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Abstract

The Ramsey number R(Gi, Ga, ..., G,) is the smallest integer p such that for any n-edge
coloring (E1,Es, ..., E,) of K,, K,[E;] contains G; for some i, G; as a subgraph in K,[E;]. Let
R(mi,ma, ..., my):=R(Kn,,Knys ..., Kn, ), R(m;n):=R(mi,ma,...,m,) if mj=m fori=1,2,...,n.
A formula is obtained for R(G1, G, ..., G,). © 2001 Elsevier Science B.V. All rights reserved.
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An n-edge coloring (Ey, E,...,E,) of K, is called a (Gy, Gy,..., Gy; p)((mi,my,...,
my; p), resp.)-decomposition if for all i, G;(K,,, resp.) is not contained in K,[E;]. It is
clear that R(Gy,Ga,...,G,) = p, + 1 iff p, = max{ p:there exists a (G1,Ga,...,Gy; p)-
decomposition}. We denote by N(G;) the number of subgraphs of K,[E;] which are
isomorphic to G;. The (Gy, Gy, ..., G,; p)-decomposition is called a (G, Gs,...,G,; p)-
Ramsey decomposition if p=R(Gy,Gs,...,G,)— 1. If G and H are two graphs, GoH
denotes either the disjoint union or the join (see [1]) of G and H. Let G* be a graph
of order k and let G; = G™ " o G. Taking any vertex v;, let G = {v;} o G". The
number of subgraphs of G/ which are isomorphic to G*' is denoted by n(i). Thus
we have:

Theorem 1. For any (G, G,...,Gy; p)-decomposition and if G;=G/" " o G/, i €
{1,2,...,n}, we have

n(ON(GIYKN(GIR(G, ..., Gi1, G, G, .., Gy) — 1] (1)

Proof. In a (Gy,G,,...,G,; p)-decomposition (Ey,Es,...,E,), by the definition of
R(G\,...,Gi—1,G" ", Giy1,...,G,) and for any G" CK,[E;], there are at most
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R(Gy,...,Gi—1,G" ", Giy1,...,Gy) — 1 vertices v in K,[E;] — V(G") such that {v} o
G' =G}, otherwise there exists a subgraph G of K ,[E;]— V(G/") of order R(Gi,. ..,
Gi—1,G" ", Giy1,...,Gy), either there exists a G~ C G such that G"™" o G} =
G; CKp[E;], or there exists a G; C K,[E],j # i; a contradiction. Hence by the defini-
tion of N(G;") and n(i), (1) follows. [

Theorem 1 generalizes the Theorem 1 in [4].

Corollary 1. If G;=K,, or K,,, —e, i € {1, 2,..., n}, then for any (Gy,Ga,...,Gy; p)-
decomposition, we have

(ni + I)N(Kn[+l)<N(Kn,') [R(Gla tees Gi—]a G;’Vli_ni, Gi+17 cees Gn) - 1], (2)
where G!"™" = Ky, _p, OF Kyp,—p, — €,0 <n; <m; — 1 and m; > 2.
In particular if Gi =K":=K,, i=1,2,...,n and m > 2, we have

(m— 1) NEK" Y <[Rmn — 1) = 11> NK! ). 3)
i=1 i=1

Proof. Note that for any K., it contains exactly k+1 Kj. Hence, by (1), (2) follows.
Furthermore, since R(Klz,Kg",...,K,g”) =R(m;n — 1) and (2), we obtain (3). O

Note that (3) and the following facts:
when n =2 (see [3]),

N(K?)+N(K3)=(1/2)p(p— 1) >2p=N(K})+N(K}) if p=R(3,3)=6,

N(KP) + N(K3)SN(K]) + N(Ky) if p<R(@3,3)=6,

N(KD) +N(K3) = () = (1/2)> " dndy=(1/6)p(p — 1)(p — 2)
i=1

~(1/8)p(p =1 > (1/2)p(p — ) =N(K}) + N(K3) if p>R(4,4)=18,

N(K}) + N(K3)SN(K?) + N(K3) if p<R(4,4)=18,

where d;; is the degree of vertex v; in K,[E;].
when n =3,

3 3
2 N(K}) = p(p-1)>15p=5) N(K') if p>R(3,3,3)=17,
i=1 i=1

(see [2]).
3 3
2> N(KH<5 D N(K!) if p<R(3,3,3)=17.

i=1 i=1
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So we raise a conjecture which generalizes Conjecture 2 in [3] as follows:
Conjecture. If m(> 3), n(> 1) and p are natural numbers, p>=R(m;n), then

(m—1Y NK™") > [Rimn — 1) = 11Y N ).
i=1 i=1

Theorem 2. For any graph G; of order mi(> 1) and G;={v;}oG™ " for i=1,2,...,n

R(GlaGZs"'sGi’l)< ZR(Gla"'aGi*lyG;niilsGi+ls"'an) —n+ 2. (4)
i=1

Proof. Using Theorem 1 for n; =1, i = 1,2,...,n and p = R(G,Gy,....G,) — 1,
we have

AIN(KH)< pIR(GL,...,Gi1, G Gy, Gy) — 1 for i =1,2,...,n.
Then p(p—1)=2(\)=2 3" | N(K*)<p[ X", R(Gy,...,Gi_1,G" ", Gs1,....Gy)—n).

Thus we obtain (4). [
Theorem 2 is a generalization of Theorem 2 in [4] and of the classical inquality
R(mi,ma,...,my)< >0 R(my,...om—y,my — Limpgy,omy) —n+ 2.
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