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R(C6, K5) = 21 and R(C7, K5) = 25

YANG JIAN SHENG, HUANG Y I RU AND ZHANG KE M IN

The Ramsey numberR(Cn, Km) is the smallest integerp such that any graphG on p vertices
either contains a cycleCn with lengthn or contains an independent set with orderm. In this paper we
prove thatR(Cn, K5) = 4(n− 1)+ 1 (n = 6,7).
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1. INTRODUCTION

We shall only consider graphs without multiple edges or loops.
The Ramsey numberR(Cn, Km) is the smallest integerp such that any graphG on p

vertices either contains a cycleCn with lengthn or contains an independent set with orderm.
In 1976, Shelp and Faudree in [9] stated the following problem.

PROBLEM 1.1 ([9]). Find the range of integersn and m such thatR(Cn, Km) = (n −
1)(m− 1)+ 1. In particular, does the equality hold forn ≥ m?

For this problem, the following results are known:

R(C4, K4) = 10 (see [2])
R(C4, K5) = 14 (see [3])
R(C5, K4) = 13, R(C5, K5) = 17 (see [5, 6])
R(Cn, K3) = 2n− 1 (n > 3) (see [4, 7]).

In [10], we proved thatR(Cn, K4) = 3(n− 1) + 1 (n ≥ 4). In this paper, we will prove that
R(Cn, K5) = 4(n− 1)+ 1 (n = 6,7).

The following notations will be used in this paper. IfG is a graph, the vertex set (resp. edge
set) ofG is denoted byV(G) (resp.E(G)). Forx ∈ V(G), N(x) = {v ∈ V(G)|xv ∈ E(G)}.
If V ⊂ V(G), thenN(V) =

⋃
x∈V N(x).

A cycle withn verticesx1, x2, . . . , xn will be denoted by

Cn = Cn(x1, x2, . . . , xn)

where the subscripti in xi will be taken modulo the cycle lengthn.
For n,m ≥ 1, a(Cn, Km)-graph is a graph without cycles of lengthn or independent sets

of orderm, a(Cn+1, Km)-graphG is called a

(Cn+1, Km;Cn(x1, x2, . . . , xn), Im−1(y1, y2, . . . , ym−1))-graph

if Cn(x1, x2, . . . , xn) is a subgraph ofG, andIm−1(y1, y2, . . . , ym−1) is an independent set of
orderm− 1 in G, where

Im−1(y1, y2, . . . , ym−1) = {y1, y2, . . . , ym−1} ⊂ V(G)− {x1, x2, . . . , xn}.
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2. LEMMAS

In this section, we assume thatG is a

(Cn+1, Km;Cn(1,2, . . . ,n), Im−1(x1, x2, . . . , xm−1))-graph.

For convenience, we denoteIm−1(x1, x2, . . . , xm−1) by Im−1, and assume thatn ≥ m.

LEMMA 2.1. (1) N(i ) ∩ Im−1 6= ∅ for i ∈ {1,2, . . . ,n};
(2) |N(x) ∩ {i, i + 1}| ≤ 1 for x ∈ Im−1.

PROOF. It is clear that (1) is true. (2) is same as Lemma 1.3(a) of [10]. 2

LEMMA 2.2 (CF. [10], L EMMA 1.3(C)). Let x ∈ Im−1. If {i, j } ⊂ N(x)(i 6= j, i 6= j ±
1(mod n)), then

|N(y) ∩ {i + 1, j + 2}| ≤ 1, |N(y) ∩ { j − 1, i − 2}| ≤ 1

for y ∈ Im−1− {x}.

LEMMA 2.3. Let x ∈ Im−1. If {i, j } ⊂ N(x)(i 6= j, i 6= j ± 1(modn)), then:
(1) i − 1 6∈ N( j − 1), i + 1 6∈ N( j + 1);
(2) there is a z1 ∈ N(i − 1) ∩ (Im−1 − {x}), and a z2 ∈ N( j − 1) ∩ (Im−1 − {x}) such

that z1 6= z2;
(3) there is a z1 ∈ N(i + 1) ∩ (Im−1 − {x}), and a z2 ∈ N( j + 1) ∩ (Im−1 − {x}) such

that z1 6= z2.

PROOF. (1) see [10, Lemma 1.3(b)].
(2) If N(i −1) ∩ Im−1 6= N( j −1) ∩ Im−1, the conclusion of (2) is clear by Lemma2.1(2).

Now, we assume thatN(i −1) ∩ Im−1 = N( j −1) ∩ Im−1, then we have the following
two cases.

Case a.|N(i − 1) ∩ Im−1| ≥ 2.

By Lemma2.1(2), sincei ∈ N(x), we obtainN(i −1) ∩ Im−1 = N(i −1) ∩ (Im−1−{x}).
Let {z1, z2} ⊂ N(i − 1) ∩ Im−1 with z1 6= z2, thenz1 andz2 satisfy the conclusion of (2).

Case b.|N(i − 1) ∩ Im−1| = 1.

By (1), we have that{i − 1, j − 1} ∪ {Im−1 − N(i − 1)} is an independent set of orderm
in G, a contradiction. Therefore|N(i − 1) ∩ Im−1| 6= 1.

By Cases a and b, (2) is true. Similarly, (3) is true. 2

LEMMA 2.4. Let x ∈ Im−1. If n ≥ 2m−3 and|N(x) ∩ {1,2, . . . ,n}| = k, then k≤ m−3.

PROOF. For convenience, we assume thatN(x) ∩ {1,2, . . . ,n} = {i1, i2, . . . , ik}. By
Lemma2.3, we know that{i1+ 1, i2+ 1, . . . , ik + 1} is an independent set. Now we have

|N({i1+ 1, i2+ 1, . . . , ik + 1}) ∩ Im−1| ≥ k,

otherwise

(Im−1− N({i1+ 1, i2+ 1, . . . , ik + 1})) ∪ {i1+ 1, i2+ 1, . . . , ik + 1}
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is an independent set with order≥ m, a contradiction.
Sincen ≥ 2m− 3, we may assume thatik + 2 6= i1(modn). Now, by Lemma2.2, we have

N({i1+ 1, i2+ 1, . . . , ik + 1}) ∩ Im−1 ∩ N(ik + 2) = ∅.

SinceN(x) ∩ {1,2, . . . ,n} = {i1, i2, . . . ik}, we have

m− 1≥ |(N({i1+ 1, i2+ 1, . . . , ik + 1}) ∩ Im−1) ∪ N(ik + 2) ∪ {x}| ≥ k+ 2,

i.e.,k ≤ m− 3. 2

The following theorem can be found in [2].

THEOREM 2.5 ([2]). Let F1 and F2 be two graphs with no isolated vertices. Let c be the
number of vertices in a largest connected component of F1, and letχ be the chromatic number
of F2. Then the following lower bound holds:

R(F1, F2) ≥ (c− 1)(χ − 1)+ 1.

THEOREM 2.6 ([10]). R(Cn, K4) = 3(n− 1)+ 1 (n ≥ 4).

3. R(C6, K5) = 21

In this section we assume thatG is a graph with order 21. In the following, we will prove
that G either contains a cycle of length 6 or contains an independent set of order 5. For
convenience, we suppose to the contrary thatG is a (C6, K5)-graph. Now, byR(C5, K5) =

17, we may assume thatC5(1,2,3,4,5) is a cycle ofG. Since|V(G)− {1,2,3,4,5}| = 16
and by Theorem2.6, we may assume thatI4(x1, x2, x3, x4) is an independent set ofG and
I4(x1, x2, x3, x4) ⊂ V(G) − {1,2,3,4,5}, i.e., G is a (C6, K5;C(1,2, . . . ,5), I4(x1, . . . ,

x4))-graph.
It is cleard(v) ≥ 5 for v ∈ V(G).

LEMMA 3.1. If {1,4} ⊂ N(x1), 2 ∈ N(x2),5 ∈ N(x3), then:
(1) {1,3,5} ∩ N(x2) = ∅;
(2) {1,2,3,4} ∩ N(x3) = ∅;
(3) {2,4,5} ∩ N(x4) = ∅ and3 ∈ N(x4);
(4) {2,3,5} ∩ N(x1) = ∅.

PROOF. (1) 5 6∈ N(x2), otherwiseC6(x2,2,1, x1,4,5) is a cycle ofG, a contradiction. By
2 ∈ N(x2) and Lemma2.1, we have{1,3}∩N(x2) = ∅. Thus we obtain{1,3,5}∩N(x2) = ∅.

(2) 2 6∈ N(x3), otherwiseC6(x3,2,1, x1,4,5)) is a cycle ofG, a contradiction. By{1,4} ⊂
N(x1), 5 ∈ N(x3) and Lemma2.2, we have 3/∈N(x3). Thus we obtain{1,2,3,4}∩N(x3)=∅.

(3) By (1) and (2), we know that 36∈ N(x2, x3); by 4 ∈ N(x1), we have 36∈ N(x1). Thus
we obtain 3∈ N(x4). Using the same methodology as (1), we have{2,4,5} ∩ N(x4) = ∅.

(4) By {1,4} ⊂ N(x1) and Lemma2.1, we have{2,3,5} ∩ N(x1) = ∅. 2

LEMMA 3.2. If 1 ∈ N(x1), 2 ∈ N(x2), 5 ∈ N(x3), then4 6∈ N(x1).

PROOF. Suppose that 4∈ N(x1). By Lemma3.1, we have 3∈ N(x4).
Sinced(x1) ≥ 5 andN(x1) ∩ (I4 ∪ {1,2,3,4,5}) = {1,4} by Lemma3.1.
Thus there are two vertices inV(G)− I4 ∪ {1,2,3,4,5}, sayz1 andz2, such thatz1, z2 ∈

N(x1).

Claim 1. {z1, z2} ∩ N(x2, x4) = ∅.
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z1 6∈ N(x2), otherwiseC6(z1, x1,4,3,2, x2) is a cycle ofG, a contradiction;
z1 6∈ N(x4), otherwiseC6(z1, x1,1,2,3, x4) is a cycle ofG, a contradiction.

Thus we obtainz1 6∈ N(x2, x4). Similarly, z2 6∈ N(x2, x4). Thus{z1, z2} ∩ N(x2, x4) = ∅.

Claim 2. 1∈ N(x4),4 ∈ N(x2).

Suppose that 16∈ N(x4).
z1 6∈ N(1), otherwiseC6(z1, x1,4,3,2,1) is a cycle ofG, a contradiction. By Claim 1,

we havez1 6∈ N(x2, x4), by Lemma3.1, we have 16∈ N(x2, x3). Thus{1, x2, x3, x4} and
{z1,1, x2, x4} are independent sets ofG. This implies thatz1 ∈ N(x3), otherwise{z1,1, x2,

x3, x4} is an independent set ofG, a contradiction. Similarly, we havez2 ∈ N(x3) and
z2 6∈ N(1). Now, we havez1 6∈ N(z2), otherwiseC6(z1, x1,1,5, x3, z2) is a cycle ofG,
a contradiction. Hence{z1, z2,1, x2, x4} is an independent set ofG, a contradiction. Thus
1 ∈ N(x4). Similarly, 4∈ N(x2)

By Claim 2, we find thatC6(x2,2,1, x4,3,4) is a cycle ofG, a contradiction. Hence 46∈
N(x1). 2

LEMMA 3.3. If 1 ∈ N(x1), then N(x1) ∩ {2,3,4,5} = ∅.

PROOF. It is clear that{2,5} ∩ N(x1) = ∅. If 4 ∈ N(x1), by Lemma2.3, we may assume
that 2∈ N(x2),5 ∈ N(x3). Now, by Lemma3.2, we have 46∈ N(x1), a contradiction. Thus
4 6∈ N(x1). Similarly, 3 6∈ N(x3). Now, we haveN(x1) ∩ {2,3,4,5} = ∅. 2

THEOREM 3.4. R(C6, K5) = 21.

PROOF. By Lemma 3.3, the number of edges joiningI4 and {1,2,3,4,5} is ≤ 4, by
Lemma2.1, the number of edges joining{1,2,3,4,5} and I4 is≥ 5, a contradiction. ThusG
either contains a cycle of length 6 or an independent set of order 5, i.e.,R(C6, K5) ≤ 21. On
the other hand, by Theorem2.5, we haveR(C6, K5) ≥ 21. ThusR(C6, K5) = 21. 2

4. R(C7, K5) = 25

In this section we assume thatG is a graph with order 25. For convenience, we suppose that
G is a (C7, K5)-graph. Now, byR(C6, K5) = 21, we may assume thatC6(1,2,3,4,5,6) is
a cycle ofG. Since|V(G) − {1,2,3,4,5,6}| = 19 and Theorem2.6, we may assume that
I4(x1, x2, x3, x4) is an independent set ofG and I4(x1, x2, x3, x4) ⊂ V(G) − {1,2,3,4,5},
i.e.,G is a

(C7, K5;C(1,2, . . . ,6), I4(x1, . . . , x4))-graph.

It is clear,d(v) ≥ 6, otherwiseV(G)\(I4 ∪ {1,2, . . . ,6}) contains eitherC7 or a 4-element
independent set, a contradiction.

LEMMA 4.1. |{1,2,3,4,5,6} ∩ N(xi )| ≤ 2 for i = 1,2,3,4.

PROOF. Suppose to the contrary that there is a vertex inI4, sayx1, such that|{1,2,3,4,5,
6} ∩ N(x1)| ≥ 3. It is clear we may assume that{1,3,5} ⊂ N(x1). Furthermore, by
Lemma2.3, we can assume that 2∈ N(x2),6 ∈ N(x3).

Claim 1. 4 6∈ N(x2, x3), 4 ∈ N(x4).

If 4 ∈ N(x3), then 3 6∈ N(5) by Lemma2.3. Furthermore, we have 16∈ N(3), otherwise
C7(x1,1,3,4, x3,6,5) is a cycle ofG, a contradiction;{1,3} ∩ N(x2) = ∅ since{1,3} ⊂
N(x1); 5 6∈ N(x2) since 2∈ N(x2) and{1,3} ⊂ N(x1).
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Thus{1,3,5, x2, x3} is an independent set ofG, a contradiction.
Therefore we obtain 46∈ N(x3). Similarly, 4 6∈ N(x2). Now, we have 4∈ N(x4).

Claim 2. G({1,3,5}) = K3, {2,4,6} is an independent set ofG.

1 ∈ N(5), otherwise by Lemma2.2 {x2, x3, x4,1,5} is an independent set ofG, a contra-
diction. Similarly 1∈ N(3), 3 ∈ N(5), i.e.,G({1,3,5}) = K3.
{2,4,6} is an independent set ofG is trivial by Lemma2.3.
Note thatN(x1)∩ {1,2, . . . ,6} = {1,3,5} andd(x1) ≥ 6, Thus(V(G)−({1,2,3,4,5,6}∪

I4))∩ N(x1) 6= ∅. Let t1 be a vertex in(V(G)−({1,2,3,4,5,6} ∪ I4))∩ N(x1), then we have
t1 6∈ N(x3), otherwiseC7(t1, x1,1,3,5,6, x3) is a cycle ofG, a contradiction. Similarlyt1 6∈
N(x2, x4). It is clear, 16∈ N(x2, x3, x4) by Lemmas2.1and2.3, i.e.,{x2, x3, x4,1} is an inde-
pendent set ofG, thus we obtaint1 ∈ N(1). But, in this case, we haveC7(t1, x1,3,4,5,6,1)
is a cycle ofG, a contradiction.

Now, the lemma is true. 2

LEMMA 4.2. If {1,5} ⊂ N(x1), 2 ∈ N(x2),6 ∈ N(x3), then4 6∈ N(x3).

PROOF. Suppose to the contrary that 4∈ N(x3). Now we have:

2 6∈ N(4), otherwiseC7(x1,1,2,4, x3,6,5) is a cycle ofG, a contradiction;
4 6∈ N(6) by Lemma2.3and{1,5} ⊂ N(x1).

Thus we obtain{2,4,6, x1} as an independent set ofG. And by Lemma4.1, we have 36∈
N(x1), 3 6∈ N(x3). Note that 36∈ N(x2) by 2 ∈ N(x2). Hence, we have 3∈ N(x4). By this
we find that 2,4 6∈ N(x4) and, by Lemma2.2, 6 6∈ N(x4). Therefore{2,4,6, x1, x4} is an
independent set ofG, a contradiction. Thus, we obtain the lemma. 2

LEMMA 4.3. If 1 ∈ N(x1), then3,5 6∈ N(x1).

PROOF. Suppose to the contrary that 5∈ N(x1). Now, by Lemma2.3, we may assume
that 2 ∈ N(x2) and 6∈ N(x3). Then we have 36∈ N(x1) by Lemma4.1; 3 6∈ N(x3) by
Lemma2.2. It is clear that 36∈ N(x2). Thus we obtain 3∈ N(x4). Furthermore, we have
4 6∈ N(x3) by Lemma4.2, 4 6∈ N(x1, x4). Thus we obtain 4∈ N(x2).

Claim 1. 1 ∈ N(5),2 ∈ N(4); {1,2, . . . ,6} ∩ N(x1) = {1,5}, {1,2, . . . ,6} ∩ N(x2) =

{2,4}, {1,2, . . . ,6} ∩ N(x3) = {6} and{1,2, . . . ,6} ∩ N(x4) = {3}.

Since 6∈ N(x3), we have 1,5 6∈ N(x3). By Lemma2.2 and {1,5} ⊂ N(x1), we have
3 6∈ N(x3). By Lemma4.2, we have 2,4 6∈ N(x3). Thus {1,2, . . . ,6} ∩ N(x3) = {6}.
Similarly, {1,2, . . . ,6} ∩ N(x4) = {3}.

Now, if 1 6∈ N(5), we have{1,5, x2, x3, x4} as an independent set ofG, a contradiction.
Thus 1∈ N(5). Similarly, 2∈ N(4).

It is clear that{1,2, . . . ,6} ∩ N(x1) = {1,5}. Similarly, {1,2, . . . ,6} ∩ N(x2) = {2,4}.
By Claim 1, N(x1) ∩ {1,2, . . . ,6} = {1,3,5}. Sinced(x1) ≥ 6, thus|(V(G) − ({1,2,3,

4,5,6} ∪ I4)) ∩ N(x1)| ≥ 3.
Now, we may assumez1, z2 ∈ (V(G)− ({1,2,3,4,5,6} ∪ I4)) ∩ N(x1). Thus:

z1 6∈ N(1), otherwiseC7(z1, x1,5,4,3,2,1) is a cycle ofG, a contradiction;
z1 6∈ N(x2), otherwiseC7(z1, x1,5,4,3,2, x2) is a cycle ofG, a contradiction;
z1 6∈ N(x4), otherwiseC7(z1, x1,1,5,4,3, x4) is a cycle ofG, a contradiction;
z1 ∈ N(x3), otherwise{z1,1, x2, x4, x3} is an independent set ofG, a contradiction.
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Using this we obtainz1 6∈ N(1, x2, x4) andz1 ∈ N(x3). Similarly, z2 6∈ N(1, x2, x4) and
z2 ∈ N(x3). If z1 6∈ N(z2), then{z1, z2,1, x2, x4} is an independent set ofG, a contradiction.
Thusz1 ∈ N(z2), and then we haveC7(z1, x1,1,5,6, x3, z2) is a cycle ofG, a contradiction.

Therefore 56∈ N(x1). Similarly, 3 6∈ N(x1). 2

THEOREM 4.4. R(C7, K5) = 25.

PROOF. By Lemma2.1, we know that there is a vertex inI4, sayx1, such that|{1,2, . . . ,6}
∩ N(x1)| ≥ 2. Now, by Lemmas2.1and4.3, we have{1,2, . . . ,6} ∩ N(x1) = {1,4}.

Using Lemmas2.1and4.1, we may assume that|{2,3,5,6} ∩ N(x2)| ≥ 2, without loss of
generality, 6∈ N(x2). Now we have{1,2, . . . ,6} ∩ N(x2) = {3,6} by Lemma4.3.

By Lemma2.3and{1,4} ⊂ N(x1), we have|N(6,3) ∩ I4| ≥ 2. Now, we may assume that
x3 ∈ N(6,3). Thus by Lemma4.3we haveN(x3) ∩ {1,2, . . . ,6} ⊂ {6,3}.

By the above, we obtain 2,5 ∈ N(x4). And 1 6∈ N(4) by Lemma2.3. Thus{1,4, x2, x3, x4}

is an independent set ofG, a contradiction.
Therefore we obtainR(C7, K5) ≤ 25. On the other hand, by Theorem2.5, we haveR(C7,

K5) ≥ 25. ThusR(C7, K5) = 25. 2

NOTE. In [1], we also proved thatR(Cn, K5) = 4(n− 1)+ 1 (n ≥ 5).
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