Europ. J. Combinatorics (2001) **22**, 561–567 doi:10.1006/eujc.2000.0442 Available online at http://www.idealibrary.com on **DE**

$R(C_6, K_5) = 21$ and $R(C_7, K_5) = 25$

YANG JIAN SHENG, HUANG YI RU AND ZHANG KE MIN

The Ramsey number $R(C_n, K_m)$ is the smallest integer p such that any graph G on p vertices either contains a cycle C_n with length n or contains an independent set with order m. In this paper we prove that $R(C_n, K_5) = 4(n-1) + 1$ (n = 6, 7).

© 2001 Academic Press

1. INTRODUCTION

We shall only consider graphs without multiple edges or loops.

The Ramsey number $R(C_n, K_m)$ is the smallest integer p such that any graph G on p vertices either contains a cycle C_n with length n or contains an independent set with order m. In 1976, Shelp and Faudree in [9] stated the following problem.

PROBLEM 1.1 ([9]). Find the range of integers *n* and *m* such that $R(C_n, K_m) = (n - 1)(m - 1) + 1$. In particular, does the equality hold for $n \ge m$?

For this problem, the following results are known:

 $R(C_4, K_4) = 10 \text{ (see [2])}$ $R(C_4, K_5) = 14 \text{ (see [3])}$ $R(C_5, K_4) = 13, R(C_5, K_5) = 17 \text{ (see [5, 6])}$ $R(C_n, K_3) = 2n - 1 (n > 3) \text{ (see [4, 7])}.$

In [10], we proved that $R(C_n, K_4) = 3(n-1) + 1$ $(n \ge 4)$. In this paper, we will prove that $R(C_n, K_5) = 4(n-1) + 1$ (n = 6, 7).

The following notations will be used in this paper. If *G* is a graph, the vertex set (resp. edge set) of *G* is denoted by V(G) (resp. E(G)). For $x \in V(G)$, $N(x) = \{v \in V(G) | xv \in E(G)\}$. If $V \subset V(G)$, then $N(V) = \bigcup_{x \in V} N(x)$.

A cycle with *n* vertices x_1, x_2, \ldots, x_n will be denoted by

$$C_n = C_n(x_1, x_2, \ldots, x_n)$$

where the subscript *i* in x_i will be taken modulo the cycle length *n*.

For $n, m \ge 1$, a (C_n, K_m) -graph is a graph without cycles of length n or independent sets of order m, a (C_{n+1}, K_m) -graph G is called a

 $(C_{n+1}, K_m; C_n(x_1, x_2, \ldots, x_n), I_{m-1}(y_1, y_2, \ldots, y_{m-1}))$ -graph

if $C_n(x_1, x_2, ..., x_n)$ is a subgraph of G, and $I_{m-1}(y_1, y_2, ..., y_{m-1})$ is an independent set of order m - 1 in G, where

 $I_{m-1}(y_1, y_2, \dots, y_{m-1}) = \{y_1, y_2, \dots, y_{m-1}\} \subset V(G) - \{x_1, x_2, \dots, x_n\}.$

0195-6698/01/040561 + 07 \$35.00/0

© 2001 Academic Press

Y. J. Sheng et al.

2. LEMMAS

In this section, we assume that G is a

 $(C_{n+1}, K_m; C_n(1, 2, ..., n), I_{m-1}(x_1, x_2, ..., x_{m-1}))$ -graph.

For convenience, we denote $I_{m-1}(x_1, x_2, ..., x_{m-1})$ by I_{m-1} , and assume that $n \ge m$.

LEMMA 2.1. (1) $N(i) \cap I_{m-1} \neq \emptyset$ for $i \in \{1, 2, ..., n\}$; (2) $|N(x) \cap \{i, i+1\}| \le 1$ for $x \in I_{m-1}$.

PROOF. It is clear that (1) is true. (2) is same as Lemma 1.3(a) of [10].

LEMMA 2.2 (CF. [10], LEMMA 1.3(C)). Let $x \in I_{m-1}$. If $\{i, j\} \subset N(x) (i \neq j, i \neq j \pm j)$ $1 \pmod{n}$, then

$$|N(y) \cap \{i+1, j+2\}| \le 1, |N(y) \cap \{j-1, i-2\}| \le 1$$

for $y \in I_{m-1} - \{x\}$.

LEMMA 2.3. Let $x \in I_{m-1}$. If $\{i, j\} \subset N(x) (i \neq j, i \neq j \pm 1 \pmod{n})$, then:

- (1) $i 1 \notin N(j 1), i + 1 \notin N(j + 1);$ (2) there is a $z_1 \in N(i 1) \cap (I_{m-1} \{x\})$, and a $z_2 \in N(j 1) \cap (I_{m-1} \{x\})$ such that $z_1 \neq z_2$;
- (3) there is a $z_1 \in N(i+1) \cap (I_{m-1} \{x\})$, and a $z_2 \in N(j+1) \cap (I_{m-1} \{x\})$ such that $z_1 \neq z_2$.

PROOF. (1) see [10, Lemma 1.3(b)]. (2) If $N(i-1) \cap I_{m-1} \neq N(j-1) \cap I_{m-1}$, the conclusion of (2) is clear by Lemma 2.1(2). Now, we assume that $N(i-1) \cap I_{m-1} = N(j-1) \cap I_{m-1}$, then we have the following two cases.

Case a. $|N(i-1) \cap I_{m-1}| \ge 2$.

By Lemma 2.1(2), since $i \in N(x)$, we obtain $N(i-1) \cap I_{m-1} = N(i-1) \cap (I_{m-1} - \{x\})$. Let $\{z_1, z_2\} \subset N(i-1) \cap I_{m-1}$ with $z_1 \neq z_2$, then z_1 and z_2 satisfy the conclusion of (2).

Case b. $|N(i-1) \cap I_{m-1}| = 1$.

By (1), we have that $\{i = 1, j = 1\} \cup \{I_{m-1} = N(i-1)\}$ is an independent set of order m in G, a contradiction. Therefore $|N(i-1) \cap I_{m-1}| \neq 1$. By Cases a and b, (2) is true. Similarly, (3) is true.

LEMMA 2.4. Let $x \in I_{m-1}$. If $n \ge 2m-3$ and $|N(x) \cap \{1, 2, ..., n\}| = k$, then $k \le m-3$.

PROOF. For convenience, we assume that $N(x) \cap \{1, 2, \dots, n\} = \{i_1, i_2, \dots, i_k\}$. By Lemma 2.3, we know that $\{i_1 + 1, i_2 + 1, \dots, i_k + 1\}$ is an independent set. Now we have

$$|N(\{i_1+1, i_2+1, \ldots, i_k+1\}) \cap I_{m-1}| \ge k,$$

otherwise

 $(I_{m-1} - N(\{i_1 + 1, i_2 + 1, \dots, i_k + 1\})) \cup \{i_1 + 1, i_2 + 1, \dots, i_k + 1\}$

562

is an independent set with order $\geq m$, a contradiction.

Since $n \ge 2m - 3$, we may assume that $i_k + 2 \ne i_1 \pmod{n}$. Now, by Lemma 2.2, we have

$$N(\{i_1+1, i_2+1, \dots, i_k+1\}) \cap I_{m-1} \cap N(i_k+2) = \emptyset$$

Since $N(x) \cap \{1, 2, ..., n\} = \{i_1, i_2, ..., i_k\}$, we have

$$m-1 \ge |(N(\{i_1+1, i_2+1, \dots, i_k+1\}) \cap I_{m-1}) \cup N(i_k+2) \cup \{x\}| \ge k+2,$$

i.e., $k \le m - 3$.

The following theorem can be found in [2].

THEOREM 2.5 ([2]). Let F_1 and F_2 be two graphs with no isolated vertices. Let c be the number of vertices in a largest connected component of F_1 , and let χ be the chromatic number of F_2 . Then the following lower bound holds:

$$R(F_1, F_2) \ge (c-1)(\chi - 1) + 1.$$

THEOREM 2.6 ([10]). $R(C_n, K_4) = 3(n-1) + 1 \ (n \ge 4)$.

3.
$$R(C_6, K_5) = 21$$

In this section we assume that G is a graph with order 21. In the following, we will prove that G either contains a cycle of length 6 or contains an independent set of order 5. For convenience, we suppose to the contrary that G is a (C_6, K_5) -graph. Now, by $R(C_5, K_5) =$ 17, we may assume that $C_5(1, 2, 3, 4, 5)$ is a cycle of G. Since $|V(G) - \{1, 2, 3, 4, 5\}| = 16$ and by Theorem 2.6, we may assume that $I_4(x_1, x_2, x_3, x_4)$ is an independent set of G and $I_4(x_1, x_2, x_3, x_4) \subset V(G) - \{1, 2, 3, 4, 5\}$, i.e., G is a $(C_6, K_5; C(1, 2, ..., 5), I_4(x_1, ..., x_4))$ -graph.

It is clear $d(v) \ge 5$ for $v \in V(G)$.

LEMMA 3.1. If $\{1, 4\} \subset N(x_1), 2 \in N(x_2), 5 \in N(x_3)$, then:

- (1) $\{1, 3, 5\} \cap N(x_2) = \emptyset;$
- (2) $\{1, 2, 3, 4\} \cap N(x_3) = \emptyset;$
- (3) $\{2, 4, 5\} \cap N(x_4) = \emptyset \text{ and } 3 \in N(x_4);$
- (4) $\{2, 3, 5\} \cap N(x_1) = \emptyset$.

PROOF. (1) $5 \notin N(x_2)$, otherwise $C_6(x_2, 2, 1, x_1, 4, 5)$ is a cycle of G, a contradiction. By $2 \in N(x_2)$ and Lemma 2.1, we have $\{1, 3\} \cap N(x_2) = \emptyset$. Thus we obtain $\{1, 3, 5\} \cap N(x_2) = \emptyset$. (2) $2 \notin N(x_3)$, otherwise $C_6(x_3, 2, 1, x_1, 4, 5)$ is a cycle of G, a contradiction. By $\{1, 4\} \subset \mathbb{C}$

 $N(x_1), 5 \in N(x_3)$ and Lemma 2.2, we have $3 \notin N(x_3)$. Thus we obtain $\{1, 2, 3, 4\} \cap N(x_3) = \emptyset$. (3) By (1) and (2), we know that $3 \notin N(x_2, x_3)$; by $4 \in N(x_1)$, we have $3 \notin N(x_1)$. Thus

we obtain $3 \in N(x_4)$. Using the same methodology as (1), we have $\{2, 4, 5\} \cap N(x_4) = \emptyset$. (4) By $\{1, 4\} \subset N(x_1)$ and Lemma 2.1, we have $\{2, 3, 5\} \cap N(x_1) = \emptyset$.

LEMMA 3.2. If $1 \in N(x_1)$, $2 \in N(x_2)$, $5 \in N(x_3)$, then $4 \notin N(x_1)$.

PROOF. Suppose that $4 \in N(x_1)$. By Lemma 3.1, we have $3 \in N(x_4)$.

Since $d(x_1) \ge 5$ and $N(x_1) \cap (I_4 \cup \{1, 2, 3, 4, 5\}) = \{1, 4\}$ by Lemma 3.1.

Thus there are two vertices in $V(G) - I_4 \cup \{1, 2, 3, 4, 5\}$, say z_1 and z_2 , such that $z_1, z_2 \in N(x_1)$.

Claim 1. $\{z_1, z_2\} \cap N(x_2, x_4) = \emptyset$.

 $z_1 \notin N(x_2)$, otherwise $C_6(z_1, x_1, 4, 3, 2, x_2)$ is a cycle of G, a contradiction;

 $z_1 \notin N(x_4)$, otherwise $C_6(z_1, x_1, 1, 2, 3, x_4)$ is a cycle of G, a contradiction.

Thus we obtain $z_1 \notin N(x_2, x_4)$. Similarly, $z_2 \notin N(x_2, x_4)$. Thus $\{z_1, z_2\} \cap N(x_2, x_4) = \emptyset$.

Claim 2. $1 \in N(x_4), 4 \in N(x_2)$.

Suppose that $1 \notin N(x_4)$.

 $z_1 \notin N(1)$, otherwise $C_6(z_1, x_1, 4, 3, 2, 1)$ is a cycle of *G*, a contradiction. By Claim 1, we have $z_1 \notin N(x_2, x_4)$, by Lemma 3.1, we have $1 \notin N(x_2, x_3)$. Thus $\{1, x_2, x_3, x_4\}$ and $\{z_1, 1, x_2, x_4\}$ are independent sets of *G*. This implies that $z_1 \in N(x_3)$, otherwise $\{z_1, 1, x_2, x_3, x_4\}$ is an independent set of *G*, a contradiction. Similarly, we have $z_2 \in N(x_3)$ and $z_2 \notin N(1)$. Now, we have $z_1 \notin N(z_2)$, otherwise $C_6(z_1, x_1, 1, 5, x_3, z_2)$ is a cycle of *G*, a contradiction. Hence $\{z_1, z_2, 1, x_2, x_4\}$ is an independent set of *G*, a contradiction. Thus $1 \in N(x_4)$. Similarly, $4 \in N(x_2)$

By Claim 2, we find that $C_6(x_2, 2, 1, x_4, 3, 4)$ is a cycle of *G*, a contradiction. Hence $4 \notin N(x_1)$.

LEMMA 3.3. If $1 \in N(x_1)$, then $N(x_1) \cap \{2, 3, 4, 5\} = \emptyset$.

PROOF. It is clear that $\{2, 5\} \cap N(x_1) = \emptyset$. If $4 \in N(x_1)$, by Lemma 2.3, we may assume that $2 \in N(x_2), 5 \in N(x_3)$. Now, by Lemma 3.2, we have $4 \notin N(x_1)$, a contradiction. Thus $4 \notin N(x_1)$. Similarly, $3 \notin N(x_3)$. Now, we have $N(x_1) \cap \{2, 3, 4, 5\} = \emptyset$.

THEOREM 3.4. $R(C_6, K_5) = 21$.

PROOF. By Lemma 3.3, the number of edges joining I_4 and $\{1, 2, 3, 4, 5\}$ is ≤ 4 , by Lemma 2.1, the number of edges joining $\{1, 2, 3, 4, 5\}$ and I_4 is ≥ 5 , a contradiction. Thus *G* either contains a cycle of length 6 or an independent set of order 5, i.e., $R(C_6, K_5) \leq 21$. On the other hand, by Theorem 2.5, we have $R(C_6, K_5) \geq 21$. Thus $R(C_6, K_5) = 21$.

4.
$$R(C_7, K_5) = 25$$

In this section we assume that G is a graph with order 25. For convenience, we suppose that G is a (C_7, K_5) -graph. Now, by $R(C_6, K_5) = 21$, we may assume that $C_6(1, 2, 3, 4, 5, 6)$ is a cycle of G. Since $|V(G) - \{1, 2, 3, 4, 5, 6\}| = 19$ and Theorem 2.6, we may assume that $I_4(x_1, x_2, x_3, x_4)$ is an independent set of G and $I_4(x_1, x_2, x_3, x_4) \subset V(G) - \{1, 2, 3, 4, 5\}$, i.e., G is a

 $(C_7, K_5; C(1, 2, \dots, 6), I_4(x_1, \dots, x_4))$ -graph.

It is clear, $d(v) \ge 6$, otherwise $V(G) \setminus (I_4 \cup \{1, 2, ..., 6\})$ contains either C_7 or a 4-element independent set, a contradiction.

LEMMA 4.1. $|\{1, 2, 3, 4, 5, 6\} \cap N(x_i)| \le 2$ for i = 1, 2, 3, 4.

PROOF. Suppose to the contrary that there is a vertex in I_4 , say x_1 , such that $|\{1, 2, 3, 4, 5, 6\} \cap N(x_1)| \ge 3$. It is clear we may assume that $\{1, 3, 5\} \subset N(x_1)$. Furthermore, by Lemma 2.3, we can assume that $2 \in N(x_2), 6 \in N(x_3)$.

Claim 1. $4 \notin N(x_2, x_3), 4 \in N(x_4)$.

If $4 \in N(x_3)$, then $3 \notin N(5)$ by Lemma 2.3. Furthermore, we have $1 \notin N(3)$, otherwise $C_7(x_1, 1, 3, 4, x_3, 6, 5)$ is a cycle of *G*, a contradiction; $\{1, 3\} \cap N(x_2) = \emptyset$ since $\{1, 3\} \subset N(x_1)$; $5 \notin N(x_2)$ since $2 \in N(x_2)$ and $\{1, 3\} \subset N(x_1)$.

564

Thus $\{1, 3, 5, x_2, x_3\}$ is an independent set of G, a contradiction.

Therefore we obtain $4 \notin N(x_3)$. Similarly, $4 \notin N(x_2)$. Now, we have $4 \in N(x_4)$.

Claim 2. $G(\{1, 3, 5\}) = K_3, \{2, 4, 6\}$ is an independent set of G.

 $1 \in N(5)$, otherwise by Lemma 2.2 { $x_2, x_3, x_4, 1, 5$ } is an independent set of *G*, a contradiction. Similarly $1 \in N(3), 3 \in N(5)$, i.e., $G(\{1, 3, 5\}) = K_3$.

 $\{2, 4, 6\}$ is an independent set of G is trivial by Lemma 2.3.

Note that $N(x_1) \cap \{1, 2, ..., 6\} = \{1, 3, 5\}$ and $d(x_1) \ge 6$, Thus $(V(G) - (\{1, 2, 3, 4, 5, 6\} \cup I_4)) \cap N(x_1) \ne \emptyset$. Let t_1 be a vertex in $(V(G) - (\{1, 2, 3, 4, 5, 6\} \cup I_4)) \cap N(x_1)$, then we have $t_1 \notin N(x_3)$, otherwise $C_7(t_1, x_1, 1, 3, 5, 6, x_3)$ is a cycle of G, a contradiction. Similarly $t_1 \notin N(x_2, x_4)$. It is clear, $1 \notin N(x_2, x_3, x_4)$ by Lemmas 2.1 and 2.3, i.e., $\{x_2, x_3, x_4, 1\}$ is an independent set of G, thus we obtain $t_1 \in N(1)$. But, in this case, we have $C_7(t_1, x_1, 3, 4, 5, 6, 1)$ is a cycle of G, a contradiction.

Now, the lemma is true.

LEMMA 4.2. If $\{1, 5\} \subset N(x_1), 2 \in N(x_2), 6 \in N(x_3)$, then $4 \notin N(x_3)$.

PROOF. Suppose to the contrary that $4 \in N(x_3)$. Now we have:

 $2 \notin N(4)$, otherwise $C_7(x_1, 1, 2, 4, x_3, 6, 5)$ is a cycle of *G*, a contradiction; $4 \notin N(6)$ by Lemma 2.3 and $\{1, 5\} \subset N(x_1)$.

Thus we obtain {2, 4, 6, x_1 } as an independent set of *G*. And by Lemma 4.1, we have $3 \notin N(x_1)$, $3 \notin N(x_3)$. Note that $3 \notin N(x_2)$ by $2 \in N(x_2)$. Hence, we have $3 \in N(x_4)$. By this we find that 2, $4 \notin N(x_4)$ and, by Lemma 2.2, $6 \notin N(x_4)$. Therefore {2, 4, 6, x_1, x_4 } is an independent set of *G*, a contradiction. Thus, we obtain the lemma.

LEMMA 4.3. If $1 \in N(x_1)$, then $3, 5 \notin N(x_1)$.

PROOF. Suppose to the contrary that $5 \in N(x_1)$. Now, by Lemma 2.3, we may assume that $2 \in N(x_2)$ and $6 \in N(x_3)$. Then we have $3 \notin N(x_1)$ by Lemma 4.1; $3 \notin N(x_3)$ by Lemma 2.2. It is clear that $3 \notin N(x_2)$. Thus we obtain $3 \in N(x_4)$. Furthermore, we have $4 \notin N(x_3)$ by Lemma 4.2, $4 \notin N(x_1, x_4)$. Thus we obtain $4 \in N(x_2)$.

Claim 1. $1 \in N(5), 2 \in N(4); \{1, 2, \dots, 6\} \cap N(x_1) = \{1, 5\}, \{1, 2, \dots, 6\} \cap N(x_2) = \{2, 4\}, \{1, 2, \dots, 6\} \cap N(x_3) = \{6\} \text{ and } \{1, 2, \dots, 6\} \cap N(x_4) = \{3\}.$

Since $6 \in N(x_3)$, we have 1, $5 \notin N(x_3)$. By Lemma 2.2 and $\{1, 5\} \subset N(x_1)$, we have $3 \notin N(x_3)$. By Lemma 4.2, we have 2, $4 \notin N(x_3)$. Thus $\{1, 2, ..., 6\} \cap N(x_3) = \{6\}$. Similarly, $\{1, 2, ..., 6\} \cap N(x_4) = \{3\}$.

Now, if $1 \notin N(5)$, we have $\{1, 5, x_2, x_3, x_4\}$ as an independent set of *G*, a contradiction. Thus $1 \in N(5)$. Similarly, $2 \in N(4)$.

It is clear that $\{1, 2, ..., 6\} \cap N(x_1) = \{1, 5\}$. Similarly, $\{1, 2, ..., 6\} \cap N(x_2) = \{2, 4\}$. By Claim 1, $N(x_1) \cap \{1, 2, ..., 6\} = \{1, 3, 5\}$. Since $d(x_1) \ge 6$, thus $|(V(G) - (\{1, 2, 3, 4, 5, 6\} \cup I_4)) \cap N(x_1)| \ge 3$.

Now, we may assume $z_1, z_2 \in (V(G) - (\{1, 2, 3, 4, 5, 6\} \cup I_4)) \cap N(x_1)$. Thus:

 $z_1 \notin N(1)$, otherwise $C_7(z_1, x_1, 5, 4, 3, 2, 1)$ is a cycle of G, a contradiction;

 $z_1 \notin N(x_2)$, otherwise $C_7(z_1, x_1, 5, 4, 3, 2, x_2)$ is a cycle of G, a contradiction;

 $z_1 \notin N(x_4)$, otherwise $C_7(z_1, x_1, 1, 5, 4, 3, x_4)$ is a cycle of G, a contradiction;

 $z_1 \in N(x_3)$, otherwise $\{z_1, 1, x_2, x_4, x_3\}$ is an independent set of G, a contradiction.

Using this we obtain $z_1 \notin N(1, x_2, x_4)$ and $z_1 \in N(x_3)$. Similarly, $z_2 \notin N(1, x_2, x_4)$ and $z_2 \in N(x_3)$. If $z_1 \notin N(z_2)$, then $\{z_1, z_2, 1, x_2, x_4\}$ is an independent set of *G*, a contradiction. Thus $z_1 \in N(z_2)$, and then we have $C_7(z_1, x_1, 1, 5, 6, x_3, z_2)$ is a cycle of *G*, a contradiction. Therefore $5 \notin N(x_1)$. Similarly, $3 \notin N(x_1)$.

THEOREM 4.4. $R(C_7, K_5) = 25$.

PROOF. By Lemma 2.1, we know that there is a vertex in I_4 , say x_1 , such that $|\{1, 2, ..., 6\} \cap N(x_1)| \ge 2$. Now, by Lemmas 2.1 and 4.3, we have $\{1, 2, ..., 6\} \cap N(x_1) = \{1, 4\}$.

Using Lemmas 2.1 and 4.1, we may assume that $|\{2, 3, 5, 6\} \cap N(x_2)| \ge 2$, without loss of generality, $6 \in N(x_2)$. Now we have $\{1, 2, ..., 6\} \cap N(x_2) = \{3, 6\}$ by Lemma 4.3.

By Lemma 2.3 and $\{1, 4\} \subset N(x_1)$, we have $|N(6, 3) \cap I_4| \ge 2$. Now, we may assume that $x_3 \in N(6, 3)$. Thus by Lemma 4.3 we have $N(x_3) \cap \{1, 2, ..., 6\} \subset \{6, 3\}$.

By the above, we obtain 2, $5 \in N(x_4)$. And $1 \notin N(4)$ by Lemma 2.3. Thus $\{1, 4, x_2, x_3, x_4\}$ is an independent set of *G*, a contradiction.

Therefore we obtain $R(C_7, K_5) \le 25$. On the other hand, by Theorem 2.5, we have $R(C_7, K_5) \ge 25$. Thus $R(C_7, K_5) = 25$.

NOTE. In [1], we also proved that $R(C_n, K_5) = 4(n-1) + 1$ $(n \ge 5)$.

ACKNOWLEDGMENTS

This project was supported by NSFC and NSFJS.

REFERENCES

- 1. B. Bollobás, C. J. Jayawardene, Yang Jian Sheng, Huang Yi Ru, C. C. Rousseau and Zhang Ke Min, *On a Conjecture Involving Cycle-Complete Graph Ramsey Numbers*, to appear.
- V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small off-diagonal numbers, Pac. J. Math., 41 (1972), 335–345.
- 3. M. Clancy, Some small Ramsey numbers, J. Graph Theory, 1 (1977), 89–90.
- R. J. Faudree and R. H. Schelp, All Ramsey numbers R(C₅, G) For All for cycles in graphs, *Discrete Math.*, 8 (1974), 313–329.
- 5. G. R. Hendry, Ramsey numbers for graphs with five vertices, J. Graph Theory, 13 (1989), 245–248.
- 6. C. J. Jayawardene and C. C. Rousseau, Some Ramsey numbers *R*(*C*₅, *G*) for all graph *G* of order six. Preprint (see [8]).
- V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdős, I & II, J. Comb. Theory, Ser. B, 15 (1973), 94–120.
- 8. S. P. Radziszowski, Small Ramsey numbers, *Electron. J. Comb.*, 1 (2000), 1–36.
- R. H. Schelp and R. J. Faudree, *Some Problem in Ramsey Theory*, Lecture Notes in Mathematics, 642, Springer, Berlin, 1978, pp. 500–515.
- 10. Yang Jian Sheng, Huang Yi Ru and Zhang Ke Min, The values of Ramsey number $R(C_n, K_4)$ is 3(n-1) + 1 ($n \ge 4$), Aust. J. Comb., **20** (1999), 205–206.

Received 13 January 1999 in revised form 21 March 2000

YANG JIAN SHENG AND HUANG YI RU Department of Mathematics, Shanghai University, Shanghai 200436, People's Republic of China AND

566

$R(C_6, K_5) = 21$ and $R(C_7, K_5) = 25$

ZHANG KE MIN Department of Mathematics, Nanjing University, Nanjing 210008, People's Republic of China