

Discrete Mathematics 226 (2001) 419-421

www.elsevier.com/locate/disc

Note

A bound for multicolor Ramsey numbers *

Ling-sheng Shi*, Ke-min Zhang

Department of mathematics, Nanjing University, Nanjing, 210093, People's Republic of China Received 25 November 1998; revised 24 September 1999; accepted 7 February 2000

Abstract

The Ramsey number $R(G_1, G_2, ..., G_n)$ is the smallest integer p such that for any n-edge coloring $(E_1, E_2, ..., E_n)$ of K_p , $K_p[E_i]$ contains G_i for some i, G_i as a subgraph in $K_p[E_i]$. Let $R(m_1, m_2, ..., m_n) := R(K_{m_1}, K_{m_2}, ..., K_{m_n}), R(m; n) := R(m_1, m_2, ..., m_n)$ if $m_i = m$ for i = 1, 2, ..., n. A formula is obtained for $R(G_1, G_2, ..., G_n)$. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Formula; Ramsey number

An n-edge coloring (E_1, E_2, \ldots, E_n) of K_p is called a $(G_1, G_2, \ldots, G_n; p)((m_1, m_2, \ldots, m_n; p), \text{ resp.})$ -decomposition if for all i, $G_i(K_{m_i}, \text{ resp.})$ is not contained in $K_p[E_i]$. It is clear that $R(G_1, G_2, \ldots, G_n) = p_0 + 1$ iff $p_0 = max\{p: \text{there exists a } (G_1, G_2, \ldots, G_n; p) - \text{decomposition}\}$. We denote by $N(G_i)$ the number of subgraphs of $K_p[E_i]$ which are isomorphic to G_i . The $(G_1, G_2, \ldots, G_n; p)$ -decomposition is called a $(G_1, G_2, \ldots, G_n; p)$ -Ramsey decomposition if $p = R(G_1, G_2, \ldots, G_n) - 1$. If G and G are two graphs, $G \circ H$ denotes either the disjoint union or the join (see [1]) of G and G. Let G_i^k be a graph of order G and let $G_i = G_i^{m_i - n_i} \circ G_i^{n_i}$. Taking any vertex G is denoted by G in G in the number of subgraphs of G which are isomorphic to G is denoted by G in G in G in the number of subgraphs of G in G in G in G is denoted by G in G

Theorem 1. For any $(G_1, G_2, ..., G_n; p)$ -decomposition and if $G_i = G_i^{m_i - n_i} \circ G_i^{n_i}$, $i \in \{1, 2, ..., n\}$, we have

$$n(i)N(G_i^{n_i+1}) \leq N(G_i^{n_i})[R(G_1, \dots, G_{i-1}, G_i^{m_i-n_i}, G_{i+1}, \dots, G_n) - 1].$$
 (1)

Proof. In a $(G_1, G_2, ..., G_n; p)$ -decomposition $(E_1, E_2, ..., E_n)$, by the definition of $R(G_1, ..., G_{i-1}, G_i^{m_i-n_i}, G_{i+1}, ..., G_n)$ and for any $G_i^{n_i} \subset K_p[E_i]$, there are at most

E-mail address: zkmfl@nju.edu.cn (K.-m. Zhang).

0012-365X/01/\$-see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0012-365X(00)00175-8

[☆] The project supported by NSFC and NSFJS.

^{*} Corresponding author.

 $R(G_1,\ldots,G_{i-1},G_i^{m_i-n_i},G_{i+1},\ldots,G_n)-1$ vertices v in $K_p[E_i]-V(G_i^{n_i})$ such that $\{v\}\circ G_i^{n_i}=G_i^{n_i+1}$, otherwise there exists a subgraph G of $K_p[E_i]-V(G_i^{n_i})$ of order $R(G_1,\ldots,G_{i-1},G_i^{m_i-n_i},G_{i+1},\ldots,G_n)$, either there exists a $G_i^{m_i-n_i}\subset G$ such that $G_i^{m_i-n_i}\circ G_i^{n_i}=G_i\subset K_p[E_i]$, or there exists a $G_j\subset K_p[E_j], j\neq i$; a contradiction. Hence by the definition of $N(G_i^{n_i})$ and n(i), (1) follows. \square

Theorem 1 generalizes the Theorem 1 in [4].

Corollary 1. If $G_i = K_{m_i}$ or $K_{m_i} - e$, $i \in \{1, 2, ..., n\}$, then for any $(G_1, G_2, ..., G_n; p)$ -decomposition, we have

$$(n_i+1)N(K_{n_i+1}) \leq N(K_{n_i})[R(G_1,\ldots,G_{i-1},G_i^{m_i-n_i},G_{i+1},\ldots,G_n)-1],$$
 (2)

where $G_i^{m_i - n_i} = K_{m_i - n_i}$ or $K_{m_i - n_i} - e, 0 < n_i < m_i - 1$ and $m_i > 2$. In particular if $G_i = K_i^m := K_m$, i = 1, 2, ..., n and m > 2, we have

$$(m-1)\sum_{i=1}^{n} N(K_i^{m-1}) \leq [R(m;n-1)-1]\sum_{i=1}^{n} N(K_i^{m-2}).$$
(3)

Proof. Note that for any K_{k+1} , it contains exactly k+1 K_k . Hence, by (1), (2) follows. Furthermore, since $R(K_1^2, K_2^m, ..., K_n^m) = R(m; n-1)$ and (2), we obtain (3). \square

Note that (3) and the following facts: when n = 2 (see [3]),

$$N(K_1^2) + N(K_2^2) = (1/2)p(p-1) > 2p = N(K_1^1) + N(K_2^1)$$
 if $p \ge R(3,3) = 6$,
 $N(K_1^2) + N(K_2^2) \le N(K_1^1) + N(K_2^1)$ if $p < R(3,3) = 6$,

$$N(K_1^3) + N(K_2^3) = {p \choose 3} - (1/2) \sum_{i=1}^n d_{1i} d_{2i} \ge (1/6) p(p-1)(p-2)$$

$$-(1/8)p(p-1)^2 > (1/2)p(p-1) = N(K_1^2) + N(K_2^2)$$
 if $p \ge R(4,4) = 18$,

$$N(K_1^3) + N(K_2^3) \le N(K_1^2) + N(K_2^2)$$
 if $p < R(4,4) = 18$,

where d_{ij} is the degree of vertex v_j in $K_p[E_i]$. when n = 3,

$$2\sum_{i=1}^{3} N(K_i^2) = p(p-1) > 15p = 5\sum_{i=1}^{3} N(K_i^1) \quad \text{if } p \geqslant R(3,3,3) = 17,$$

$$(\text{see [2]}).$$

$$2\sum_{i=1}^{3} N(K_i^2) \leqslant 5\sum_{i=1}^{3} N(K_i^1) \quad \text{if } p < R(3,3,3) = 17.$$

So we raise a conjecture which generalizes Conjecture 2 in [3] as follows:

Conjecture. If m(>3), n(>1) and p are natural numbers, $p \ge R(m;n)$, then

$$(m-1)\sum_{i=1}^{n}N(K_{i}^{m-1})>[R(m;n-1)-1]\sum_{i=1}^{n}N(K_{i}^{m-2}).$$

Theorem 2. For any graph G_i of order $m_i(>1)$ and $G_i=\{v_i\}\circ G_i^{m_i-1}$ for $i=1,2,\ldots,n$

$$R(G_1, G_2, \dots, G_n) \le \sum_{i=1}^n R(G_1, \dots, G_{i-1}, G_i^{m_i-1}, G_{i+1}, \dots, G_n) - n + 2.$$
 (4)

Proof. Using Theorem 1 for $n_i = 1$, i = 1, 2, ..., n and $p = R(G_1, G_2, ..., G_n) - 1$, we have

$$2N(K_i^2) \le p[R(G_1, \dots, G_{i-1}, G_i^{m_i-1}, G_{i+1}, \dots, G_n) - 1]$$
 for $i = 1, 2, \dots, n$.

Then
$$p(p-1)=2\binom{p}{2}=2\sum_{i=1}^{n}N(K_i^2) \le p[\sum_{i=1}^{n}R(G_1,\ldots,G_{i-1},G_i^{m_i-1},G_{i+1},\ldots,G_n)-n].$$

Thus we obtain (4).

Theorem 2 is a generalization of Theorem 2 in [4] and of the classical inquality $R(m_1, m_2, ..., m_n) \leq \sum_{i=1}^n R(m_1, ..., m_{i-1}, m_i - 1, m_{i+1}, ..., m_n) - n + 2$.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- [2] R.E. Greenwood, A.M. Gleason, Combinatorial relations and chromatic graphs, Can. J. Math. 7 (1955)
- [3] Huang Yiru, Zhang Kemin, A new upper bound formula for two color classical Ramsey numbers, JCMCC 28 (1998) 347–350.
- [4] Huang Yiru, Zhang Kemin, New upper bounds for Ramsey numbers, Eur. J. Combin 19 (1998) 391–394.