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Pancyclic out-arcs of a vertex in tournaments ™
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Abstract

Thomassen (J. Combin. Theory Ser. B 28, 1980, 142-163) proved that every strong tournament
contains a vertex x such that each arc going out from x is contained in a Hamiltonian cycle.
In this paper, we extend the result of Thomassen and prove that a strong tournament contains a
vertex x such that every arc going out from x is pancyclic, and our proof yields a polynomial
algorithm to find such a vertex. Furthermore, as another consequence of our main theorem, we
get a result of Alspach (Canad. Math. Bull. 10, 1967, 283-286) that states that every arc of a
regular tournament is pancyclic. © 2000 Elsevier Science B.V. All rights reserved.

1. Terminology and introduction

We denote the vertex set and the arc set of a digraph D by V(D) and E(D),
respectively. A subdigraph induced by a subset 4 C V(D) is denoted by D[A4]. In
addition, D — 4 = D[V(D) — A].

If xy is an arc of a digraph D, then we say that x dominates y and write x — y.
We also say that xy is an out-arc of x or xy is an in-arc of y. More generally, if 4
and B are two disjoint subdigraphs of D such that every vertex of 4 dominates every
vertex of B, then we say that 4 dominates B and write A — B.

Let x be a vertex of D. The number of out-arcs of x is called the out-degree of x
and denoted by d}(x), or simply d*(x). Note that a tournament 7, is regular if and
only if all vertices of 7, have the same out-degree.

We consider only the directed paths and cycles. A digraph D is strong if for every
pair of vertices x and y, D contains a path from x to y and a path from y to x, and
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D is k-connected if |V(D)| =k + 1 and for any set 4 C V(D) of at most k — 1 vertices,
D — 4 is strong.

A k-cycle is a cycle of length k. An arc of a digraph on n>3 vertices is said to be
pancyclic if it is contained in a k-cycle for all k satisfying 3 <k <n.

In [4], Thomassen proved that every strong tournament contains a vertex x such
that each out-arc of x is contained in a Hamiltonian cycle and this extends the re-
sult of Goldberg and Moon [2] that every s-strong tournament has at least s distinct
Hamiltonian cycles (a digraph D is s-strong if for any set F C E(D) of at most s — 1
arcs, D — F is strong).

In this paper we extend the result of Thomassen and prove that every strong tourna-
ment contains a vertex x such that all out-arcs of x are pancyclic, and our proof yields
a polynomial algorithm to find such a vertex. In addition, as another consequence of
our main theorem, we get a result of Alspach [1] that states that every arc of a regular
tournament is pancyclic.

2. Preliminaries

To prove our main theorem, we consider only the strong tournaments with minimum
out-degree at least 2 in this section.

Definition 2.1. Let 7 be a strong tournament with minimum out-degree at least two.
A vertex v of T is called a bridgehead if there is a partition (4,B) of V(T) such that
the following conditions are satisfied:

(1) v € 4, T[A] is non-trivial and strong;

(2) B — A\{v}.

We denote a bridgehead v with respect to the partition (4,B) by v = brd(4|B).

It is obvious that if a strong tournament 7" (with minimum out-degree at least two)
has a bridgehead v = brd(4|B), then T — v is not strong and

4] =5. (1)

Lemma 2.2. Let T, be a strong tournament on n vertices with minimum out-degree
at least two and assume that the vertices of T, are labeled ui,uy,...,u, such that
dt(u)<d (w)< - - <d(uy). If T, has a bridgehead v=>brd(A|B), then the follow-
ing holds:

(a) {u1,up,us,us} CA.

(b) {w1,u2} contains at most one bridgehead.

Proof. It is easy to see by (1) and Definition 2.1 that (a) is true.

To prove (b), we suppose, on the contrary, that u; and u, both are bridgeheads of
T, with uy =brd(A4,|B,) and u; = brd(4,|B,). Then we see from (a) that {uj,uy} C 4;
for i = 1,2. By Definition 2.1, there is a vertex b; € B; with u; — b; for i =1,2. Note



T. Yao et al. | Discrete Applied Mathematics 99 (2000) 245-249 247

that {uy,up } N{b1, by} =0. Since u; € A3_; and u; — b;, we have b; € A;_;, and hence,
bs_; — b; for i = 1,2. This contradicts the fact that 7, is a tournament. [

By Lemma 2.2, every strong tournament 7, with minimum out-degree at least two
contains at least one vertex that is not a bridgehead.

3. Main results

Theorem 3.1. Let T, be a strong tournament on n vertices and assume that the
vertices of T, are labeled uy,uy, ..., u, such that d*(u))<d (u)< --- <d*(u,). Let
u be a vertex of T, which can be chosen as follows:

() if d™(u))=1 then u=uy,

(2) if dT(u1)=2 then

d*(u)=min{d " (x)|x € V(T,) and x is not a bridgehead }.

Then all out-arcs of u are pancyclic.

Proof. Suppose first that d(u;) = 1 and let uv be the only out-arc of u = u;. By the
well-known theorem of Moon [3], T, is vertex pancyclic (i.e., every vertex of T, is
in a k-cycle for all £ with 3<k<m). Because uv is in all cycles through u, it is a
pancyclic arc.

Suppose now that d*(u;)=2 (i.e., the minimum out-degree of T, is at least two).
According to Lemma 2.2(b) and the choice of u, we have u = u; or u,. In addition,
we may assume, by relabelling if necessary, that u =u, only if u; is a bridgehead and
d+(u1) < d+(U2).

Let u — v be an arc of 7,,. We prove by induction on the length of the cycle through
uv that uv is pancyclic.

We first show that u — v is contained in a 3-cycle. If d*(u)<d*(v), then there is a
vertex w € V(T,) such that v —w — u, and hence, vwuv is a 3-cycle. If d*(u) > d*(v),
then v=u; must be a bridgehead and u=u,. Let v =>brd(A4|B). By Lemma 2.2(a), we
see that u € A. So, there is a vertex w € B such that v — w — u, i.e., uv is contained
in a 3-cycle.

Let C =vjvp---v4v; be a k-cycle with 3<k < n which contains the arc uv and
assume without loss of generality that vy = u and v; = v. We show that there is a
(k + 1)-cycle through uv.

Let W =V(T,)\V(C) and

M = {x € W| there are i and j with 1 <i < j<k such that v; — x — v;},
MOZ{X S W|{U],U2,...,1)k} —)X},
M;={x e W|{vig1,....,0n} = x = {v1,...,0;}} fori=12,....,k—1,

Mk:{xe W|x—> {Ul,Uz,...,Uk}}.
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We consider the following cases:

Case 1: M # (). Let x € M. 1t is easy to see that there is an integer ¢ with 1<t <k
such that v, — x — v,41. Thus, vjvy - - - VXV V42 - - - U0 1S @ (K + 1)-cycle through uv.

Case 2: My # ). Let x € My. We shall show that there is a vertex y € W such that
x — y — u, and hence, uvv; - - - vy_rxyu will be a desired (k + 1)-cycle. In fact, if
d*t(u)<d™(x), then it is easy to find such a vertex y. Assume now that d*(u) > d*(x).
Then, x is a bridgehead. Let x = brd(4|B). We see from Lemma 2.2(a) that u € 4.
So, there is a vertex y € B such that x — y — u. Clearly, y belongs to W and it is
the desired vertex.

Case 3: k=4 and M, UM U ---UM;_, # (. Let x € M; for some j satisfying
2<j<k —2. Then, {vg_1,06} — x — {v1,v2} holds.

Suppose that d*(u) > d*(v). This implies that v is a bridgehead of 7,. Let v =
brd(A|B). Then, u belongs to A by Lemma 2.2(a) and there is a vertex y € B such
that v - y - u. If y € W, then y € M and we are done by Case 1. So, we assume
that y € V(C) and y =v; for some i with 2<i<k — 1. Since u - x — v, and u € 4,
we have {x,v,} CA. This implies that i > 2. Because of v;_; # v and v;_; — v;, v;—|
belongs to B. It follows that v;_; — u. Thus, we see that uvv;v;y | - - - Vg_1X003 - - - V;_1U
is a (k + 1)-cycle.

Suppose now that d*(u) <d*(v). If d5(u) < d£(v), then it is not difficult to see that
there is an integer ; with 3 <i<k — 1 such that v — v; and v;_; — u. Now we see that
UVV Vg1 -+ - Vg1 X003 - - Ui qu is a (k + 1)-cycle. So, we assume that d(u)=d{(v).
Since u — x — v and d},(u)<dj,(v), there is y € W such that v — y — wu. Thus,
y € M and we are done by Case 1.

Case 4: W =M, U M;_, UM,. If M, =0, then we see that u = brd(V(C)|W),
a contradiction.

Suppose that M;_; UM, =0 (i.e., W = M). It is obvious that d*(u) > d*(x) for
each x € W. It follows that |[W| =1, and hence, d*(x) = 1, a contradiction to the
assumption that the minimum out-degree of 7}, is at least two.

So, we assume that M; # () and M;_; UM; # 0. If My_; U M; — M, then we
see that u = brd(M, U V(C)|M;_1 U M), a contradiction. Therefore, there is a vertex
x € My and a vertex y € M;,_; UM, with x — y. Note that d*(v)>2 yields k>4.

In the case when k =4, we have d*(v)=2 and v — v3. If u — y, then y € Mj_,,
and hence, d*(u) > d*(v3)=d"(v), a contradiction to the choice of u. Thus, y — u.
Now, we see that uvv,xyu is a 5-cycle.

In the remaining case when k=5, the cycle vyvjv,xyvgvs--- v is a (k + 1)-cycle
containing the arc uv.

The proof of the theorem is complete. [

As an immediate consequence of Theorem 3.1 and Lemma 2.2(b), we get the fol-
lowing results:

Corollary 3.2. A strong tournament contains a vertex u such that every out-arc of u
is pancyclic.
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Remark 3.3. Let n>5 be an integer. Note that the tournament 7, with the vertex set
{v1,v2,...,v,} and the arc set
{viv; |2<i < j<n} U {vp_ v, 0,01} U{v10 | 2<j<n — 2},
contains exactly one vertex v, whose out-arcs are pancyclic.

Remark 3.4. Using Theorem 3.1, it is easy to get a polynomial algorithm to find a
vertex u in a strong tournament such that all out-arcs of u is pancyclic.

Corollary 3.5 (Thomassen [4]). Every strong tournament contains a vertex u such
that each arc going out from u lies on a Hamiltonian cycle.

Corollary 3.6 (Alspach [1]). All arcs of a regular tournament are pancyclic.

Proof. It is a simple matter to verify that a regrular tournament contains no bridgehead.
Since every vertex of a regular tournament has the same out-degree, this corollary holds
by Theorem 3.1. [

Similarly, by showing that an almost regular tournament has no bridgehead, we
obtain the next result:

Corollary 3.7. In an almost regular tournament T on 2n vertices, all out-arcs of the
vertices with out-degree n — 1 are pancyclic.

Corollary 3.8. In a 2-connected tournament, all out-arcs of the vertices with minimum
out-degree are pancyclic.

Finally, we give the following conjecture:

Conjecture 3.9. A k-connected tournament T, has at least k vertices vy, vy,...,v; such
that all out-arcs of v; are pancyclic for i =1,2,... k.

References

[1] B. Alspach, Cycles of each length in regular tournaments, Canad. Math. Bull. 10 (1967) 283-286.
[2] M. Goldberg, J.W. Moon, Cycles in k-strong tournaments, Pacific J. Math. 40 (1972) 89-96.

[3] J.W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966) 297-301.

[4] C. Thomassen, Hamiltonian-connected tournaments, J. Combin. Theory Ser. B 28 (1980) 142-163.



