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Abstract

In this paper, we show that: (i) For n-dimensional undirected binary de Bruijn graphs, UB(n),
n¿4, there is a vertex x=x1 �x1 �x1 · · · �x1x1 (x1=1 or 0) such that for any other vertex t there exist
at least two internally disjoint paths of length at most n−1 between x and t in UB(n), i.e., the (n
−1; 2)-dominating number of UB(n) is equal to one. (ii) For n¿5, let S={100 · · · 01; 011 · · · 10}.
For any other vertex t there exist at least two internally disjoint paths of length at most n − 2
between t and S in UB(n), i.e., the (n− 2; 2)-dominating number of UB(n) is no more than 2.
? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction and notation

The binary directed de Bruijn graph of the dimension n, denoted B(n), has 2n

vertices, which are labeled with the binary strings of length n. There is an arc from
any vertex x1x2 · · · xn to the vertices x2x3 · · · xn0 and x2x3 · · · xn1. We say that the ith
coordinate of x is xi, being equal to 0 or 1, and �xi = 1− xi.
The unidirected binary de Bruijn graph UB(n) is obtained from B(n) by deleting

the orientation of the arcs and omitting multiple edges and loops. It is well known
that UB(n) is 2-connected and that its diameter (maximum of the distances between
all pairs of vertices) is equal to n. Due to their bounded maximum degree equal to

( The project supported by NSFC and NSFJS.
∗ Corresponding author.
E-mail address: zkm
@netra.nju.edu.cn (C. Lu).

0166-218X/00/$ - see front matter ? 2000 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(00)00199 -2



138 C. Lu et al. / Discrete Applied Mathematics 105 (2000) 137–145

4 and their low diameter, de Bruijn graphs have been proposed as a possible good
interconnection network for a parallel architecture [1,10].
In order to characterize the reliability of transmission delay in a network, Hsu and

Lyuu [4], and Flandrin and Li [2] independently introduced the concept of m-diameter
(i.e. wide-diameter): For any pair (x; y) of vertices in a graph G, the m-distance of x
and y, denoted by Dm(x; y)G, is de�ned as the minimum integer d for which there are
at least m internally disjoint path of length at most d between x and y. The m-diameter
of G, denoted by Dm(G), is the maximum of Dm(x; y)G over all pairs (x; y) of vertices
of G. General results on the m-diameters of m-connected graphs can be found in [2,4,5].
Results for some particular classes of graphs can be also found in [3,6,7]. In particular,
for the undirected binary de Bruijn graphs of dimension n, its 2-diameter is n (see [7]).
Recently, Li and Xu [8] de�ne a new parameter (d;m)-dominating number in

m-connected graphs, in some sense, which can more accurately characterize the re-
liability of networks than the wide-diameter can.

De�nition. Let G be an m-connected graph, S a nonempty and proper subset of V (G),
y a vertex in G − S. For a given positive integer d, y is (d;m)-dominated by S in G
if there are at least m internally disjoint (y; S)-paths in G, each of them is of length
at most d. S is said to be a (d;m)-dominating set of G, denoted by Sd;m(G) if either
S = V (G) or S can (d;m)-dominate every vertex in G − S. The parameter

sd;m(G) = min{|Sd;m(G)|: Sd;m(G) is a (d;m)-dominating set of G}
will be called the (d;m)-dominating number of G.

Li and Xu [8] have shown some general properties of the (d;m)-dominating sets and
the (d;m)-dominating numbers of m-connected graphs. In particular, they prove that
for any m¿2, the (d;m)-dominating numbers (m − 16d6m) of the m-dimensional
hypercube Qm are 2. In [9], we prove that the (d;m)-dominating numbers of the
m-dimensional hypercube Qm (m¿4) are also 2 for any integer d; (bm=2c+26d6m).
Since 2-diameter of UB(n) is n, which implies that sn;2(UB(n)) = 1. An interesting
problem is what the value of sd;2(UB(n)) is when d6n− 1. The aim of this paper is
to prove that sn−1;2(UB(n)) = 1 and sn−2;2(UB(n))62.
Let us �rst introduce some notation and recall some properties of de Bruijn

graph B(n).

Property 1.1. Given any two vertices x=x1x2 · · · xn and y=y1y2 · · ·yn of B(n); there
is a unique shortest path from x to y; and the distance d(x; y) is equal to the smallest
i6n− 1 such that xi+1 · · · xn = y1 · · ·yn−i if it exists and to n otherwise.

Property 1.2. If C is a closed walk of length l¡n in B(n) and z1z2 · · · zn is a vertex
on C; then zi = zi+l for all 16i6n− l.

For two given vertices x and y in B(n), we will denote P[x; y] as the shortest path
P from x to y. The length of this path denoted by |P[x; y]|, is the number of edges in
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the path and is also the distance d(x; y) from x to y. P[x; y] also represents the set of
vertices of the path, including its extremities. P(x; y) will denote the set of vertices of
the path excluding the extremities x and y. P(x; y] is the set of vertices including y,
and excluding x (and similarly for P[x; y)).

2. Preliminary results

Let us �rst give the following two lemmas which can be found in [7].

Lemma 2.1 (Li, Sotteau and Xu [7]). For any two vertices x and y of B(n); if the
shortest path from x to y intersects the shortest path from y to x in a vertex other
than x and y; then; necessarily; the sum of the lengths of the two paths is strictly
more than n.

Lemma 2.2 (Li, Sotteau and Xu [7]). For any two vertices x and y of B(n); the union
of the shortest path from x to y and the shortest path from y to x consists of at
most three circuits

Lemma 2.3. In B(n); the vertex x1 �x1 �x1 · · · �x1x1 (x1 = 1 or 0) cannot be on any closed
walk of length l (0¡l¡n− 1).

Proof. If not, we assume that the vertex x1 �x1 �x1 · · · �x1x1 is on a closed walk C of length
l (0¡l¡n− 1) in B(n). By Property 1:2, the (l+ 1)th coordinate of x1 �x1 �x1 · · · �x1x1
is x1. Then l= n− 1, a contradiction.

Lemma 2.4. Let x = x1 �x1 �x1 · · · �x1x1 with x1 = 1 or 0. Then for any other vertex
t 6= t1 �x1 · · · �x1tn in B(n) we have
(a) |P[x; t]|6n− 1 and |Q[t; x]|6n− 1.
(b) The union of the shortest path P[x; t] and the shortest path Q[t; x] in B(n) consists

of at most two circuits.

Proof. (a) If t1 = x1 it is easy to know |P[x; t]|6n− 1. Since t 6= t1 �x1 �x1 · · · �x1tn, there
exists at least one coordinate of t except the �rst and the last coordinates of t, which
is x1. If t1 = �x1, then t = �x1 · · · �x1x1ti+1 · · · tn, where 1¡i¡n. By Property 1.1, we
know |P[x; t]|¡n− 1. Similarly, we have |Q[t; x]|6n− 1.
(b) Suppose that the union of the P[x; t] and Q[t; x] consists of three circuits by

Lemma 2.2 as shown in Fig. 1, we use the following notation: let z (resp. w∗) be the
�rst (resp., last) vertex that P(x; t) has in common with Q(t; x). And let w (resp., z∗)
be the �rst (resp., last) vertex that Q(t; x) has in common with P(x; t). By Lemma 2.1,
|P[z; t]|+ |Q[t; z]|¿n, and |P[x; z]|+ |Q[z; x]|¿n−1 by Lemma 2.3. Therefore, |P[x; t]|
+ |Q[t; x]|= |P[x; z]|+ |P[z; t]|+ |Q[t; z]|+ |Q[z; x]|¿ 2n− 1. But |P[x; t]|6n− 1 and
|Q[t; x]|6n− 1 by (a), which leads to a contradiction.
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Fig. 1.

Fig. 2.

Let x = x1 �x1 �x1 · · · �x1x1 and t 6= t1 �x1 �x1 · · · �x1tn. Suppose that the union of P[x; t] and
Q[t; x] consists of two circuits as shown in Fig. 2. Let z (resp., z∗) be the �rst (resp.,
last) vertex that P(x; t) has in common with Q(t; x). Let |P[x; z]| = p1; |P[z; z∗]| =
|Q[z; z∗]|=r; |P[z∗; t]|=p2; |Q[t; z]|=q2; |Q[z∗; x]|=q1, thus p1+r+p2=|P[x; t]|6n−1
and q2 + r + q1 = |Q[t; x]|6n − 1 by Lemma 2.4(a). All these integers are strictly
positive except for r which may equal 0. z1 and z2 are inneighbors of z; z′ and z′′ are
outneighbors of z∗.

Lemma 2.5. p1 = q1.

Proof. Clearly, |P[z; t]|+ |Q[t; z]|= p2 + r + q26n− 1 since |P[x; z]|+ |Q[z; x]|= p1
+ r + q1¿n− 1 by Lemma 2.3. By Property 1:2, we assume

t = t1t2 · · · tq2+r+p2 t1t2 · · · tq2+r+p2 · · · t1t2 · · · tq2+r+p2 t1 · · · tk (1)

with n ≡ k(mod (q2 + r + p2)), 16k6q2 + r + p2.
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Let us consider the vertex z. With the notation introduced above, since z can be
reached in q2 steps from t on Q, it can be written as

z = tq2+1 · · · tq2+r+p2 t1t2 · · · tq2+r+p2 · · · t1t2 · · · tq2+r+p2 t1 · · · tk �x1 · · · �x1
︸ ︷︷ ︸

q2

(2)

Since z can be reached in p1 steps from x = x1 �x1 �x1 · · · �x1x1 on P[x; t],
tq2+1 = · · ·= tq2+r+p2 = �x1 (3)

Noting p1+r+q1¿n−1¿q2+r+q1, we have p1¿q2. Similarly, we have q1¿p2.
Note that p1 6= 1 and q1 6= 1. If p1 = 1, then q2 = 1. So t= �x1 �x1 · · · �x1x1, a contraction
to t 6= t1 �x1 · · · �x1tn. Similarly, we also have q1 6= 1.
Let us consider z1 and z2 in Fig. 2. The �rst coordinate of z2 is �x1 since p1¿ 1.

So, the �rst coordinate of z1 is x1. Since z1 can be reached in q2 − 1 steps from t, its
�rst coordinate is tq2 . Hence tq2 = x1.
Let us now consider z′ and z′′ in Fig. 2. The latest coordinate of z′′ is �x1 since

q1¿ 1. So, the latest coordinate of z′ is x1. Since z′ can be reached in q2 + r+1 steps
from t, it can be written as

z′ = tq2+r+2 · · · tq2+r+p2 t1t2 · · · tq2+r+p2 · · · t1t2 · · · tq2+r+p2 t1t2 · · · tk �x1 · · · �x1
︸ ︷︷ ︸

q2+r

x1 (4)

Since t can be reached in p2 − 1 steps from z′, we can also write z′ as

t = t1t2 · · · tq2+r+p2 · · · t1 · · · tq2+r+p2 t1 · · · tk �x1 · · · �x1
︸ ︷︷ ︸

q2+r

x1 ∗ ∗ · · · ∗︸ ︷︷ ︸

p2−1
(5)

Note that we always have q26k; otherwise, we have tq2 = �x1 if we compare expres-
sion (5) with expression (1) of t, this leads to a contradiction with tq2 = x1. Hence, by
(3), we have

tq2+1 = · · ·= tk = �x1 and tq2 = x1 (6)

If p2¿k, then tk+q2+r+1=x1 from (5); Noting q2+r+1¡k+q2+r+16p2+q2+r,
we have tk+q2+r+1 = �x1 from (3), a contradiction. Hence p26k. Comparing expression
(1) with expression (5) of t, we have

t1 = t2 = · · ·= tk−p2 = �x1 and tk−p2+1 = x1: (7)

Now, from (6) and (7), we have

t = �x1 �x1 · · · �x1
︸ ︷︷ ︸

k−p2

x1 ∗ ∗ · · · ∗ x1 �x1 �x1 · · · �x1
︸ ︷︷ ︸

k−q2

: (8)

Thus by Property 1:1, we have

n− (p1 + r + p2) = k − p2 + 1;

n− (q2 + r + q1) = k − q2 + 1:
So, we have p1 = q1.
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Fig. 3.

Lemma 2.6. Let x = x1 �x1 �x1 · · · �x1x1 and y = �x = �x1x1x1 · · · x1 �x1. t = t1t2 · · · tn is a
vertex other than x and y in B(n). If |P[x; t]|6n − 2 and |Q[t; y]|6n − 2; then
P(x; t) ∩ Q(t; y) = ∅.

Proof. By Property 1:1, we �rst have t1 = �x1 and tn = x1 since 16|P[x; t]|6n− 2 and
16|Q[t; y]|6n−2. If P(x; t)∩Q(t; y) 6= �, and then if z= z1z2 · · · zn is a vertex in the
intersection such that its outneighbors z1 and z2, respectively, on P and Q are distinct
(see Fig. 3). We denote |P[x; z]| = p1; |P[z; t]| = p2 and |Q[t; z]| = q2; |Q[z; y]| = q1.
It is clear that q2 +p26n− 2 since p1 + q1¿d(x; y) = n− 2 and |P[x; t]|+ |Q[t; y]|=
p1 + p2 + q1 + q262n− 4. Using Property 1:2, we assume

t = t1t2 · · · tq2+p2 t1t2 · · · tq2+p2 · · · t1t2 · · · tq2+p2 t1 · · · tk (9)

with n ≡ k (mod (q2 + p2)); 16k6p2 + q2 and t1 = �x1; tk = x1.
Let us consider the vertex z. Since z can be reached in q2 steps from t on Q, it can

be written as

z = tq2+1 · · · tq2+p2 t1t2 · · · tq2+p2 · · · t1t2 · · · tq2+p2 t1t2 · · · tk x1 · · · x1
︸ ︷︷ ︸

q2

: (10)

Since z can be also reached in p1 steps from x = x1 �x1 �x1 · · · �x1x1 on P,
tq2+1 = · · ·= tq2+p2 = �x1: (11)

Since p1+q1¿n−2¿p1+p2, we have q1¿p2¿1. If q1=1, then z= �x1 �x1x1x1 · · · x1
and t = �x1x1x1 · · · x1 by p2 = 1. Clearly, |Q[t; y]|= n, which leads to a contradiction.
We now consider z1 and z2. Note that q1¿ 1. We also have that the last coordinate

of z1 is �x1, so

z1 = tq2+2 · · · tq2+p2 t1t2 · · · tq2+p2 · · · t1t2 · · · tq2+p2 t1 · · · tk x1 · · · x1
︸ ︷︷ ︸

q2

�x1: (12)
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Since t can be reached in p2 − 1 steps from z1, it can also be written as

t = t1t2 · · · tq2+p2 · · · t1t2 · · · tq2+p2 t1t2 · · · tk x1 · · · x1
︸ ︷︷ ︸

q2

�x1 ∗ ∗ · · · ∗︸ ︷︷ ︸

p2−1
: (13)

Comparing expression (9) with expression (13) of t, we have k6p2; otherwise, we
have t1 = x1, it leads a contradiction. Thus, from expression (13) of t, we have

tk+1 = · · ·= tk+q2 = x1 (14)

which leads to a contradiction with (11).
Thus P(x; t) ∩ Q(t; y) = �.

3. The main results

Theorem 3.1. For n¿4; there is a vertex x = x1 �x1 �x1 · · · �x1x1 (x1 = 1 or 0) in UB(n)
such that for any other vertex t there exist at least two internally disjoint paths of
length at most n− 1 between x and t; i.e.; sn−1;2(UB(n)) = 1.

Proof. For any vertex t other than x, we will exhibit the two undirected paths P1 and
P2 between x and t in UB(n) which are internally disjoint and of lengths at most n−1.
Case 1. t 6= t1 �x1 �x1 · · · �x1tn. If P[x; t] and Q[t; x] are internally disjoint in B(n), it can

be directedly veri�ed since |P[x; t]|6n− 1 and |Q[t; x]|6n− 1 by Lemma 2.4(a). We
take P1 = P and P2 = Q.
If P = P[t; x] and Q = Q[y; t] are not internally disjoint in B(n), by Lemma 2.4,

the union of P[x; t] and Q[t; x] consists of two circuits as shown in Fig. 2, and by
Lemma 2.5, |P[x; z]|= |Q[z∗; x]|= p1 = q1.
If r 6= 0, we take P1=P[x; z]∪Q[t; z] and P2=Q[z∗; x]∪ P[z∗; t] since |P1|=q2+p1=

q2+q1¡q2+q1+r=|Q|6n−1 and |P2|=p2+q1=p2+p1¡p2+r+p1=|P|6n−1.
If r = 0, i.e. z = z∗, we consider the vertex ẑ = �z1z2 · · · zn which has the same

outneighbors as z (see Fig. 2). Then, clearly, since every vertex of B(n) has out-degree
at most 2, ẑ is not on P and not on Q. Thus, the undirected path P1 = P[x; z]∪Q[t; z]
of length q2+p1=q2+q1 and the undirected path P2=P[z′; t]∪[ẑ; z′]∪[ẑ; z′′]∪Q[z′′; x]
of length p2 + q1 =p2 +p1 are internally vertex-disjoint and of length at most n− 1.
Case 2. t= t1 �x1 �x1 · · · �x1tn and t 6= x. If t=x1 �x1 �x1 · · · �x1, we easily �nd two internally

disjoint paths in B(n), each of which has length not more than 3:

P1: t ← x1x1 �x1 �x1 · · · �x1 → x;

P2: t → �x1 �x1 · · · �x1x1 → �x1 �x1 · · · �x1x1x1 ← x:

If t = �x1 �x1 · · · �x1x1, we can similarly construct P1 and P2 as follows:
P1: t ← x1 �x1 �x1 · · · �x1 ← x1x1 �x1 �x1 · · · �x1 → x;

P2: t → �x1 �x1 · · · �x1x1x1 ← x:
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If t = �x1 �x1 · · · �x1, we construct P1 and P2 as follows:
P1 : t ← x1 �x1 �x1 · · · �x1 ← x1x1 �x1 �x1 · · · �x1 → x;

P2 : t → �x1 �x1 · · · �x1x1 → �x1 �x1 · · · �x1x1x1 ← x:

The proof of Theorem 3.1 is completed.

Theorem 3.2. For n¿5; let S = {100 · · · 01; 011 · · · 10}. For any other vertex t there
exist at least two internally disjoint paths of length at most n − 2 between t and S
in UB(n); i.e.; sn−2;2(UB(n))62.

Proof. We will prove that S is a (n−2; 2)-dominating set of undirected de Bruijn graph
UB(n). We will divide the proof into two cases by considering any t = t1t2 · · · tn ∈
V−S. In every case, we exhibit the two undirected paths P1 and P2 which are internally
disjoint and of lengths at most n− 2. Let x= x1 �x1 �x1 · · · �x1x1 and y= �x= �x1x1x1 · · · x1 �x1
(x1 = 1 or 0). We will prove that S is a (n− 2; 2)-dominating set of UB(n).
Case 1. t1 6= t2. Without loss of generality, we assume that t1 = �x1 and t2 = x1. If

t = �x1x1 ∗ ∗ · · · ∗ x1 �x1 or �x1x1 ∗ ∗ · · · ∗ �x1 �x1, then |P[x; t]|6n − 2 and |Q[t; x]|6n − 2
in B(n). By Lemma 2.5, we can take P1 and P2 as similarly as that in case 1 of
Theorem 3.1.
If t = �x1x1 ∗ ∗ · · · ∗ �x1x1, we know that |P[x; t]|6n− 2 and |Q[t; y]|6n− 2 in B(n).

By Lemma 2.6, we can take P1 = P[x; t] and P2 = Q[t; y].
If t = �x1x1 ∗ ∗ · · · ∗ x1x1, we �rst assume that t 6= �x1x1x1 · · · x1, so, there must exist

some ti = �x1 for 36i6n− 3. Suppose that tj is the last coordinate of t which is equal
to �x1 (36j6n− 3). So, |Q[t; y]|6n− 3 in B(n). Now, we can take P1 = P[x; t] and
P2 =Q[t; y] by Lemma 2.6. When t= �x1x1x1 · · · x1, we can take P1 and P2 as follows:

P1: t → x1x1 · · · x1 �x1 → x1x1 · · · x1 �x1 �x1 ← y;

P2: t ← �x1 �x1x1x1 · · · x1 → y:

Case 2. t1 = t2. Without loss of generality, we assume that t1 = t2 = x1. If t = x1x1 ∗
∗ · · · ∗ �x1x1, we know |Q[t; y]|6n − 2 and |P[y; t]|6n − 3 in B(n) by Property 1:1.
Note that Lemma 2.5, we can take P1 and P2 similar to case 1 of Theorem 3.1.
If t = x1x1 ∗ ∗ · · · ∗ x1 �x1, we �rst assume that t 6= x1x1 · · · x1 �x1. So, there must exist

some ti = �x1 for 36i6n − 3. Suppose that tj is the �rst coordinate of t which is
�x1 (36j6n − 3). By Property 1:1, |P[y; t]|6n − 3 and |Q[t; x]|6n − 2 in B(n). By
Lemma 2.6, we can take P1 = P[y; t] and P2 = Q[t; x]. When t = x1x1 · · · x1 �x1, we
construct P1 and P2 in UB(n) as follows:

P1: t → x1x1 · · · x1 �x1 �x1 ← y;

P2: t ← �x1x1x1 · · · x1 ← �x1 �x1x1x1 · · · x1 → y:

If t= x1x1 ∗ ∗ · · · ∗ �x1 �x1, we easily know |P[y; t]|6n− 3 and |Q[t; x]|6n− 3 in B(n).
By Lemma 2.6, we take P1 = P[y; t] and P2 = Q[t; x] in UB(n).
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If t = x1x1 ∗ ∗ · · · ∗ x1x1, we �rst assume that t 6= x1x1 · · · x1. So, there must exist
some ti = �x1 for 36i6n − 3. Suppose that tj is the �rst coordinate of t which is �x1
(36j6n−3) and tk is the last coordinate of t which is �x1 (36k6n−3). By Property
1:1, |P[y; t]|6n − 3 and |Q[t; y]|6n − 3 in B(n). Note that Lemma 2.5, we can take
P1 and P2 similar to case 1 of Theorem 3.1. When t= x1x1 · · · x1, we construct P1 and
P2 in UB(n) as follows:

P1: t → x1x1 · · · x1 �x1 → x1x1 · · · x1 �x1 �x1 ← y;

P2: t ← �x1x1x1 · · · x1 ← �x1 �x1x1x1 · · · x1 → y:

Theorem 3.2 is proved.

4. Conclusions and problems

For the undirected binary de Bruijn graphs of the dimension n, UB(n), we prove
that sn−1;2(UB(n)) = 1 when n¿4. Another result in this paper is sn−2;2(UB(n))62
when n¿5. But we do not know if sn−2;2(UB(n)) is equal to 2. For the undirected
d-nary de Bruin graphs of the dimension n, UB(d; n), d¿3, we know that they have
connectivity 2d−2 and diameter n. A more di�cult problem is to determine the value
of sn;2d−2(UB(d; n)).
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