v with respect to the partition (A; B) by v= brd(A|B).

It is obvious that if a strong tournament T (with minimum out-degree at least two)
has a bridgehead v= brd(A|B), then T − v is not strong and

|A|¿5: (1)

Lemma 2.2. Let Tn be a strong tournament on n vertices with minimum out-degree
at least two and assume that the vertices of Tn are labeled u1; u2; : : : ; un such that
d+(u1)6d+(u2)6 · · ·6d+(un). If Tn has a bridgehead v=brd(A|B); then the follow-
ing holds:
(a) {u1; u2; u3; u4}⊂A.
(b) {u1; u2} contains at most one bridgehead.

Proof. It is easy to see by (1) and De�nition 2.1 that (a) is true.
To prove (b), we suppose, on the contrary, that u1 and u2 both are bridgeheads of

Tn with u1 = brd(A1|B1) and u2 = brd(A2|B2). Then we see from (a) that {u1; u2}⊂Ai
for i= 1; 2. By De�nition 2.1, there is a vertex bi ∈ Bi with ui → bi for i= 1; 2. Note
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that {u1; u2}∩{b1; b2}=∅. Since ui ∈ A3−i and ui → bi, we have bi ∈ A3−i, and hence,
b3−i → bi for i = 1; 2. This contradicts the fact that Tn is a tournament.

By Lemma 2.2, every strong tournament Tn with minimum out-degree at least two
contains at least one vertex that is not a bridgehead.

3. Main results

Theorem 3.1. Let Tn be a strong tournament on n vertices and assume that the
vertices of Tn are labeled u1; u2; : : : ; un such that d+(u1)6d+(u2)6 · · ·6d+(un). Let
u be a vertex of Tn which can be chosen as follows:
(1) if d+(u1) = 1 then u= u1;
(2) if d+(u1)¿2 then

d+(u) = min{d+(x) | x ∈ V (Tn) and x is not a bridgehead}:
Then all out-arcs of u are pancyclic.

Proof. Suppose �rst that d+(u1) = 1 and let uv be the only out-arc of u= u1. By the
well-known theorem of Moon [3], Tn is vertex pancyclic (i.e., every vertex of Tn is
in a k-cycle for all k with 36k6n). Because uv is in all cycles through u, it is a
pancyclic arc.
Suppose now that d+(u1)¿2 (i.e., the minimum out-degree of Tn is at least two).

According to Lemma 2.2(b) and the choice of u, we have u = u1 or u2. In addition,
we may assume, by relabelling if necessary, that u= u2 only if u1 is a bridgehead and
d+(u1)¡d+(u2).
Let u→ v be an arc of Tn. We prove by induction on the length of the cycle through

uv that uv is pancyclic.
We �rst show that u→ v is contained in a 3-cycle. If d+(u)6d+(v), then there is a

vertex w∈V (Tn) such that v→w→ u, and hence, vwuv is a 3-cycle. If d+(u)¿d+(v),
then v= u1 must be a bridgehead and u= u2. Let v= brd(A|B). By Lemma 2.2(a), we
see that u ∈ A. So, there is a vertex w ∈ B such that v→ w → u, i.e., uv is contained
in a 3-cycle.
Let C = v1v2 · · · vkv1 be a k-cycle with 36k ¡n which contains the arc uv and

assume without loss of generality that vk = u and v1 = v. We show that there is a
(k + 1)-cycle through uv.
Let W = V (Tn)\V (C) and

M = {x ∈ W | there are i and j with 16i¡ j6k such that vi → x → vj};

M0 = {x ∈ W | {v1; v2; : : : ; vk} → x};

Mi = {x ∈ W | {vi+1; : : : ; vk} → x → {v1; : : : ; vi}} for i = 1; 2; : : : ; k − 1;

Mk = {x ∈ W | x → {v1; v2; : : : ; vk}}:
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We consider the following cases:
Case 1: M 6= ∅. Let x ∈ M . It is easy to see that there is an integer t with 16t ¡ k

such that vt → x → vt+1. Thus, v1v2 · · · vtxvt+1vt+2 · · · vkv1 is a (k + 1)-cycle through uv.
Case 2: M0 6= ∅. Let x ∈ M0. We shall show that there is a vertex y ∈ W such that

x → y → u, and hence, uvv2 · · · vk−2xyu will be a desired (k + 1)-cycle. In fact, if
d+(u)6d+(x), then it is easy to �nd such a vertex y. Assume now that d+(u)¿d+(x).
Then, x is a bridgehead. Let x = brd(A|B). We see from Lemma 2.2(a) that u ∈ A.
So, there is a vertex y ∈ B such that x → y → u. Clearly, y belongs to W and it is
the desired vertex.
Case 3: k¿4 and M2 ∪ M3 ∪ · · · ∪ Mk−2 6= ∅. Let x ∈ Mj for some j satisfying

26j6k − 2. Then, {vk−1; vk} → x → {v1; v2} holds.
Suppose that d+(u)¿d+(v). This implies that v is a bridgehead of Tn. Let v =

brd(A|B). Then, u belongs to A by Lemma 2.2(a) and there is a vertex y ∈ B such
that v → y → u. If y ∈ W , then y ∈ M and we are done by Case 1. So, we assume
that y ∈ V (C) and y= vi for some i with 26i6k − 1. Since u→ x → v2 and u ∈ A,
we have {x; v2}⊂A. This implies that i¿ 2. Because of vi−1 6= v and vi−1 → vi; vi−1
belongs to B. It follows that vi−1 → u. Thus, we see that uvvivi+1 · · · vk−1xv2v3 · · · vi−1u
is a (k + 1)-cycle.
Suppose now that d+(u)6d+(v). If d+C (u)¡d+C (v), then it is not di�cult to see that

there is an integer i with 36i6k−1 such that v→ vi and vi−1 → u. Now we see that
uvvivi+1 · · · vk−1xv2v3 · · · vi−1u is a (k + 1)-cycle. So, we assume that d+C (u)¿d+C (v).
Since u → x → v and d+W (u)6d

+
W (v), there is y ∈ W such that v → y → u. Thus,

y ∈ M and we are done by Case 1.
Case 4: W = M1 ∪ Mk−1 ∪ Mk . If M1 = ∅, then we see that u = brd(V (C)|W ),

a contradiction.
Suppose that Mk−1 ∪Mk = ∅ (i.e., W = M1). It is obvious that d+(u)¿d+(x) for

each x ∈ W . It follows that |W | = 1, and hence, d+(x) = 1, a contradiction to the
assumption that the minimum out-degree of Tn is at least two.
So, we assume that M1 6= ∅ and Mk−1 ∪ Mk 6= ∅. If Mk−1 ∪ Mk → M1, then we

see that u= brd(M1 ∪ V (C) |Mk−1 ∪Mk), a contradiction. Therefore, there is a vertex
x ∈ M1 and a vertex y ∈ Mk−1 ∪Mk with x → y. Note that d+(v)¿2 yields k¿4.
In the case when k = 4, we have d+(v) = 2 and v→ v3. If u→ y, then y ∈ Mk−1,

and hence, d+(u)¿d+(v3)¿d+(v), a contradiction to the choice of u. Thus, y → u.
Now, we see that uvv2xyu is a 5-cycle.
In the remaining case when k¿5, the cycle vkv1v2xyv4v5 · · · vk is a (k + 1)-cycle

containing the arc uv.
The proof of the theorem is complete.

As an immediate consequence of Theorem 3.1 and Lemma 2.2(b), we get the fol-
lowing results:

Corollary 3.2. A strong tournament contains a vertex u such that every out-arc of u
is pancyclic.
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Remark 3.3. Let n¿5 be an integer. Note that the tournament Tn with the vertex set
{v1; v2; : : : ; vn} and the arc set

{vivj | 26i¡ j6n} ∪ {vn−1v1; vnv1} ∪ {v1vj | 26j6n− 2};
contains exactly one vertex vn whose out-arcs are pancyclic.

Remark 3.4. Using Theorem 3.1, it is easy to get a polynomial algorithm to �nd a
vertex u in a strong tournament such that all out-arcs of u is pancyclic.

Corollary 3.5 (Thomassen [4]). Every strong tournament contains a vertex u such
that each arc going out from u lies on a Hamiltonian cycle.

Corollary 3.6 (Alspach [1]). All arcs of a regular tournament are pancyclic.

Proof. It is a simple matter to verify that a regrular tournament contains no bridgehead.
Since every vertex of a regular tournament has the same out-degree, this corollary holds
by Theorem 3.1.

Similarly, by showing that an almost regular tournament has no bridgehead, we
obtain the next result:

Corollary 3.7. In an almost regular tournament T on 2n vertices; all out-arcs of the
vertices with out-degree n− 1 are pancyclic.

Corollary 3.8. In a 2-connected tournament; all out-arcs of the vertices with minimum
out-degree are pancyclic.

Finally, we give the following conjecture:

Conjecture 3.9. A k-connected tournament Tn has at least k vertices v1; v2; : : : ; vk such
that all out-arcs of vi are pancyclic for i = 1; 2; : : : ; k.
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