On (d,2)-dominating numbers of binary undirected de Bruijn graphs ${ }^{2}$

Changhong $\mathrm{Lu}^{\mathrm{a}, *}$, Juming Xu^{b}, Kemin Zhang ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Department of Mathematics, Nanjing University, Nanjing, 210093, People's Republic of China
${ }^{\mathrm{b}}$ Department of Mathematics, University of Science and Technology of China Hefei, 230026, People's Republic of China

Received 17 July 1998; revised 28 September 1999; accepted 28 February 2000

Abstract

In this paper, we show that: (i) For n-dimensional undirected binary de Bruijn graphs, $U B(n)$, $n \geqslant 4$, there is a vertex $x=x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}\left(x_{1}=1\right.$ or 0$)$ such that for any other vertex t there exist at least two internally disjoint paths of length at most $n-1$ between x and t in $U B(n)$, i.e., the (n $-1,2$)-dominating number of $U B(n)$ is equal to one. (ii) For $n \geqslant 5$, let $S=\{100 \cdots 01,011 \cdots 10\}$. For any other vertex t there exist at least two internally disjoint paths of length at most $n-2$ between t and S in $U B(n)$, i.e., the ($n-2,2$)-dominating number of $U B(n)$ is no more than 2 . © 2000 Elsevier Science B.V. All rights reserved.

Keywords: De Bruijn graph; Diameter; Dominating number

1. Introduction and notation

The binary directed de Bruijn graph of the dimension n, denoted $B(n)$, has 2^{n} vertices, which are labeled with the binary strings of length n. There is an arc from any vertex $x_{1} x_{2} \cdots x_{n}$ to the vertices $x_{2} x_{3} \cdots x_{n} 0$ and $x_{2} x_{3} \cdots x_{n}$. We say that the i th coordinate of x is x_{i}, being equal to 0 or 1 , and $\bar{x}_{i}=1-x_{i}$.

The unidirected binary de Bruijn graph $U B(n)$ is obtained from $B(n)$ by deleting the orientation of the arcs and omitting multiple edges and loops. It is well known that $U B(n)$ is 2 -connected and that its diameter (maximum of the distances between all pairs of vertices) is equal to n. Due to their bounded maximum degree equal to

[^0]4 and their low diameter, de Bruijn graphs have been proposed as a possible good interconnection network for a parallel architecture $[1,10]$.

In order to characterize the reliability of transmission delay in a network, Hsu and Lyuu [4], and Flandrin and Li [2] independently introduced the concept of m-diameter (i.e. wide-diameter): For any pair (x, y) of vertices in a graph G, the m-distance of x and y, denoted by $D_{m}(x, y)_{G}$, is defined as the minimum integer d for which there are at least m internally disjoint path of length at most d between x and y. The m-diameter of G, denoted by $D_{m}(G)$, is the maximum of $D_{m}(x, y)_{G}$ over all pairs (x, y) of vertices of G. General results on the m-diameters of m-connected graphs can be found in [2,4,5]. Results for some particular classes of graphs can be also found in [3,6,7]. In particular, for the undirected binary de Bruijn graphs of dimension n, its 2-diameter is n (see [7]).

Recently, Li and Xu [8] define a new parameter (d, m)-dominating number in m-connected graphs, in some sense, which can more accurately characterize the reliability of networks than the wide-diameter can.

Definition. Let G be an m-connected graph, S a nonempty and proper subset of $V(G)$, y a vertex in $G-S$. For a given positive integer d, y is (d, m)-dominated by S in G if there are at least m internally disjoint (y, S)-paths in G, each of them is of length at most d. S is said to be a (d, m)-dominating set of G, denoted by $S_{d, m}(G)$ if either $S=V(G)$ or S can (d, m)-dominate every vertex in $G-S$. The parameter

$$
s_{d, m}(G)=\min \left\{\left|S_{d, m}(G)\right|: S_{d, m}(G) \text { is a }(d, m) \text {-dominating set of } G\right\}
$$

will be called the (d, m)-dominating number of G.
Li and $\mathrm{Xu}[8]$ have shown some general properties of the (d, m)-dominating sets and the (d, m)-dominating numbers of m-connected graphs. In particular, they prove that for any $m \geqslant 2$, the (d, m)-dominating numbers $(m-1 \leqslant d \leqslant m)$ of the m-dimensional hypercube Q_{m} are 2. In [9], we prove that the (d, m)-dominating numbers of the m-dimensional hypercube $Q_{m}(m \geqslant 4)$ are also 2 for any integer $d,(\lfloor m / 2\rfloor+2 \leqslant d \leqslant m)$. Since 2-diameter of $U B(n)$ is n, which implies that $s_{n, 2}(U B(n))=1$. An interesting problem is what the value of $s_{d, 2}(U B(n))$ is when $d \leqslant n-1$. The aim of this paper is to prove that $s_{n-1,2}(U B(n))=1$ and $s_{n-2,2}(U B(n)) \leqslant 2$.

Let us first introduce some notation and recall some properties of de Bruijn graph $B(n)$.

Property 1.1. Given any two vertices $x=x_{1} x_{2} \cdots x_{n}$ and $y=y_{1} y_{2} \cdots y_{n}$ of $B(n)$, there is a unique shortest path from x to y, and the distance $d(x, y)$ is equal to the smallest $i \leqslant n-1$ such that $x_{i+1} \cdots x_{n}=y_{1} \cdots y_{n-i}$ if it exists and to n otherwise.

Property 1.2. If C is a closed walk of length $l<n$ in $B(n)$ and $z_{1} z_{2} \cdots z_{n}$ is a vertex on C, then $z_{i}=z_{i+l}$ for all $1 \leqslant i \leqslant n-l$.

For two given vertices x and y in $B(n)$, we will denote $P[x, y]$ as the shortest path P from x to y. The length of this path denoted by $|P[x, y]|$, is the number of edges in
the path and is also the distance $d(x, y)$ from x to $y . P[x, y]$ also represents the set of vertices of the path, including its extremities. $P(x, y)$ will denote the set of vertices of the path excluding the extremities x and $y . P(x, y]$ is the set of vertices including y, and excluding x (and similarly for $P[x, y)$).

2. Preliminary results

Let us first give the following two lemmas which can be found in [7].
Lemma 2.1 (Li, Sotteau and Xu [7]). For any two vertices x and y of $B(n)$, if the shortest path from x to y intersects the shortest path from y to x in a vertex other than x and y, then, necessarily, the sum of the lengths of the two paths is strictly more than n.

Lemma 2.2 (Li, Sotteau and Xu [7]). For any two vertices x and y of $B(n)$, the union of the shortest path from x to y and the shortest path from y to x consists of at most three circuits

Lemma 2.3. In $B(n)$, the vertex $x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}\left(x_{1}=1\right.$ or 0$)$ cannot be on any closed walk of length $l(0<l<n-1)$.

Proof. If not, we assume that the vertex $x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}$ is on a closed walk C of length $l(0<l<n-1)$ in $B(n)$. By Property 1.2, the $(l+1)$ th coordinate of $x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}$ is x_{1}. Then $l=n-1$, a contradiction.

Lemma 2.4. Let $x=x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}$ with $x_{1}=1$ or 0 . Then for any other vertex $t \neq t_{1} \bar{x}_{1} \cdots \bar{x}_{1} t_{n}$ in $B(n)$ we have
(a) $|P[x, t]| \leqslant n-1$ and $|Q[t, x]| \leqslant n-1$.
(b) The union of the shortest path $P[x, t]$ and the shortest path $Q[t, x]$ in $B(n)$ consists of at most two circuits.

Proof. (a) If $t_{1}=x_{1}$ it is easy to know $|P[x, t]| \leqslant n-1$. Since $t \neq t_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} t_{n}$, there exists at least one coordinate of t except the first and the last coordinates of t, which is x_{1}. If $t_{1}=\bar{x}_{1}$, then $t=\bar{x}_{1} \cdots \bar{x}_{1} x_{1} t_{i+1} \cdots t_{n}$, where $1<i<n$. By Property 1.1 , we know $|P[x, t]|<n-1$. Similarly, we have $|Q[t, x]| \leqslant n-1$.
(b) Suppose that the union of the $P[x, t]$ and $Q[t, x]$ consists of three circuits by Lemma 2.2 as shown in Fig. 1, we use the following notation: let z (resp. w^{*}) be the first (resp., last) vertex that $P(x, t)$ has in common with $Q(t, x)$. And let w (resp., z^{*}) be the first (resp., last) vertex that $Q(t, x)$ has in common with $P(x, t)$. By Lemma 2.1, $|P[z, t]|+|Q[t, z]|>n$, and $|P[x, z]|+|Q[z, x]| \geqslant n-1$ by Lemma 2.3. Therefore, $|P[x, t]|$ $+|Q[t, x]|=|P[x, z]|+|P[z, t]|+|Q[t, z]|+|Q[z, x]|>2 n-1$. But $|P[x, t]| \leqslant n-1$ and $|Q[t, x]| \leqslant n-1$ by (a), which leads to a contradiction.

Fig. 1.

Fig. 2.

Let $x=x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}$ and $t \neq t_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} t_{n}$. Suppose that the union of $P[x, t]$ and $Q[t, x]$ consists of two circuits as shown in Fig. 2. Let z (resp., z^{*}) be the first (resp., last) vertex that $P(x, t)$ has in common with $Q(t, x)$. Let $|P[x, z]|=p_{1},\left|P\left[z, z^{*}\right]\right|=$ $\left|Q\left[z, z^{*}\right]\right|=r,\left|P\left[z^{*}, t\right]\right|=p_{2},|Q[t, z]|=q_{2},\left|Q\left[z^{*}, x\right]\right|=q_{1}$, thus $p_{1}+r+p_{2}=|P[x, t]| \leqslant n-1$ and $q_{2}+r+q_{1}=|Q[t, x]| \leqslant n-1$ by Lemma 2.4(a). All these integers are strictly positive except for r which may equal $0 . z_{1}$ and z_{2} are inneighbors of $z ; z^{\prime}$ and $z^{\prime \prime}$ are outneighbors of z^{*}.

Lemma 2.5. $p_{1}=q_{1}$.
Proof. Clearly, $|P[z, t]|+|Q[t, z]|=p_{2}+r+q_{2} \leqslant n-1$ since $|P[x, z]|+|Q[z, x]|=p_{1}$ $+r+q_{1} \geqslant n-1$ by Lemma 2.3. By Property 1.2, we assume

$$
\begin{equation*}
t=t_{1} t_{2} \cdots t_{q_{2}+r+p_{2}} t_{1} t_{2} \cdots t_{q_{2}+r+p_{2}} \cdots t_{1} t_{2} \cdots t_{q_{2}+r+p_{2}} t_{1} \cdots t_{k} \tag{1}
\end{equation*}
$$

with $n \equiv k\left(\bmod \left(q_{2}+r+p_{2}\right)\right), 1 \leqslant k \leqslant q_{2}+r+p_{2}$.

Let us consider the vertex z. With the notation introduced above, since z can be reached in q_{2} steps from t on Q, it can be written as

$$
\begin{equation*}
z=t_{q_{2}+1} \cdots t_{q_{2}+r+p_{2}} t_{1} t_{2} \cdots t_{q_{2}+r+p_{2}} \cdots t_{1} t_{2} \cdots t_{q_{2}+r+p_{2}} t_{1} \cdots t_{k} \underbrace{\bar{x}_{1} \cdots \bar{x}_{1}}_{q_{2}} \tag{2}
\end{equation*}
$$

Since z can be reached in p_{1} steps from $x=x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}$ on $P[x, t]$,

$$
\begin{equation*}
t_{q_{2}+1}=\cdots=t_{q_{2}+r+p_{2}}=\bar{x}_{1} \tag{3}
\end{equation*}
$$

Noting $p_{1}+r+q_{1} \geqslant n-1 \geqslant q_{2}+r+q_{1}$, we have $p_{1} \geqslant q_{2}$. Similarly, we have $q_{1} \geqslant p_{2}$. Note that $p_{1} \neq 1$ and $q_{1} \neq 1$. If $p_{1}=1$, then $q_{2}=1$. So $t=\bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}$, a contraction to $t \neq t_{1} \bar{x}_{1} \cdots \bar{x}_{1} t_{n}$. Similarly, we also have $q_{1} \neq 1$.

Let us consider z_{1} and z_{2} in Fig. 2. The first coordinate of z_{2} is \bar{x}_{1} since $p_{1}>1$. So, the first coordinate of z_{1} is x_{1}. Since z_{1} can be reached in $q_{2}-1$ steps from t, its first coordinate is $t_{q_{2}}$. Hence $t_{q_{2}}=x_{1}$.

Let us now consider z^{\prime} and $z^{\prime \prime}$ in Fig. 2. The latest coordinate of $z^{\prime \prime}$ is \bar{x}_{1} since $q_{1}>1$. So, the latest coordinate of z^{\prime} is x_{1}. Since z^{\prime} can be reached in $q_{2}+r+1$ steps from t, it can be written as

$$
\begin{equation*}
z^{\prime}=t_{q_{2}+r+2} \cdots t_{q_{2}+r+p_{2}} t_{1} t_{2} \cdots t_{q_{2}+r+p_{2}} \cdots t_{1} t_{2} \cdots t_{q_{2}+r+p_{2}} t_{1} t_{2} \cdots t_{k} \underbrace{\bar{x}_{1} \cdots \bar{x}_{1}}_{q_{2}+r} x_{1} \tag{4}
\end{equation*}
$$

Since t can be reached in $p_{2}-1$ steps from z^{\prime}, we can also write z^{\prime} as

$$
\begin{equation*}
t=t_{1} t_{2} \cdots t_{q_{2}+r+p_{2}} \cdots t_{1} \cdots t_{q_{2}+r+p_{2}} t_{1} \cdots t_{k} \underbrace{\bar{x}_{1} \cdots \bar{x}_{1}}_{q_{2}+r} x_{1} \underbrace{* * \cdots *}_{p_{2}-1} \tag{5}
\end{equation*}
$$

Note that we always have $q_{2} \leqslant k$; otherwise, we have $t_{q_{2}}=\bar{x}_{1}$ if we compare expression (5) with expression (1) of t, this leads to a contradiction with $t_{q_{2}}=x_{1}$. Hence, by (3), we have

$$
\begin{equation*}
t_{q_{2}+1}=\cdots=t_{k}=\bar{x}_{1} \quad \text { and } \quad t_{q_{2}}=x_{1} \tag{6}
\end{equation*}
$$

If $p_{2}>k$, then $t_{k+q_{2}+r+1}=x_{1}$ from (5); Noting $q_{2}+r+1<k+q_{2}+r+1 \leqslant p_{2}+q_{2}+r$, we have $t_{k+q_{2}+r+1}=\bar{x}_{1}$ from (3), a contradiction. Hence $p_{2} \leqslant k$. Comparing expression (1) with expression (5) of t, we have

$$
\begin{equation*}
t_{1}=t_{2}=\cdots=t_{k-p_{2}}=\bar{x}_{1} \quad \text { and } \quad t_{k-p_{2}+1}=x_{1} . \tag{7}
\end{equation*}
$$

Now, from (6) and (7), we have

$$
\begin{equation*}
t=\underbrace{\bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1}}_{k-p_{2}} x_{1} * * \cdots * x_{1} \underbrace{\bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1}}_{k-q_{2}} . \tag{8}
\end{equation*}
$$

Thus by Property 1.1, we have

$$
\begin{aligned}
& n-\left(p_{1}+r+p_{2}\right)=k-p_{2}+1 \\
& n-\left(q_{2}+r+q_{1}\right)=k-q_{2}+1
\end{aligned}
$$

So, we have $p_{1}=q_{1}$.

Fig. 3.

Lemma 2.6. Let $x=x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}$ and $y=\bar{x}=\bar{x}_{1} x_{1} x_{1} \cdots x_{1} \bar{x}_{1} . t=t_{1} t_{2} \cdots t_{n}$ is a vertex other than x and y in $B(n)$. If $|P[x, t]| \leqslant n-2$ and $|Q[t, y]| \leqslant n-2$, then $P(x, t) \cap Q(t, y)=\emptyset$.

Proof. By Property 1.1, we first have $t_{1}=\bar{x}_{1}$ and $t_{n}=x_{1}$ since $1 \leqslant|P[x, t]| \leqslant n-2$ and $1 \leqslant|Q[t, y]| \leqslant n-2$. If $P(x, t) \cap Q(t, y) \neq \phi$, and then if $z=z_{1} z_{2} \cdots z_{n}$ is a vertex in the intersection such that its outneighbors z_{1} and z_{2}, respectively, on P and Q are distinct (see Fig. 3). We denote $|P[x, z]|=p_{1},|P[z, t]|=p_{2}$ and $|Q[t, z]|=q_{2},|Q[z, y]|=q_{1}$. It is clear that $q_{2}+p_{2} \leqslant n-2$ since $p_{1}+q_{1} \geqslant d(x, y)=n-2$ and $|P[x, t]|+|Q[t, y]|=$ $p_{1}+p_{2}+q_{1}+q_{2} \leqslant 2 n-4$. Using Property 1.2 , we assume

$$
\begin{equation*}
t=t_{1} t_{2} \cdots t_{q_{2}+p_{2}} t_{1} t_{2} \cdots t_{q_{2}+p_{2}} \cdots t_{1} t_{2} \cdots t_{q_{2}+p_{2}} t_{1} \cdots t_{k} \tag{9}
\end{equation*}
$$

with $n \equiv k\left(\bmod \left(q_{2}+p_{2}\right)\right), 1 \leqslant k \leqslant p_{2}+q_{2}$ and $t_{1}=\bar{x}_{1}, t_{k}=x_{1}$.
Let us consider the vertex z. Since z can be reached in q_{2} steps from t on Q, it can be written as

$$
\begin{equation*}
z=t_{q_{2}+1} \cdots t_{q_{2}+p_{2}} t_{1} t_{2} \cdots t_{q_{2}+p_{2}} \cdots t_{1} t_{2} \cdots t_{q_{2}+p_{2}} t_{1} t_{2} \cdots t_{k} \underbrace{x_{1} \cdots x_{1}}_{q_{2}} . \tag{10}
\end{equation*}
$$

Since z can be also reached in p_{1} steps from $x=x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}$ on P,

$$
\begin{equation*}
t_{q_{2}+1}=\cdots=t_{q_{2}+p_{2}}=\bar{x}_{1} . \tag{11}
\end{equation*}
$$

Since $p_{1}+q_{1} \geqslant n-2 \geqslant p_{1}+p_{2}$, we have $q_{1} \geqslant p_{2} \geqslant 1$. If $q_{1}=1$, then $z=\bar{x}_{1} \bar{x}_{1} x_{1} x_{1} \cdots x_{1}$ and $t=\bar{x}_{1} x_{1} x_{1} \cdots x_{1}$ by $p_{2}=1$. Clearly, $|Q[t, y]|=n$, which leads to a contradiction.

We now consider z_{1} and z_{2}. Note that $q_{1}>1$. We also have that the last coordinate of z_{1} is \bar{x}_{1}, so

$$
\begin{equation*}
z_{1}=t_{q_{2}+2} \cdots t_{q_{2}+p_{2}} t_{1} t_{2} \cdots t_{q_{2}+p_{2}} \cdots t_{1} t_{2} \cdots t_{q_{2}+p_{2}} t_{1} \cdots t_{k} \underbrace{x_{1} \cdots x_{1}}_{q_{2}} \bar{x}_{1} . \tag{12}
\end{equation*}
$$

Since t can be reached in $p_{2}-1$ steps from z_{1}, it can also be written as

$$
\begin{equation*}
t=t_{1} t_{2} \cdots t_{q_{2}+p_{2}} \cdots t_{1} t_{2} \cdots t_{q_{2}+p_{2}} t_{1} t_{2} \cdots t_{k} \underbrace{x_{1} \cdots x_{1}}_{q_{2}} \bar{x}_{1} \underbrace{* * \cdots *}_{p_{2}-1} . \tag{13}
\end{equation*}
$$

Comparing expression (9) with expression (13) of t, we have $k \leqslant p_{2}$; otherwise, we have $t_{1}=x_{1}$, it leads a contradiction. Thus, from expression (13) of t, we have

$$
\begin{equation*}
t_{k+1}=\cdots=t_{k+q_{2}}=x_{1} \tag{14}
\end{equation*}
$$

which leads to a contradiction with (11).
Thus $P(x, t) \cap Q(t, y)=\phi$.

3. The main results

Theorem 3.1. For $n \geqslant 4$, there is a vertex $x=x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}\left(x_{1}=1\right.$ or 0$)$ in $\operatorname{UB}(n)$ such that for any other vertex t there exist at least two internally disjoint paths of length at most $n-1$ between x and t, i.e., $s_{n-1,2}(U B(n))=1$.

Proof. For any vertex t other than x, we will exhibit the two undirected paths P_{1} and P_{2} between x and t in $U B(n)$ which are internally disjoint and of lengths at most $n-1$.

Case 1. $t \neq t_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} t_{n}$. If $P[x, t]$ and $Q[t, x]$ are internally disjoint in $B(n)$, it can be directedly verified since $|P[x, t]| \leqslant n-1$ and $|Q[t, x]| \leqslant n-1$ by Lemma 2.4(a). We take $P_{1}=P$ and $P_{2}=Q$.

If $P=P[t, x]$ and $Q=Q[y, t]$ are not internally disjoint in $B(n)$, by Lemma 2.4, the union of $P[x, t]$ and $Q[t, x]$ consists of two circuits as shown in Fig. 2, and by Lemma 2.5, $|P[x, z]|=\left|Q\left[z^{*}, x\right]\right|=p_{1}=q_{1}$.

If $r \neq 0$, we take $P_{1}=P[x, z] \cup Q[t, z]$ and $P_{2}=Q\left[z^{*}, x\right] \cup P\left[z^{*}, t\right]$ since $\left|P_{1}\right|=q_{2}+p_{1}=$ $q_{2}+q_{1}<q_{2}+q_{1}+r=|Q| \leqslant n-1$ and $\left|P_{2}\right|=p_{2}+q_{1}=p_{2}+p_{1}<p_{2}+r+p_{1}=|P| \leqslant n-1$.

If $r=0$, i.e. $z=z^{*}$, we consider the vertex $\hat{z}=\bar{z}_{1} z_{2} \cdots z_{n}$ which has the same outneighbors as z (see Fig. 2). Then, clearly, since every vertex of $B(n)$ has out-degree at most $2, \hat{z}$ is not on P and not on Q. Thus, the undirected path $P_{1}=P[x, z] \cup Q[t, z]$ of length $q_{2}+p_{1}=q_{2}+q_{1}$ and the undirected path $P_{2}=P\left[z^{\prime}, t\right] \cup\left[\hat{z}, z^{\prime}\right] \cup\left[\hat{z}, z^{\prime \prime}\right] \cup Q\left[z^{\prime \prime}, x\right]$ of length $p_{2}+q_{1}=p_{2}+p_{1}$ are internally vertex-disjoint and of length at most $n-1$.

Case 2. $t=t_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} t_{n}$ and $t \neq x$. If $t=x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1}$, we easily find two internally disjoint paths in $B(n)$, each of which has length not more than 3:

$$
\begin{aligned}
& P_{1}: t \leftarrow x_{1} x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} \rightarrow x, \\
& P_{2}: t \rightarrow \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1} \rightarrow \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1} x_{1} \leftarrow x .
\end{aligned}
$$

If $t=\bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}$, we can similarly construct P_{1} and P_{2} as follows:

$$
\begin{aligned}
& P_{1}: t \leftarrow x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} \leftarrow x_{1} x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} \rightarrow x, \\
& P_{2}: t \rightarrow \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1} x_{1} \leftarrow x .
\end{aligned}
$$

If $t=\bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1}$, we construct P_{1} and P_{2} as follows:

$$
\begin{aligned}
& P_{1}: t \leftarrow x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} \leftarrow x_{1} x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} \rightarrow x, \\
& P_{2}: t \rightarrow \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1} \rightarrow \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1} x_{1} \leftarrow x .
\end{aligned}
$$

The proof of Theorem 3.1 is completed.
Theorem 3.2. For $n \geqslant 5$, let $S=\{100 \cdots 01,011 \cdots 10\}$. For any other vertex t there exist at least two internally disjoint paths of length at most $n-2$ between t and S in $U B(n)$, i.e., $s_{n-2,2}(U B(n)) \leqslant 2$.

Proof. We will prove that S is a $(n-2,2)$-dominating set of undirected de Bruijn graph $U B(n)$. We will divide the proof into two cases by considering any $t=t_{1} t_{2} \cdots t_{n} \in$ $V-S$. In every case, we exhibit the two undirected paths P_{1} and P_{2} which are internally disjoint and of lengths at most $n-2$. Let $x=x_{1} \bar{x}_{1} \bar{x}_{1} \cdots \bar{x}_{1} x_{1}$ and $y=\bar{x}=\bar{x}_{1} x_{1} x_{1} \cdots x_{1} \bar{x}_{1}$ ($x_{1}=1$ or 0). We will prove that S is a $(n-2,2)$-dominating set of $U B(n)$.

Case 1. $t_{1} \neq t_{2}$. Without loss of generality, we assume that $t_{1}=\bar{x}_{1}$ and $t_{2}=x_{1}$. If $t=\bar{x}_{1} x_{1} * * \cdots * x_{1} \bar{x}_{1}$ or $\bar{x}_{1} x_{1} * * \cdots * \bar{x}_{1} \bar{x}_{1}$, then $|P[x, t]| \leqslant n-2$ and $|Q[t, x]| \leqslant n-2$ in $B(n)$. By Lemma 2.5, we can take P_{1} and P_{2} as similarly as that in case 1 of Theorem 3.1.

If $t=\bar{x}_{1} x_{1} * * \cdots * \bar{x}_{1} x_{1}$, we know that $|P[x, t]| \leqslant n-2$ and $|Q[t, y]| \leqslant n-2$ in $B(n)$. By Lemma 2.6, we can take $P_{1}=P[x, t]$ and $P_{2}=Q[t, y]$.

If $t=\bar{x}_{1} x_{1} * * \cdots * x_{1} x_{1}$, we first assume that $t \neq \bar{x}_{1} x_{1} x_{1} \cdots x_{1}$, so, there must exist some $t_{i}=\bar{x}_{1}$ for $3 \leqslant i \leqslant n-3$. Suppose that t_{j} is the last coordinate of t which is equal to $\bar{x}_{1}(3 \leqslant j \leqslant n-3)$. So, $|Q[t, y]| \leqslant n-3$ in $B(n)$. Now, we can take $P_{1}=P[x, t]$ and $P_{2}=Q[t, y]$ by Lemma 2.6. When $t=\bar{x}_{1} x_{1} x_{1} \cdots x_{1}$, we can take P_{1} and P_{2} as follows:

$$
\begin{aligned}
& P_{1}: t \rightarrow x_{1} x_{1} \cdots x_{1} \bar{x}_{1} \rightarrow x_{1} x_{1} \cdots x_{1} \bar{x}_{1} \bar{x}_{1} \leftarrow y, \\
& P_{2}: t \leftarrow \bar{x}_{1} \bar{x}_{1} x_{1} x_{1} \cdots x_{1} \rightarrow y .
\end{aligned}
$$

Case 2. $t_{1}=t_{2}$. Without loss of generality, we assume that $t_{1}=t_{2}=x_{1}$. If $t=x_{1} x_{1} *$ $* \cdots * \bar{x}_{1} x_{1}$, we know $|Q[t, y]| \leqslant n-2$ and $|P[y, t]| \leqslant n-3$ in $B(n)$ by Property 1.1. Note that Lemma 2.5, we can take P_{1} and P_{2} similar to case 1 of Theorem 3.1.

If $t=x_{1} x_{1} * * \cdots * x_{1} \bar{x}_{1}$, we first assume that $t \neq x_{1} x_{1} \cdots x_{1} \bar{x}_{1}$. So, there must exist some $t_{i}=\bar{x}_{1}$ for $3 \leqslant i \leqslant n-3$. Suppose that t_{j} is the first coordinate of t which is $\bar{x}_{1}(3 \leqslant j \leqslant n-3)$. By Property 1.1, $|P[y, t]| \leqslant n-3$ and $|Q[t, x]| \leqslant n-2$ in $B(n)$. By Lemma 2.6, we can take $P_{1}=P[y, t]$ and $P_{2}=Q[t, x]$. When $t=x_{1} x_{1} \cdots x_{1} \bar{x}_{1}$, we construct P_{1} and P_{2} in $\operatorname{UB}(n)$ as follows:

$$
\begin{aligned}
& P_{1}: t \rightarrow x_{1} x_{1} \cdots x_{1} \bar{x}_{1} \bar{x}_{1} \leftarrow y, \\
& P_{2}: t \leftarrow \bar{x}_{1} x_{1} x_{1} \cdots x_{1} \leftarrow \bar{x}_{1} \bar{x}_{1} x_{1} x_{1} \cdots x_{1} \rightarrow y .
\end{aligned}
$$

If $t=x_{1} x_{1} * * \cdots * \bar{x}_{1} \bar{x}_{1}$, we easily know $|P[y, t]| \leqslant n-3$ and $|Q[t, x]| \leqslant n-3$ in $B(n)$. By Lemma 2.6, we take $P_{1}=P[y, t]$ and $P_{2}=Q[t, x]$ in $U B(n)$.

If $t=x_{1} x_{1} * * \cdots * x_{1} x_{1}$, we first assume that $t \neq x_{1} x_{1} \cdots x_{1}$. So, there must exist some $t_{i}=\bar{x}_{1}$ for $3 \leqslant i \leqslant n-3$. Suppose that t_{j} is the first coordinate of t which is \bar{x}_{1} $(3 \leqslant j \leqslant n-3)$ and t_{k} is the last coordinate of t which is $\bar{x}_{1}(3 \leqslant k \leqslant n-3)$. By Property 1.1, $|P[y, t]| \leqslant n-3$ and $|Q[t, y]| \leqslant n-3$ in $B(n)$. Note that Lemma 2.5, we can take P_{1} and P_{2} similar to case 1 of Theorem 3.1. When $t=x_{1} x_{1} \cdots x_{1}$, we construct P_{1} and P_{2} in $U B(n)$ as follows:

$$
\begin{aligned}
& P_{1}: t \rightarrow x_{1} x_{1} \cdots x_{1} \bar{x}_{1} \rightarrow x_{1} x_{1} \cdots x_{1} \bar{x}_{1} \bar{x}_{1} \leftarrow y, \\
& P_{2}: t \leftarrow \bar{x}_{1} x_{1} x_{1} \cdots x_{1} \leftarrow \bar{x}_{1} \bar{x}_{1} x_{1} x_{1} \cdots x_{1} \rightarrow y
\end{aligned}
$$

Theorem 3.2 is proved.

4. Conclusions and problems

For the undirected binary de Bruijn graphs of the dimension $n, U B(n)$, we prove that $s_{n-1,2}(U B(n))=1$ when $n \geqslant 4$. Another result in this paper is $s_{n-2,2}(U B(n)) \leqslant 2$ when $n \geqslant 5$. But we do not know if $s_{n-2,2}(U B(n))$ is equal to 2 . For the undirected d-nary de Bruin graphs of the dimension $n, U B(d, n), d \geqslant 3$, we know that they have connectivity $2 d-2$ and diameter n. A more difficult problem is to determine the value of $s_{n, 2 d-2}(U B(d, n))$.

References

[1] J. Bermond, C. Peyrat, de Bruijn, Kautz networks: a competitor for the hypercube? Proceedings of the first European Workshop on Hypercube and Distributed Computer. North-Holland, Amsterdam, 1989, pp. 279-294.
[2] E. Flandrin, H. Li, Mengerian properties, Hamiltonicity and claw-free graphs, Networks 24 (1994) 660-678.
[3] D.F. Hsu, On container width and length in graphs, groups, and networks, IEICE Trans. Fundam. E 77A (1994) 668-680.
[4] D.F. Hsu, Y.D. Lyuu, A graph-theoretical study of transmission delay and fault-tolerance, Proceedings of the Fourth ISSM International Conference on Parallel and Distributed Computing and Systems, 1991, pp. 20-24.
[5] D.F. Hsu, T. Luszak, Note on the k-diameter of k-regular k-connected graphs, Discrete Math. 132 (1994) 291-296.
[6] Y. Ishigami, The wide-diameter of the n-dimensional torodal mesh, Networks 27 (1996) 257-266.
[7] Q. Li, D. Sotteau, J.M. Xu, 2-diameter of de Bruijn graphs, Networks 28 (1996) 7-14.
[8] H. Li, J.M. Xu , (d,m)-dominating number of m-connected graphs, Rapport de Recherche, LRI, URA 410 du CNRS Universite de Paris-Sud No. 1130, 1997.
[9] C.H. Lu, K.M. Zhang, A note of (d, m)-dominating numbers of hypercube Q_{m} for $\left\lfloor\frac{m}{2}\right\rfloor+2 \leqslant d \leqslant m$, submitted for publication.
[10] D.K. Pradhan, Fault tolerant VISI architectures based on de Bruijn graphs (Galileo in the mid nineties). Reliability of Computer and Communication Networks, DIMACS Series, in Discr. Math. Theor. Comput. Sci. Vol 5, 1991, pp. 183-196.

[^0]: The project supported by NSFC and NSFJS.

 * Corresponding author.

 E-mail address: zkmf@@etra.nju.edu.cn (C. Lu).

