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A b s t r a c t - - A  graph G is called (k, d)*-choosable if, for every list assignment L satisfying [L(v)l = k 
for all v E V(G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored 
with the same color as itself. In this note, we prove that every planar graph without 4-cycles and 
/-cycles for some l E {5, 6, 7} is (3, 1)*-choosable. © 2001 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - L i s t  improper coloring, List chromatic number, Cycles. 

1. I N T R O D U C T I O N  

All  g r aphs  cons idered  in th i s  pape r  are  finite, loopless,  and  w i thou t  mul t ip le  edges  unless  s t a t e d  

o therwise .  For  a p lane  g r a p h  G, we deno te  i ts  ve r t ex  set,  edge set,  face set,  and  m i n i m u m  degree  

by  V(G), E(G), F(G), and  5(G), respect ively.  For  x E V(G) U F(G), let  dc(x) (or s imp ly  d(x)) 
d e n o t e  t h e  degree  of  x in G. A ver tex  (or face) of  degree  k is ca l led  a k -ve r t ex  (or k-face).  Let  

No(u) (or s imply  N(u)) deno te  t he  set of  ne ighbors  of  a ve r t ex  u in G. Two  faces of  a p lane  

g r a p h  are  sa id  to  be  ad jacen t  if t h e y  have a t  leas t  one c o m m o n  b o u n d a r y  edge.  A ve r t ex  v and  

a face f a re  sa id  to  be  inc ident  if v lies on the  b o u n d a r y  of f .  For  x E V(G) W F(G), we use 

Fk(x) to  deno te  t h e  set  of  all  k-faces t h a t  are  incident  or ad j acen t  to  x, and  Vk(x) to  deno t e  t he  

set  of  all k-ver t ices  t h a t  a re  inc ident  or ad j acen t  to  x. For  f e F(G), we wr i te  f = [UlU2. . .  un] 

if ul, u2,..., un are  t he  b o u n d a r y  ver t ices  of f in t he  clockwise order .  A 3-face [ulu2u3] is ca l led  

an (ml,m2,m3)-face if d(u~) = mi  for i = 1 ,2 ,3 .  
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Let the integer m > 1. A graph G is m-colorable with impropriety d, or simply (m,d)*- 
colorable, if the vertices of G can be colored with m colors so that  each vertex has at most d of 
the same color as itself. An (m, 0)*-coloring is an ordinary proper m-coloring. A list assignment 
of G is a function L that  assigns a list L(v) of colors to each vertex v • V(G).  An L-coloring with 
impropriety d, or simply (L, d)*-coloring, is a mapping ¢ that  assigns a color ¢(v) • L(v) to each 
vertex v • V(G)  such that  v has at most d neighbors colored with ¢(v). A graph is m-choosable 
with impropriety d, or simply (m, d)*-choosable, if there exists an (L, d)*-coloring for every list 
assignment L with ]L(v)[ = m for all v • V(G).  Obviously, (m, 0)*-choosability is the ordinary 
m-choosability introduced by Erd6s, Rubin and Taylor [1], and independently by Vizing [2]. 

The notion of list improper coloring was introduced independently by Skrekovski [3] and Eaton 
and Hull [4]. They proved that  every planar graph is (3, 2)*-choosable and every outerplanar 
graph is (2, 2)*-choosable. Let g(G) denote the girth of a graph G, i.e, the length of a shortest 
cycle. Recently, Skrekovski [5] proved that  every planar graph G is (2, 1)*-choosable if g(G) > 9, 

(2, 2)*-choosable if g(G) > 7, (2, 3)*-choosable if g(G) > 6, and (2, d)*-choosable if g(G) >_ 5 
and d > 4. Thomassen [6] proved that  every planar graph with girth at least five is 3-choosable. 
Voigt [7] found an example of a planar graph without 3-cycles that  is not 3-choosable. However, 
Skrekovski [8] proved that  every planar graph without 3-cycles is (3, 1)*-choosable. Steinberg [9, 
p. 42] conjectured that  every planar graph without 4-cycles and 5-cycles is 3-colorable. This 
conjecture still remains open. The best partial result, due to Borodin [10] and independently 
to Sanders and Zhao [11], shows that  every planar graph without k-cycles for all 4 < k < 9 is 
3-colorable. We do not know if there exists a planar graph without 4-cycles and 5-cycles that  
is 3-colorable, yet non-3-choosable. In view of the result of [8], we would like to know if every 
planar graph without 4-cycles and 5-cycles i s (3 ,  1)*-choosable. In this note, we will present a 
positive solution to this problem. Our result may be regarded as a solution to a weakened form 

of Steinberg's three-color conjecture. 

2. M A I N  T H E O R E M  

Given a list improper coloring of the graph G and a vertex v, let Im(v) denote the number of 
neighbors of v that  are colored with the same color as v. We call Im(v) the impropriety of v with 

respect to the coloring. 

LEMMA 1. Let G be a graph and d >_ 1 an integer. I f  G is not (k, d)*-choosable but every 

subgraph of  G with fewer vertices is, then the following facts hold. 

(1) 5(G) >_ k. 
(2) I f  u E V(G)  is a k-vertex and v is a neighbor of u, then d(v) > k + d. 

PROOF. Let x be an arbitrary vertex of G and L an arbitrary list assignment satisfying [L(v)] = k 
for all v c V(G) .  By the assumption, there is an (L, d)*-coloring of G - x .  Then the neighbors of x 
must use up all k colors, for otherwise the (L, d)*-coloring can be extended to G. Statement (1) 
thus follows. To prove (2), we assume that  d(v) < k + d - 1  for some v c N(u) .  By the assumption, 
there is an (L, d)*-coloring ¢ of G - u. If Ira(v) = d with respect to ¢, then the degree constraint 
on v implies that  the number of distinct colors used by the neighbors of v in G - u is at most 
k - 1. Then we recolor v to make Im(v) = 0 in the modified (L,d)*-coloring. Therefore, the 
chosen coloring ¢ may be assumed to satisfy Ira(v) _< d - 1. Since there are at most k - 1 vertices 
in G - u - v that  were adjacent to u, we may color u so that,  among all neighbors of u in G, 
only v may have the same color as u. Thus, ¢ is extended to an (L, d)*-coloring of G. This 
contradicts the choice of G. | 

LEMMA 2. Let G be a graph such that G is not (k,d)*-choosable but every subgraph of G with 
fewer vertices is. I f  d(u) <_ k + d for a given u e V(G),  then d(v) > k + d for some v e N(u) .  

PROOF. Suppose that  d(v) < k + d -  1 for every v E N(u) .  Let L be an arbitrary list assignment 
satisfying In(x)[ = k for all x • V(G) .  By the assumption, there is an (L, d)*-coloring ¢ of G -  u. 
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We may argue similarly to the proof of Lemma 1 that  Im(v) < d - 1 for every neighbor v of u 
with respect to ¢. If every color in L(u) is used by at least d + 1 neighbors of u, then there exist 
at least k(d + 1) > k + d > d(u) neighbors of u which is absurd. Hence, there is a color in L(u) 
tha t  is used by at most d neighbors of u. We extend ¢ to color u with that  color. The extended ¢ 
is an (L, d)*-coloring of G. This contradicts the choice of G. | 

To prove our main theorem, we only need the case for k -- 3 and d -- 1 in Lemmas 1 and 2. 
However, we have arrived at a much shorter  proof for the results in [5] by means of these lemmas. 

THEOREM 3. Let G be a plane graph without 4-cycles and l-cycles for some l • {5, 6, 7}. Then 
G is (3, 1)*-choosable. 

PROOF. Suppose that  this theorem is false. Let G be a counterexample with the fewest vertices. 
We first assume that  G is 2-connected. Thus, the boundary of every face of G forms a cycle, 
and every vertex v of G is incident to exactly d(v) distinct faces. Every subgraph H of G with 
fewer vertices is still a plane graph without 4-cycles and/-cycles for some 1 • {5, 6, 7}, hence, H 
is (3, 1)*-choosable. Let L denote an arbitrary list assignment of G satisfying IL(v)l -- 3 for all 
v • V(G). The following facts hold for G. 

(a) 5(G) _> 3. 
(b) G does not contain two adjacent 3-vertices. 
(c) G contains neither a 4-face nor two adjacent 3-faces. 
(d) G does not contain a (3,4,4)-face. 

Facts (a) and (b) follow from Lemma 1, and (b) implies that  IV3(f)l < [d(f)/2] for all f • F(G). 
Fact (c) holds since G does not contain any 4-cycle. It also implies that  IF3(v)l _< [d(v)/2] for 
all v • V(G). The proof of Fact (d) goes as follows. Suppose to the contrary that  G contains a 
(3, 4, 4)-face [uvw] such that  d(u) = 3 and d(v) = d(w) = 4. By the minimality of G, G -  {u, v, w} 
has an (L, 1)-list coloring ¢. Define L'(x) = L(x) - A(x) for every x • {u, v,w}, where A(x) 

i 

denotes the set of colors that  ¢ assigns to the neighbors of x in G - {u, v, w). Thus ILl(u)l >_ 2, 
IL'(v)l >>_ 1, and IL'(w)l > 1. An (L', 1)-coloring of the 3-cycle uvwu can be constructed easily. 
Hence, G is (L, 1)-colorable, this contradicts the choice of G. 

Graph G satisfies Euler's formula IV(G)I-  IE(G)I + IF(G)I = 2 which can be rewritten in the 
following form: 

~--~{d(v) - 4 ] v • V(G)} + ~--~{d(f) - 4 ] f • F(G)}  = -8 .  

Let w denote the weight function defined on V(G) U F(G) by w(v) = d(v) - 4 if v E V(G) 
and w(f)  = d(f) - 4 if f • F(G). Thus, the total sum of weights is the negative number -8 .  
We are going to introduce discharging rules so that  the total sum of weights is kept fixed while 
the discharging is in progress. However, once the discharging is finished, we can show that  the 
resulting weight function w ~ is nowhere negative. Thus, the following contradiction is arrived and 
the existence of G is absurd. 

0 < ~ (w'(x)  I x e V(G) UF(G)) = ~-~,{w(x) I x • V(G) U F(G)}  = -8 .  

Now we list our discharging rules. 

(R1) For every vertex v with d(v) >_ 5, we transfer 1/3 from v to each incident 3-face. 
(R2) For every 3-face f ,  we transfer 1/3 from f to each incident 3-vertex. 
(R3) For every face f with d(f) >_ 5, we transfer 1/3 from f to each incident 3-vertex and 1/3 

from f to each adjacent 3-face. 

It remains to show that  the resulting weight function w' satisfies w'(x) > 0 for all x E V(G) U 
F(G). It is evident that  w'(x) -- w(x) = 0 for all x E V(G) UF(G) with d(x) -- 4. Let v E V(G). 
By (a), d(v) > 3. If d(v) = 3, then, by (R2) and (R3), w'(v) = w(v) + 3- (1/3) = 0 since G does 



272 K.-W. LIH et hi. 

not contain any 4-faces and v is incident to three distinct faces. If d(v) > 5, then by (c) and (R1), 
w' (v )  > w(v )  - (1/3)[F3(v)I > w(v )  - (1 /3)[d(v) /2J  >_ O. Now let f • F ( G ) .  First suppose that  
d ( f )  = 3 and f = [xlx2x3]. If e is one of the boundary edges of f ,  we use fe to denote the face in G 
adjacent to f and sharing the same boundary edge e with f .  I t  follows from (c) tha t  d( fe)  >_ 5, 

where e equals to XlX2, x2x3, or x3x l .  We claim tha t  fx~x2, fx2~3, and fx3xl axe pairwise distinct. 
If  two of them, say fxlz2 and fx2x3, are identical, then either d(x2) _< 2 or x2 is a cut vertex. Yet 
both are impossible. If f is incident to at least one 3-vertex, then it follows from (d) tha t  the 

boundary of f contains a vertex of degree at least five. Thus, w ' ( f )  >_ w ( f )  + 4- (1/3) - (1/3) = 0 
by (R1) to (R3). If f is not incident to any 3-vertex, then w ' ( f )  >_ w ( f )  + 3 .  (1/3) = 0. If 

d ( f )  > 6, then w ' ( f )  >>_ w ( f )  - (1/3)([V3(f)[ + [F3(f)[) _> w ( f )  - (1 /3) .  d ( f )  >_ O. If G does not 
contain any 5-cycle, then we are done. Otherwise, we finally assume d ( f )  = 5. Since G does not 
contain any/-cycle  for l = 6 or 7, we have [F3(f)[ < 1. By (b), [V3(f)[ < 2. I t  follows from (R3) 
tha t  w ' ( f )  > w ( f )  - 3- (1/3) > 0. The proof of the 2-connected case is complete. 

We next suppose tha t  G contains cut vertices. We may choose a block B of G that  contains a 
unique cut vertex t* of G. Let f0 denote the exterior face of the plane graph B. Thus, B contains 
no 4-cycles and/-cycles  for some I • {5, 6, 7}. Moreover B satisfies the following properties. 

(a') ds( t*)  >_ 2 and ds(v)  = da(v )  _> 3 for all v • V ( B )  - {t*}. 
(b/) B does not contain two adjacent 3-vertices u and v such tha t  u , v  • V ( B )  - {t*}. 
(c') B contains neither a 4-face nor two adjacent 3-faces in F ( B )  - {f0}- 

(d') B does not contain a 3-face [vlv2v3] such that  v l , v2 ,  v3 • V ( B )  - {t*}, dB(Vl)  = 3, and 

ds(v2) = ds(v3) = 4. 

Euler 's formula applied to B implies the following: 

{ds(v)  - 4 ] v • V(B)} + ~ { d B ( f )  -- 4 [ f • F(B)}  = - 8 .  

Define the weight function w on V ( B ) U F ( B )  by w ( x )  = riB(X) --4 for all x E V ( B ) U F ( B ) .  Thus, 
~ { w ( x )  [ x • V ( B )  U F(B)}  = - 8 .  We redistribute the weight w ( x )  for every x • V ( B )  tJ F ( B )  

according to the following discharging rules. 

(r l)  For every vertex v • V ( B )  - {t*} with dB(V) _> 5, we transfer 1/3 to each incident 3-face 

except f0. 
(r2) For every 3-face f • F ( B )  - {f0}, we transfer 1/3 to each incident 3-vertex except t*. 
(r3) For every face f • F ( B )  - {f0} with d B ( f )  >_ 5, we transfer 1/3 to each incident 3-vertex 

except t* and each adjacent 3-face except f0. 
(r4) We transfer 1/3 from t* to each incident face except f0. 
(rb) We transfer 1/3 from f0 to each adjacent face and each incident vertex except t*. 

Let w* denote the final weight function when the discharging is complete. The total  sum of the 
new weights w*(x)  is kept fixed. We can show that  w*(x)  >_ 0 for all x • ( V ( B )  U F ( B ) )  - {t*, f0} 
by the same argument for the 2-connected case. Since dB(t*) _~ 2 and t* is incident to at 
most dB(t*)  -- 1 faces except f0, we have w*(t*) > w(t*) - (1 /3 ) (ds ( t* )  - 1) = ds( t*)  - 4 - 
(1 /3)dB( t*)  + (1/3) = (2~3)riB(t*) -- (11/3) > --7/3 by (r4). Note that  fo is adjacent to at most  
dB( fo)  faces and incident to exactly ds ( f0)  - 1 vertices except t*. Since ds ( f0 )  _> 3, we have 
w*(fo)  >>_ dB( fo)  -- 4 - (1 /3) (2dB( fo)  -- 1) ---- (1 /3)dB( fo)  -- (11/3) > --8/3 by (rb). I t  follows 
tha t  w*(t*) + w*( fo)  _> - 5 .  Consequently, we obtain the following contradiction and the proof 
is complete. 

O < ~ - ~ { w * ( x )  l x e ( V ( B ) U F ( B ) ) - { t * , f o } } = - 8 - w * ( t * ) - w * ( f o ) < - 3 .  | 

COROLLARY 4. Every  plane graph wi thout  4-cycles and 5-cycles is (3, 1)*-choosable. 
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