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R(Cs, Ks) = 21 and R(C7, Ks5) = 25

YANG JIAN SHENG, HUANG YI RU AND ZHANG KE MIN

The Ramsey numbeR(Cn, Km) is the smallest integep such that any grap® on p vertices
either contains a cyclén with lengthn or contains an independent set with orderin this paper we
prove thatR(Cp, Kg) =4(n—1)+1(n =86, 7).

(© 2001 Academic Press

1. INTRODUCTION

We shall only consider graphs without multiple edges or loops.

The Ramsey numbeR(Cy, Kyyy) is the smallest integep such that any grapl® on p
vertices either contains a cydl®, with lengthn or contains an independent set with order

In 1976, Shelp and Faudree i8] [ctated the following problem.

PrRoBLEM 1.1 ([9]). Find the range of integens andm such thatR(C,,, Ky,) = (n —
1)(m — 1) + 1. In particular, does the equality hold for> m?

For this problem, the following results are known:

R(C4, K4) = 10 (see ])

R(Cs, Ks) = 14 (see §])

R(Cs, K4) = 13, R(Cs, Ks) = 17 (see 5, 6])
R(Ch,K3) =2n—1(n > 3) (see 4, 7)).

In [10Q], we proved thaR(Cy,, K4) = 3(n — 1) + 1 (n > 4). In this paper, we will prove that
R(Cn,Ks) =4n—-1)+1(n=86,7).

The following notations will be used in this paperGfis a graph, the vertex set (resp. edge
set) of G is denoted by (G) (resp.E(G)). Forx € V(G), N(X) = {v € V(G)|xv € E(G)}.

If V C V(G), thenN(V) = U , .y NXX).
A cycle withn verticesxy, X, ..., Xy Will be denoted by
Cn = Cn(xl, XZ, ceey Xn)

where the subscriptin x; will be taken modulo the cycle length
Forn,m > 1, a(Cp, Km)-graph is a graph without cycles of lengtlor independent sets
of orderm, a(Cn11, Km)-graphG is called a

(Cn-'rla Km; Cn(xla X25 sty Xn)a Im—l(yla y25 BRI ym—l))-graph

if Cn(Xq, X2, ..., Xp) is a subgraph of, andlm—1(y1, V2, . . ., Ym—1) is an independent set of
orderm — 1 in G, where

|m—1(y1: y27 s ym—l) = {ylv YZ, RN Ym—l} - V(G) - {Xl’ X2y uns Xn}'
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2. LEMMAS

In this section, we assume th@tis a
(Cn+la Km; Cn(17 23 ceey n)7 Imfl(xl’ X27 cees mel))'graph
For convenience, we denotg_1(X1, X2, ..., Xm—1) by Im—1, and assume that > m.
LEMMA 2.1. (1) N(@) N Ip—1 £ @fori € {1,2,...,n};
(2) IN(X) N {i,1 +1}| < 1forx € Ip_1.
PROOF ltis clear that (1) is true. (2) is same as Lemma 1.3(a)L6F.[ O
LEMMA 2.2 (CF. [10Q], LEMMA 1.3(C)). Letx € Im_1. If {i, j} C NX)(i # j,i # | %=
1(mod n), then
INWN{+1j+2) <L IN(yN{j-1i-2}<1
fory e Im—1 — {x}.
LEMMA 2.3. Letx e Im—1. If {i, j} € N(X)(i # j,i # ] £ 1(modn)), then:
() i—-1¢N(—-1,i+1¢N(+D;
(2) thereisaz e N(i — 1 N (Im—1—{x}),andaz € N(j — 1) N (Im—1 — {Xx}) such
that z1 # zo;
(3) thereisaz € N(i +1) N (Im—1 —{x}),andaz € N(j +1) N (Im—1 — {x}) such
that z # zo.
PrROOF (1) see 10, Lemma 1.3(b)].
(2) If NG —1) N Ip—1 # N(j —1) N I;m—1, the conclusion of (2) is clear by Lemr2al(2).
Now, we assume thd (i —1) N I;m—1 = N(j — 1) N Iy—1, then we have the following
two cases.

CasealN(@i —1) N Iy_1] > 2.

By Lemmaz2.1(2), since € N(x), we obtainN(@i —1) N Ij—1 = NG —21) N (Im—1—{X}).
Let{z, z2} € N(i — 1) N In—1 with z; # 2, thenz; andz, satisfy the conclusion of (2).

Case b)N({ — 1) N Ipm_1] = 1.

By (1), we have thati — 1, j — 1} U {Inh—1 — N( — 1)} is an independent set of order
in G, a contradiction. TherefordN(@ — 1) N Ip—1] # 1.

By Cases a and b, (2) is true. Similarly, (3) is true. O

LEMMA 2.4. Letx € Ip_1.1fn > 2m—-3and|N(x) N {1, 2, ..., n}| =k, then k< m—3.

PROOFE For convenience, we assume thdtx) N {1,2,...,n} = {i1,i2,...,ik}. By
Lemma2.3 we know thatfi; + 1,i2 + 1, ..., ix + 1} is an independent set. Now we have

INHit+ L2+ 1, ...,ik+1) N Im_1] =k,
otherwise
(Im—1 = N{iz+Li2+21, ..., ik+1)) Uit +Li2+1,...,ik+ 1}
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is an independent set with orderm, a contradiction.
Sincen > 2m — 3, we may assume that+ 2 # i;(modn). Now, by Lemma2.2, we have

N{ir+1i2+1...,ik+ 1) N Ip_1 N N(ik+2) =0a.
SinceN(x) N {1,2,...,n} ={iy,l2,... ik}, we have
m—1>|(N{ir+Li2+1...,ik+1) N Im-1) UNGk+2) U {x}| >k+2
ie,k<m-3. |
The following theorem can be found ig][
THEOREM 2.5 ([2]). Let K and F, be two graphs with no isolated vertices. Let ¢ be the

number of vertices in a largest connected componeng odid lety be the chromatic number
of . Then the following lower bound holds:

R(Fi,F2) > (c-D(x—-D+1
THEOREM2.6 ([10]). R(Cn, Ks) =3(Nn—1)+1(n > 4).

3. R(Cg, Ks) =21

In this section we assume th@tis a graph with order 21. In the following, we will prove
that G either contains a cycle of length 6 or contains an independent set of order 5. For
convenience, we suppose to the contrary thas a (Cg, Ks)-graph. Now, byR(Cs, Ks5) =
17, we may assume th@g(1, 2, 3, 4, 5) is a cycle ofG. Since|V (G) — {1, 2, 3,4,5}| = 16
and by Theoren2.6, we may assume thaf(x1, X2, X3, X4) iS an independent set & and
la(X1, X2, X3, X4) C V(G) —{1,2,3,4,5},i.e.,,Gis a(Cg, Ks;C(1,2,...,5), la(Xq, ...,
Xa))-graph.

Itis cleard(v) > 5forv € V(G).

LEMMA 3.1. If {1,4} € N(X1),2 € N(X2),5 € N(x3), then:

(1) {1, 3,5} N N(x2) = 6;

(2) {1,2,3,4) N N(x3) =0,

(3) {2,4,5} N N(xg) =Jand3 € N(Xa);

(4) {2,3,5} N N(x) = 0.

PROOE (1) 5¢ N(x2), otherwiseCg(X2, 2, 1, X1, 4, 5) is a cycle ofG, a contradiction. By
2 € N(x2) and Lemma.1, we have{l, 3JNN(x2) = @. Thus we obtaifl, 3, 5}NN(x2) = @.
(2) 2 ¢ N(x3), otherwiseCg(x3, 2, 1, X1, 4, 5)) is a cycle ofG, a contradiction. By1, 4} C
N(x1), 5 € N(x3) and Lemma.2, we have &N(x3). Thus we obtaifl, 2, 3, 4}NN (x3)=0.
(3) By (1) and (2), we know that & N(x2, X3); by 4 € N(x1), we have 3¢ N(x1). Thus
we obtain 3e N(xs). Using the same methodology as (1), we hiet, 5} N N(xq) = 0.
(4) By {1, 4} ¢ N(x1) and Lemm&.1, we have(2, 3,5} N N(x1) = 4. O

LEMMA 3.2. If 1 € N(X1), 2 € N(X2), 5 € N(x3), thend ¢ N(xq).

PROOF Suppose that € N(x1). By Lemma3.1, we have 3= N(Xy).

Sinced(x1) > 5andN(x1) N (I U {1,2,3,4,5}) = {1, 4} by Lemma3.1

Thus there are two vertices W(G) — 14 U {1, 2, 3, 4, 5}, sayz; andzp, such thatzy, z; €
N(X1).

Claim1.{z1, z2} N N(X2, Xq) = 0.
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Z1 € N(x2), otherwiseCg(z1, X1, 4, 3, 2, X2) is a cycle ofG, a contradiction;
71 € N(Xg), otherwiseCg(z1, X1, 1, 2, 3, X4) is a cycle ofG, a contradiction.

Thus we obtairz; & N (X2, Xq). Similarly, z2 & N(X2, Xg). Thus{z1, z2} N N(X2, Xq) = @.
Claim2. 1€ N(x4),4 € N(x2).

Suppose that  N(xg).

71 ¢ N(1), otherwiseCg(z1, X1, 4, 3,2,1) is a cycle ofG, a contradiction. By Claim 1,
we havez; € N(Xz2, X4), by Lemma3.1, we have 1¢ N(x2, X3). Thus{1, x», X3, X4} and
{z1, 1, X2, X4} are independent sets &. This implies thatz; € N(x3), otherwise{zi, 1, X2,
X3, X4} is an independent set @, a contradiction. Similarly, we have, € N(x3) and
Zo € N(1). Now, we havez; ¢ N(zp), otherwiseCg(z1, X1, 1, 5, X3, Z2) is a cycle ofG,
a contradiction. Hencézs, 7o, 1, X2, X4} is an independent set @&, a contradiction. Thus
1 e N(X4). Similarly, 4€ N(x2)

By Claim 2, we find thatCg(X2, 2, 1, X4, 3, 4) is a cycle ofG, a contradiction. Hence ¢
N (X1). O

LEMMA 3.3. If 1 € N(x1), then N(x1) N {2,3,4,5} = 4.

PROOEF ltis clear that{2, 5} N N(x1) = @. If 4 € N(x1), by Lemma2.3 we may assume
that 2e€ N(x2),5 € N(x3). Now, by Lemma3.2, we have 4¢ N(x1), a contradiction. Thus
4 ¢ N(x1). Similarly, 3¢ N(x3). Now, we haveN(x1) N {2, 3,4, 5} = . O

THEOREM 3.4. R(Cg, K5) = 21

PrROOF By Lemma3.3 the number of edges joininty and {1, 2,3, 4,5} is < 4, by
Lemmaz2.1, the number of edges joinirg, 2, 3, 4, 5} andl4 is > 5, a contradiction. Thu&
either contains a cycle of length 6 or an independent set of order JR(€g, K5) < 21. On
the other hand, by Theore5, we haveR(Cg, K5) > 21. ThusR(Cg, Ks5) = 21. O

4. R(C7,Ks) =25

In this section we assume th@tis a graph with order 25. For convenience, we suppose that
G is a(Cy, Ks)-graph. Now, byR(Cs, K5) = 21, we may assume th@%(1, 2, 3, 4, 5, 6) is
a cycle ofG. Since|V(G) — {1, 2, 3,4,5, 6}| = 19 and Theoren2.6, we may assume that
l4(X1, X2, X3, Xg) IS @an independent set & and l4(x1, X2, X3, X4) C V(G) — {1, 2,3, 4, 5},
ie.,Gisa

(C7,Ks;C(1,2,...,6), l4(X1, ..., Xa))-graph

Itis clear,d(v) > 6, otherwiseV (G)\ (14U {1, 2, ..., 6}) contains eithe€; or a 4-element

independent set, a contradiction.

LEMMA 4.1. |{1,2,3,4,5,6} N N(x)| <2fori =1,2,3,4.

PROOF Suppose to the contrary that there is a vertelsjrsayxy, such that{l, 2, 3, 4, 5,
6} N N(x1)|] > 3. It is clear we may assume thét, 3,5} C N(x1). Furthermore, by
Lemma2.3, we can assume that2N(x2), 6 € N(x3).

Claim1.4¢ N(x2, X3), 4 € N(Xq).

If 4 € N(x3), then 3¢ N(5) by Lemma2.3 Furthermore, we have & N(3), otherwise
C7(x1,1, 3,4, x3, 6,5) is a cycle ofG, a contradiction{1, 3} N N(x2) = ¢ since{1, 3} C
N(X1); 5 &€ N(x2) since 2e N(x2) and{1, 3} C N(xq).
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Thus{1, 3, 5, X2, X3} is an independent set &, a contradiction.
Therefore we obtain ¢ N(x3). Similarly, 4 ¢ N(x2). Now, we have 4& N(Xg).

Claim2.G({1, 3,5}) = Kg, {2, 4, 6} is an independent set &.

1 € N(5), otherwise by Lemm&.2 {xz, X3, X4, 1, 5} is an independent set &, a contra-
diction. Similarly 1€ N(3), 3e N(5), i.e.,G({1, 3,5}) = Ks.

{2, 4, 6} is an independent set & is trivial by Lemma2.3.

Note thatN(x1) N {1, 2, ...,6} = {1, 3,5} andd(x1) > 6, Thus(V (G)—({1, 2, 3, 4, 5, 6}U
l4)) N N(x1) # 0. Letty be avertexinV(G)—({1, 2, 3,4, 5, 6} U I4)) N N(X1), then we have
t1 ¢ N(x3), otherwiseCr(t1, X1, 1, 3, 5, 6, X3) is a cycle ofG, a contradiction. Similarly; ¢
N (X2, Xq). Itis clear, 1¢ N (X2, X3, X4) by Lemmag2.1and2.3 i.e.,{X2, X3, X4, 1} is an inde-
pendent set o6, thus we obtairt; € N(1). But, in this case, we haver(t1, X1, 3,4, 5, 6, 1)
is a cycle ofG, a contradiction.

Now, the lemma is true. O

LEMMA 4.2. If {1,5} € N(X1),2 € N(X2), 6 € N(X3), thend & N(x3).

PROOF Suppose to the contrary thatdN (x3). Now we have:

2 & N(4), otherwiseCr7(x1, 1, 2, 4, X3, 6, 5) is a cycle ofG, a contradiction;
4 ¢ N(6) by Lemma2.3and{1, 5} ¢ N(x1).

Thus we obtain2, 4, 6, x1} as an independent set @f. And by Lemma4.1, we have 3¢
N(x1), 3 & N(x3). Note that 3¢ N(x2) by 2 € N(x2). Hence, we have & N(x4). By this
we find that 24 ¢ N(xgq) and, by Lemm&.2, 6 ¢ N(x4). Therefore{2, 4, 6, x1, X4} is an
independent set db, a contradiction. Thus, we obtain the lemma. a

LEMMA 4.3. If 1 € N(x1), then3,5 & N(x1).

PROOF Suppose to the contrary thaté N(x1). Now, by Lemma2.3 we may assume
that 2 € N(x2) and 6 € N(x3). Then we have 3Z N(x1) by Lemma4.1; 3 ¢ N(x3) by
Lemma2.2 It is clear that 3¢ N(x2). Thus we obtain 3= N(x4). Furthermore, we have
4 ¢ N(x3) by Lemmad.2, 4 ¢ N(X1, X4). Thus we obtain & N(x2).

Claim1l.1e N(5),2 € N4): {1,2,...,6) N N(x) = {15}, {1, 2,...,6) N N(x2) =
(2,41,{1,2,...,6} N N(x3) = {6} and{L, 2, ...,6} N N(xa) = {3}.

Since 6 N(x3), we have 15 ¢ N(x3). By Lemma2.2and{1,5} C N(x1), we have
3 ¢ N(x3). By Lemma4.2, we have 24 ¢ N(x3). Thus{l,2,...,6} N N(x3) = {6}.
Similarly, {1, 2, ...,6} N N(xq) = {3}.

Now, if 1 ¢ N(5), we have{l, 5, x2, X3, X4} as an independent set @, a contradiction.
Thus 1€ N(5). Similarly, 2€ N(4).

Itis clearthat{1, 2, ...,6} N N(x1) = {1, 5}. Similarly, {1, 2, ...,6} N N(x2) = {2, 4}.

By Claim 1,N(x1) N {1,2,...,6} = {1, 3, 5}. Sinced(x1) > 6, thus|(V(G) — ({1, 2, 3,
4,5,6} U l4)) N N(x7)| > 3.

Now, we may assumey, 2o € (V(G) — ({1, 2, 3,4,5, 6} U lz)) N N(xq). Thus:

z1 € N(1), otherwiseC7(z1, X1, 5, 4, 3, 2, 1) is a cycle ofG, a contradiction;

71 € N(x2), otherwiseC7(z1, X1, 5, 4, 3, 2, X2) is a cycle ofG, a contradiction;

71 € N(Xg), otherwiseC7(z1, X1, 1, 5, 4, 3, X4) is a cycle ofG, a contradiction;

71 € N(x3), otherwise{zs, 1, X2, X4, X3} is an independent set &, a contradiction.
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Using this we obtairz; & N(1, X2, X4) andz; € N(x3). Similarly, z2 € N(1, X2, X4) and
Z2 € N(x3). If z1 &€ N(22), then{zy, 20, 1, X2, X4} is an independent set &, a contradiction.
Thusz; € N(z2), and then we hav€;(z31, X1, 1, 5, 6, X3, Z2) is a cycle ofG, a contradiction.

Therefore 5¢ N(x1). Similarly, 3¢ N(x1). O

THEOREM4.4. R(C7, K5) = 25.

PrOOF By Lemma2.1, we know that there is a vertex Ig, sayxi, such that{1, 2, ..., 6}
N N(xp)| > 2. Now, by Lemmag.1and4.3 we have(l, 2,...,6} N N(x1) = {1, 4}.

Using Lemmag.1and4.1, we may assume th§, 3, 5, 6} N N(x2)| > 2, without loss of
generality, 6 N(x2). Now we havel, 2, ..., 6} N N(x2) = {3, 6} by Lemma4.3.

By Lemma2.3and{1, 4} ¢ N(x1), we havgN (6, 3) N 14| > 2. Now, we may assume that
X3 € N(6, 3). Thus by Lemmat.3we haveN(x3) N {1,2,...,6} C {6, 3}.

By the above, we obtain® € N(x4). And 1 & N(4) by Lemma2.3. Thus{1, 4, X2, X3, X4}
is an independent set &f, a contradiction.

Therefore we obtaifR(C7, Ks) < 25. On the other hand, by Theorétrs, we haveR(C7,
Ks) > 25. ThusR(C7, Ks) = 25. O

NOTE. In[1], we also proved thaR(Cy,, Ks) = 4(n— 1) + 1 (n > 5).
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