$$
R\left(C_{6}, K_{5}\right)=21 \text { and } R\left(C_{7}, K_{5}\right)=25
$$

Yang Jian Sheng, Huang Yi Ru and Zhang Ke Min

Abstract

The Ramsey number $R\left(C_{n}, K_{m}\right)$ is the smallest integer p such that any graph G on p vertices either contains a cycle C_{n} with length n or contains an independent set with order m. In this paper we prove that $R\left(C_{n}, K_{5}\right)=4(n-1)+1(n=6,7)$. (C) 2001 Academic Press

1. Introduction

We shall only consider graphs without multiple edges or loops.
The Ramsey number $R\left(C_{n}, K_{m}\right)$ is the smallest integer p such that any graph G on p vertices either contains a cycle C_{n} with length n or contains an independent set with order m. In 1976, Shelp and Faudree in [9] stated the following problem.

Problem 1.1 ([9]). Find the range of integers n and m such that $R\left(C_{n}, K_{m}\right)=(n-$ $1)(m-1)+1$. In particular, does the equality hold for $n \geq m$?

For this problem, the following results are known:

$$
\begin{aligned}
& R\left(C_{4}, K_{4}\right)=10(\text { see }[2]) \\
& R\left(C_{4}, K_{5}\right)=14(\text { see }[3]) \\
& R\left(C_{5}, K_{4}\right)=13, R\left(C_{5}, K_{5}\right)=17(\text { see }[5,6]) \\
& R\left(C_{n}, K_{3}\right)=2 n-1(n>3)(\text { see }[4,7])
\end{aligned}
$$

In [10], we proved that $R\left(C_{n}, K_{4}\right)=3(n-1)+1(n \geq 4)$. In this paper, we will prove that $R\left(C_{n}, K_{5}\right)=4(n-1)+1(n=6,7)$.
The following notations will be used in this paper. If G is a graph, the vertex set (resp. edge set) of G is denoted by $V(G)(\operatorname{resp} . E(G))$. For $x \in V(G), N(x)=\{v \in V(G) \mid x v \in E(G)\}$. If $V \subset V(G)$, then $N(V)=\bigcup_{x \in V} N(x)$.

A cycle with n vertices $x_{1}, x_{2}, \ldots, x_{n}$ will be denoted by

$$
C_{n}=C_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where the subscript i in x_{i} will be taken modulo the cycle length n.
For $n, m \geq 1$, a $\left(C_{n}, K_{m}\right)$-graph is a graph without cycles of length n or independent sets of order m, a $\left(C_{n+1}, K_{m}\right)$-graph G is called a

$$
\left(C_{n+1}, K_{m} ; C_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right), I_{m-1}\left(y_{1}, y_{2}, \ldots, y_{m-1}\right)\right) \text {-graph }
$$

if $C_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a subgraph of G, and $I_{m-1}\left(y_{1}, y_{2}, \ldots, y_{m-1}\right)$ is an independent set of order $m-1$ in G, where

$$
I_{m-1}\left(y_{1}, y_{2}, \ldots, y_{m-1}\right)=\left\{y_{1}, y_{2}, \ldots, y_{m-1}\right\} \subset V(G)-\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

2. LEMMAS

In this section, we assume that G is a

$$
\left(C_{n+1}, K_{m} ; C_{n}(1,2, \ldots, n), I_{m-1}\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)\right) \text {-graph. }
$$

For convenience, we denote $I_{m-1}\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)$ by I_{m-1}, and assume that $n \geq m$.
Lemma 2.1. (1) $N(i) \cap I_{m-1} \neq \emptyset$ for $i \in\{1,2, \ldots, n\}$;
(2) $|N(x) \cap\{i, i+1\}| \leq 1$ for $x \in I_{m-1}$.

Proof. It is clear that (1) is true. (2) is same as Lemma 1.3(a) of [10].
Lemma 2.2 (CF. [10], Lemma 1.3(C)). Let $x \in I_{m-1}$. If $\{i, j\} \subset N(x)(i \neq j, i \neq j \pm$ $1(\bmod n))$, then

$$
|N(y) \cap\{i+1, j+2\}| \leq 1,|N(y) \cap\{j-1, i-2\}| \leq 1
$$

for $y \in I_{m-1}-\{x\}$.
Lemma 2.3. Let $x \in I_{m-1}$. If $\{i, j\} \subset N(x)(i \neq j, i \neq j \pm 1(\bmod n))$, then:
(1) $i-1 \notin N(j-1), i+1 \notin N(j+1)$;
(2) there is a $z_{1} \in N(i-1) \cap\left(I_{m-1}-\{x\}\right)$, and $a z_{2} \in N(j-1) \cap\left(I_{m-1}-\{x\}\right)$ such that $z_{1} \neq z_{2}$;
(3) there is a $z_{1} \in N(i+1) \cap\left(I_{m-1}-\{x\}\right)$, and a $z_{2} \in N(j+1) \cap\left(I_{m-1}-\{x\}\right)$ such that $z_{1} \neq z_{2}$.

Proof. (1) see [10, Lemma 1.3(b)].
(2) If $N(i-1) \cap I_{m-1} \neq N(j-1) \cap I_{m-1}$, the conclusion of (2) is clear by Lemma 2.1(2). Now, we assume that $N(i-1) \cap I_{m-1}=N(j-1) \cap I_{m-1}$, then we have the following two cases.

Case a. $\left|N(i-1) \cap I_{m-1}\right| \geq 2$.
By Lemma 2.1(2), since $i \in N(x)$, we obtain $N(i-1) \cap I_{m-1}=N(i-1) \cap\left(I_{m-1}-\{x\}\right)$. Let $\left\{z_{1}, z_{2}\right\} \subset N(i-1) \cap I_{m-1}$ with $z_{1} \neq z_{2}$, then z_{1} and z_{2} satisfy the conclusion of (2).

Case b. $\left|N(i-1) \cap I_{m-1}\right|=1$.
By (1), we have that $\{i-1, j-1\} \cup\left\{I_{m-1}-N(i-1)\right\}$ is an independent set of order m in G, a contradiction. Therefore $\left|N(i-1) \cap I_{m-1}\right| \neq 1$.
By Cases a and b, (2) is true. Similarly, (3) is true.
Lemma 2.4. Let $x \in I_{m-1}$. If $n \geq 2 m-3$ and $|N(x) \cap\{1,2, \ldots, n\}|=k$, then $k \leq m-3$.
Proof. For convenience, we assume that $N(x) \cap\{1,2, \ldots, n\}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. By Lemma 2.3, we know that $\left\{i_{1}+1, i_{2}+1, \ldots, i_{k}+1\right\}$ is an independent set. Now we have

$$
\left|N\left(\left\{i_{1}+1, i_{2}+1, \ldots, i_{k}+1\right\}\right) \cap I_{m-1}\right| \geq k,
$$

otherwise

$$
\left(I_{m-1}-N\left(\left\{i_{1}+1, i_{2}+1, \ldots, i_{k}+1\right\}\right)\right) \cup\left\{i_{1}+1, i_{2}+1, \ldots, i_{k}+1\right\}
$$

$$
R\left(C_{6}, K_{5}\right)=21 \text { and } R\left(C_{7}, K_{5}\right)=25
$$

is an independent set with order $\geq m$, a contradiction.
Since $n \geq 2 m-3$, we may assume that $i_{k}+2 \neq i_{1}(\bmod n)$. Now, by Lemma 2.2, we have

$$
N\left(\left\{i_{1}+1, i_{2}+1, \ldots, i_{k}+1\right\}\right) \cap I_{m-1} \cap N\left(i_{k}+2\right)=\emptyset .
$$

Since $N(x) \cap\{1,2, \ldots, n\}=\left\{i_{1}, i_{2}, \ldots i_{k}\right\}$, we have
$m-1 \geq\left|\left(N\left(\left\{i_{1}+1, i_{2}+1, \ldots, i_{k}+1\right\}\right) \cap I_{m-1}\right) \cup N\left(i_{k}+2\right) \cup\{x\}\right| \geq k+2$,
i.e., $k \leq m-3$.

The following theorem can be found in [2].
Theorem 2.5 ([2]). Let F_{1} and F_{2} be two graphs with no isolated vertices. Let c be the number of vertices in a largest connected component of F_{1}, and let χ be the chromatic number of F_{2}. Then the following lower bound holds:

$$
R\left(F_{1}, F_{2}\right) \geq(c-1)(\chi-1)+1 .
$$

THEOREM $2.6([10]) . R\left(C_{n}, K_{4}\right)=3(n-1)+1(n \geq 4)$.

$$
\text { 3. } R\left(C_{6}, K_{5}\right)=21
$$

In this section we assume that G is a graph with order 21. In the following, we will prove that G either contains a cycle of length 6 or contains an independent set of order 5 . For convenience, we suppose to the contrary that G is a (C_{6}, K_{5})-graph. Now, by $R\left(C_{5}, K_{5}\right)=$ 17, we may assume that $C_{5}(1,2,3,4,5)$ is a cycle of G. Since $|V(G)-\{1,2,3,4,5\}|=16$ and by Theorem 2.6, we may assume that $I_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is an independent set of G and $I_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \subset V(G)-\{1,2,3,4,5\}$, i.e., G is a $\left(C_{6}, K_{5} ; C(1,2, \ldots, 5), I_{4}\left(x_{1}, \ldots\right.\right.$, $\left.x_{4}\right)$)-graph.
It is clear $d(v) \geq 5$ for $v \in V(G)$.
Lemma 3.1. If $\{1,4\} \subset N\left(x_{1}\right), 2 \in N\left(x_{2}\right), 5 \in N\left(x_{3}\right)$, then:
(1) $\{1,3,5\} \cap N\left(x_{2}\right)=\emptyset$;
(2) $\{1,2,3,4\} \cap N\left(x_{3}\right)=\emptyset$;
(3) $\{2,4,5\} \cap N\left(x_{4}\right)=\emptyset$ and $3 \in N\left(x_{4}\right)$;
(4) $\{2,3,5\} \cap N\left(x_{1}\right)=\emptyset$.

Proof. (1) $5 \notin N\left(x_{2}\right)$, otherwise $C_{6}\left(x_{2}, 2,1, x_{1}, 4,5\right)$ is a cycle of G, a contradiction. By $2 \in N\left(x_{2}\right)$ and Lemma 2.1, we have $\{1,3\} \cap N\left(x_{2}\right)=\emptyset$. Thus we obtain $\{1,3,5\} \cap N\left(x_{2}\right)=\emptyset$.
(2) $2 \notin N\left(x_{3}\right)$, otherwise $\left.C_{6}\left(x_{3}, 2,1, x_{1}, 4,5\right)\right)$ is a cycle of G, a contradiction. By $\{1,4\} \subset$ $N\left(x_{1}\right), 5 \in N\left(x_{3}\right)$ and Lemma 2.2, we have $3 \notin N\left(x_{3}\right)$. Thus we obtain $\{1,2,3,4\} \cap N\left(x_{3}\right)=\emptyset$.
(3) By (1) and (2), we know that $3 \notin N\left(x_{2}, x_{3}\right)$; by $4 \in N\left(x_{1}\right)$, we have $3 \notin N\left(x_{1}\right)$. Thus we obtain $3 \in N\left(x_{4}\right)$. Using the same methodology as (1), we have $\{2,4,5\} \cap N\left(x_{4}\right)=\emptyset$.
(4) By $\{1,4\} \subset N\left(x_{1}\right)$ and Lemma 2.1, we have $\{2,3,5\} \cap N\left(x_{1}\right)=\emptyset$.

Lemma 3.2. If $1 \in N\left(x_{1}\right), 2 \in N\left(x_{2}\right), 5 \in N\left(x_{3}\right)$, then $4 \notin N\left(x_{1}\right)$.
Proof. Suppose that $4 \in N\left(x_{1}\right)$. By Lemma 3.1, we have $3 \in N\left(x_{4}\right)$.
Since $d\left(x_{1}\right) \geq 5$ and $N\left(x_{1}\right) \cap\left(I_{4} \cup\{1,2,3,4,5\}\right)=\{1,4\}$ by Lemma 3.1.
Thus there are two vertices in $V(G)-I_{4} \cup\{1,2,3,4,5\}$, say z_{1} and z_{2}, such that $z_{1}, z_{2} \in$ $N\left(x_{1}\right)$.
Claim 1. $\left\{z_{1}, z_{2}\right\} \cap N\left(x_{2}, x_{4}\right)=\emptyset$.
$z_{1} \notin N\left(x_{2}\right)$, otherwise $C_{6}\left(z_{1}, x_{1}, 4,3,2, x_{2}\right)$ is a cycle of G, a contradiction;
$z_{1} \notin N\left(x_{4}\right)$, otherwise $C_{6}\left(z_{1}, x_{1}, 1,2,3, x_{4}\right)$ is a cycle of G, a contradiction.
Thus we obtain $z_{1} \notin N\left(x_{2}, x_{4}\right)$. Similarly, $z_{2} \notin N\left(x_{2}, x_{4}\right)$. Thus $\left\{z_{1}, z_{2}\right\} \cap N\left(x_{2}, x_{4}\right)=\emptyset$.
Claim 2. $1 \in N\left(x_{4}\right), 4 \in N\left(x_{2}\right)$.
Suppose that $1 \notin N\left(x_{4}\right)$.
$z_{1} \notin N(1)$, otherwise $C_{6}\left(z_{1}, x_{1}, 4,3,2,1\right)$ is a cycle of G, a contradiction. By Claim 1, we have $z_{1} \notin N\left(x_{2}, x_{4}\right)$, by Lemma 3.1, we have $1 \notin N\left(x_{2}, x_{3}\right)$. Thus $\left\{1, x_{2}, x_{3}, x_{4}\right\}$ and $\left\{z_{1}, 1, x_{2}, x_{4}\right\}$ are independent sets of G. This implies that $z_{1} \in N\left(x_{3}\right)$, otherwise $\left\{z_{1}, 1, x_{2}\right.$, $\left.x_{3}, x_{4}\right\}$ is an independent set of G, a contradiction. Similarly, we have $z_{2} \in N\left(x_{3}\right)$ and $z_{2} \notin N(1)$. Now, we have $z_{1} \notin N\left(z_{2}\right)$, otherwise $C_{6}\left(z_{1}, x_{1}, 1,5, x_{3}, z_{2}\right)$ is a cycle of G, a contradiction. Hence $\left\{z_{1}, z_{2}, 1, x_{2}, x_{4}\right\}$ is an independent set of G, a contradiction. Thus $1 \in N\left(x_{4}\right)$. Similarly, $4 \in N\left(x_{2}\right)$
By Claim 2, we find that $C_{6}\left(x_{2}, 2,1, x_{4}, 3,4\right)$ is a cycle of G, a contradiction. Hence $4 \notin$ $N\left(x_{1}\right)$.

Lemma 3.3. If $1 \in N\left(x_{1}\right)$, then $N\left(x_{1}\right) \cap\{2,3,4,5\}=\emptyset$.
Proof. It is clear that $\{2,5\} \cap N\left(x_{1}\right)=\emptyset$. If $4 \in N\left(x_{1}\right)$, by Lemma 2.3, we may assume that $2 \in N\left(x_{2}\right), 5 \in N\left(x_{3}\right)$. Now, by Lemma 3.2, we have $4 \notin N\left(x_{1}\right)$, a contradiction. Thus $4 \notin N\left(x_{1}\right)$. Similarly, $3 \notin N\left(x_{3}\right)$. Now, we have $N\left(x_{1}\right) \cap\{2,3,4,5\}=\emptyset$.

Theorem 3.4. $R\left(C_{6}, K_{5}\right)=21$.
Proof. By Lemma 3.3, the number of edges joining I_{4} and $\{1,2,3,4,5\}$ is ≤ 4, by Lemma 2.1, the number of edges joining $\{1,2,3,4,5\}$ and I_{4} is ≥ 5, a contradiction. Thus G either contains a cycle of length 6 or an independent set of order 5, i.e., $R\left(C_{6}, K_{5}\right) \leq 21$. On the other hand, by Theorem 2.5, we have $R\left(C_{6}, K_{5}\right) \geq 21$. Thus $R\left(C_{6}, K_{5}\right)=21$.

$$
\text { 4. } \quad R\left(C_{7}, K_{5}\right)=25
$$

In this section we assume that G is a graph with order 25 . For convenience, we suppose that G is a $\left(C_{7}, K_{5}\right)$-graph. Now, by $R\left(C_{6}, K_{5}\right)=21$, we may assume that $C_{6}(1,2,3,4,5,6)$ is a cycle of G. Since $|V(G)-\{1,2,3,4,5,6\}|=19$ and Theorem 2.6 , we may assume that $I_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is an independent set of G and $I_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \subset V(G)-\{1,2,3,4,5\}$, i.e., G is a

$$
\left(C_{7}, K_{5} ; C(1,2, \ldots, 6), I_{4}\left(x_{1}, \ldots, x_{4}\right)\right) \text {-graph. }
$$

It is clear, $d(v) \geq 6$, otherwise $V(G) \backslash\left(I_{4} \cup\{1,2, \ldots, 6\}\right)$ contains either C_{7} or a 4-element independent set, a contradiction.

Lemma 4.1. $\left|\{1,2,3,4,5,6\} \cap N\left(x_{i}\right)\right| \leq 2$ for $i=1,2,3,4$.
Proof. Suppose to the contrary that there is a vertex in I_{4}, say x_{1}, such that $\mid\{1,2,3,4,5$, $6\} \cap N\left(x_{1}\right) \mid \geq 3$. It is clear we may assume that $\{1,3,5\} \subset N\left(x_{1}\right)$. Furthermore, by Lemma 2.3, we can assume that $2 \in N\left(x_{2}\right), 6 \in N\left(x_{3}\right)$.

Claim 1. $4 \notin N\left(x_{2}, x_{3}\right), 4 \in N\left(x_{4}\right)$.
If $4 \in N\left(x_{3}\right)$, then $3 \notin N(5)$ by Lemma 2.3. Furthermore, we have $1 \notin N(3)$, otherwise $C_{7}\left(x_{1}, 1,3,4, x_{3}, 6,5\right)$ is a cycle of G, a contradiction; $\{1,3\} \cap N\left(x_{2}\right)=\emptyset$ since $\{1,3\} \subset$ $N\left(x_{1}\right) ; 5 \notin N\left(x_{2}\right)$ since $2 \in N\left(x_{2}\right)$ and $\{1,3\} \subset N\left(x_{1}\right)$.

$$
R\left(C_{6}, K_{5}\right)=21 \text { and } R\left(C_{7}, K_{5}\right)=25
$$

Thus $\left\{1,3,5, x_{2}, x_{3}\right\}$ is an independent set of G, a contradiction.
Therefore we obtain $4 \notin N\left(x_{3}\right)$. Similarly, $4 \notin N\left(x_{2}\right)$. Now, we have $4 \in N\left(x_{4}\right)$.
Claim 2. $G(\{1,3,5\})=K_{3},\{2,4,6\}$ is an independent set of G.
$1 \in N(5)$, otherwise by Lemma $2.2\left\{x_{2}, x_{3}, x_{4}, 1,5\right\}$ is an independent set of G, a contradiction. Similarly $1 \in N(3), 3 \in N(5)$, i.e., $G(\{1,3,5\})=K_{3}$.
$\{2,4,6\}$ is an independent set of G is trivial by Lemma 2.3.
Note that $N\left(x_{1}\right) \cap\{1,2, \ldots, 6\}=\{1,3,5\}$ and $d\left(x_{1}\right) \geq 6$, Thus $(V(G)-(\{1,2,3,4,5,6\} \cup$ $\left.\left.I_{4}\right)\right) \cap N\left(x_{1}\right) \neq \emptyset$. Let t_{1} be a vertex in $\left(V(G)-\left(\{1,2,3,4,5,6\} \cup I_{4}\right)\right) \cap N\left(x_{1}\right)$, then we have $t_{1} \notin N\left(x_{3}\right)$, otherwise $C_{7}\left(t_{1}, x_{1}, 1,3,5,6, x_{3}\right)$ is a cycle of G, a contradiction. Similarly $t_{1} \notin$ $N\left(x_{2}, x_{4}\right)$. It is clear, $1 \notin N\left(x_{2}, x_{3}, x_{4}\right)$ by Lemmas 2.1 and 2.3 , i.e., $\left\{x_{2}, x_{3}, x_{4}, 1\right\}$ is an independent set of G, thus we obtain $t_{1} \in N(1)$. But, in this case, we have $C_{7}\left(t_{1}, x_{1}, 3,4,5,6,1\right)$ is a cycle of G, a contradiction.
Now, the lemma is true.

Lemma 4.2. If $\{1,5\} \subset N\left(x_{1}\right), 2 \in N\left(x_{2}\right), 6 \in N\left(x_{3}\right)$, then $4 \notin N\left(x_{3}\right)$.
Proof. Suppose to the contrary that $4 \in N\left(x_{3}\right)$. Now we have:
$2 \notin N(4)$, otherwise $C_{7}\left(x_{1}, 1,2,4, x_{3}, 6,5\right)$ is a cycle of G, a contradiction; $4 \notin N(6)$ by Lemma 2.3 and $\{1,5\} \subset N\left(x_{1}\right)$.
Thus we obtain $\left\{2,4,6, x_{1}\right\}$ as an independent set of G. And by Lemma 4.1, we have $3 \notin$ $N\left(x_{1}\right), 3 \notin N\left(x_{3}\right)$. Note that $3 \notin N\left(x_{2}\right)$ by $2 \in N\left(x_{2}\right)$. Hence, we have $3 \in N\left(x_{4}\right)$. By this we find that $2,4 \notin N\left(x_{4}\right)$ and, by Lemma 2.2, $6 \notin N\left(x_{4}\right)$. Therefore $\left\{2,4,6, x_{1}, x_{4}\right\}$ is an independent set of G, a contradiction. Thus, we obtain the lemma.

Lemma 4.3. If $1 \in N\left(x_{1}\right)$, then $3,5 \notin N\left(x_{1}\right)$.
Proof. Suppose to the contrary that $5 \in N\left(x_{1}\right)$. Now, by Lemma 2.3, we may assume that $2 \in N\left(x_{2}\right)$ and $6 \in N\left(x_{3}\right)$. Then we have $3 \notin N\left(x_{1}\right)$ by Lemma $4.1 ; 3 \notin N\left(x_{3}\right)$ by Lemma 2.2. It is clear that $3 \notin N\left(x_{2}\right)$. Thus we obtain $3 \in N\left(x_{4}\right)$. Furthermore, we have $4 \notin N\left(x_{3}\right)$ by Lemma $4.2,4 \notin N\left(x_{1}, x_{4}\right)$. Thus we obtain $4 \in N\left(x_{2}\right)$.
Claim 1. $1 \in N(5), 2 \in N(4) ;\{1,2, \ldots, 6\} \cap N\left(x_{1}\right)=\{1,5\},\{1,2, \ldots, 6\} \cap N\left(x_{2}\right)=$ $\{2,4\},\{1,2, \ldots, 6\} \cap N\left(x_{3}\right)=\{6\}$ and $\{1,2, \ldots, 6\} \cap N\left(x_{4}\right)=\{3\}$.
Since $6 \in N\left(x_{3}\right)$, we have $1,5 \notin N\left(x_{3}\right)$. By Lemma 2.2 and $\{1,5\} \subset N\left(x_{1}\right)$, we have $3 \notin N\left(x_{3}\right)$. By Lemma 4.2, we have $2,4 \notin N\left(x_{3}\right)$. Thus $\{1,2, \ldots, 6\} \cap N\left(x_{3}\right)=\{6\}$. Similarly, $\{1,2, \ldots, 6\} \cap N\left(x_{4}\right)=\{3\}$.

Now, if $1 \notin N(5)$, we have $\left\{1,5, x_{2}, x_{3}, x_{4}\right\}$ as an independent set of G, a contradiction. Thus $1 \in N(5)$. Similarly, $2 \in N(4)$.

It is clear that $\{1,2, \ldots, 6\} \cap N\left(x_{1}\right)=\{1,5\}$. Similarly, $\{1,2, \ldots, 6\} \cap N\left(x_{2}\right)=\{2,4\}$.
By Claim $1, N\left(x_{1}\right) \cap\{1,2, \ldots, 6\}=\{1,3,5\}$. Since $d\left(x_{1}\right) \geq 6$, thus $\mid(V(G)-(\{1,2,3$, $\left.\left.4,5,6\} \cup I_{4}\right)\right) \cap N\left(x_{1}\right) \mid \geq 3$.
Now, we may assume $z_{1}, z_{2} \in\left(V(G)-\left(\{1,2,3,4,5,6\} \cup I_{4}\right)\right) \cap N\left(x_{1}\right)$. Thus:
$z_{1} \notin N(1)$, otherwise $C_{7}\left(z_{1}, x_{1}, 5,4,3,2,1\right)$ is a cycle of G, a contradiction; $z_{1} \notin N\left(x_{2}\right)$, otherwise $C_{7}\left(z_{1}, x_{1}, 5,4,3,2, x_{2}\right)$ is a cycle of G, a contradiction; $z_{1} \notin N\left(x_{4}\right)$, otherwise $C_{7}\left(z_{1}, x_{1}, 1,5,4,3, x_{4}\right)$ is a cycle of G, a contradiction; $z_{1} \in N\left(x_{3}\right)$, otherwise $\left\{z_{1}, 1, x_{2}, x_{4}, x_{3}\right\}$ is an independent set of G, a contradiction.

Using this we obtain $z_{1} \notin N\left(1, x_{2}, x_{4}\right)$ and $z_{1} \in N\left(x_{3}\right)$. Similarly, $z_{2} \notin N\left(1, x_{2}, x_{4}\right)$ and $z_{2} \in N\left(x_{3}\right)$. If $z_{1} \notin N\left(z_{2}\right)$, then $\left\{z_{1}, z_{2}, 1, x_{2}, x_{4}\right\}$ is an independent set of G, a contradiction. Thus $z_{1} \in N\left(z_{2}\right)$, and then we have $C_{7}\left(z_{1}, x_{1}, 1,5,6, x_{3}, z_{2}\right)$ is a cycle of G, a contradiction.
Therefore $5 \notin N\left(x_{1}\right)$. Similarly, $3 \notin N\left(x_{1}\right)$.
Theorem 4.4. $R\left(C_{7}, K_{5}\right)=25$.
Proof. By Lemma 2.1, we know that there is a vertex in I_{4}, say x_{1}, such that $\mid\{1,2, \ldots, 6\}$ $\cap N\left(x_{1}\right) \mid \geq 2$. Now, by Lemmas 2.1 and 4.3 , we have $\{1,2, \ldots, 6\} \cap N\left(x_{1}\right)=\{1,4\}$.
Using Lemmas 2.1 and 4.1 , we may assume that $\left|\{2,3,5,6\} \cap N\left(x_{2}\right)\right| \geq 2$, without loss of generality, $6 \in N\left(x_{2}\right)$. Now we have $\{1,2, \ldots, 6\} \cap N\left(x_{2}\right)=\{3,6\}$ by Lemma 4.3.
By Lemma 2.3 and $\{1,4\} \subset N\left(x_{1}\right)$, we have $\left|N(6,3) \cap I_{4}\right| \geq 2$. Now, we may assume that $x_{3} \in N(6,3)$. Thus by Lemma 4.3 we have $N\left(x_{3}\right) \cap\{1,2, \ldots, 6\} \subset\{6,3\}$.
By the above, we obtain $2,5 \in N\left(x_{4}\right)$. And $1 \notin N(4)$ by Lemma 2.3. Thus $\left\{1,4, x_{2}, x_{3}, x_{4}\right\}$ is an independent set of G, a contradiction.
Therefore we obtain $R\left(C_{7}, K_{5}\right) \leq 25$. On the other hand, by Theorem 2.5 , we have $R\left(C_{7}\right.$, $\left.K_{5}\right) \geq 25$. Thus $R\left(C_{7}, K_{5}\right)=25$.

Note. In [1], we also proved that $R\left(C_{n}, K_{5}\right)=4(n-1)+1(n \geq 5)$.

Acknowledgments

This project was supported by NSFC and NSFJS.

References

1. B. Bollobás, C. J. Jayawardene, Yang Jian Sheng, Huang Yi Ru, C. C. Rousseau and Zhang Ke Min, On a Conjecture Involving Cycle-Complete Graph Ramsey Numbers, to appear.
2. V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small off-diagonal numbers, Pac. J. Math., 41 (1972), 335-345.
3. M. Clancy, Some small Ramsey numbers, J. Graph Theory, 1 (1977), 89-90.
4. R. J. Faudree and R. H. Schelp, All Ramsey numbers $R\left(C_{5}, G\right)$ For All for cycles in graphs, Discrete Math., 8 (1974), 313-329.
5. G. R. Hendry, Ramsey numbers for graphs with five vertices, J. Graph Theory, 13 (1989), 245-248
6. C. J. Jayawardene and C. C. Rousseau, Some Ramsey numbers $R\left(C_{5}, G\right)$ for all graph G of order six. Preprint (see [8]).
7. V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdős, I \& II, J. Comb. Theory, Ser. B, 15 (1973), 94-120.
8. S. P. Radziszowski, Small Ramsey numbers, Electron. J. Comb., 1 (2000), 1-36.
9. R. H. Schelp and R. J. Faudree, Some Problem in Ramsey Theory, Lecture Notes in Mathematics, 642, Springer, Berlin, 1978, pp. 500-515.
10. Yang Jian Sheng, Huang Yi Ru and Zhang Ke Min, The values of Ramsey number $R\left(C_{n}, K_{4}\right)$ is $3(n-1)+1(n \geq 4)$, Aust. J. Comb., 20 (1999), 205-206.

Zhang Ke Min
Department of Mathematics, Nanjing University, Nanjing 210008,
People's Republic of China

