Vertex－pancyclic Multipartite Tournaments

Zhou Goufei，Zhang Kemin，Xue Guohe
（Department of Mathematics，Nanjing University，Nanjing， 210093 ，China）

Abstract

A c－partite tournament is an oriented graph obtained from a complete c－partite graph．A multipartite tournament is a c－partite tournament with $c \geq 2 . T$ being a multipartite tournament，we define $i_{g}(\mathrm{~T})=\max \left|d^{+}(x)-d^{-}(y)\right|$ over all pairs of vertices $x, y \in V(T)$ ．We prove that if $V_{1}, V_{2}, \cdots, V_{c}$ are the partite sets of a c partite $(c \geq 3)$ tournament T ，with $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq$ $\left|V_{1}\right|+1$ and $i_{g}(T) \leq 1$ ，then T is vertex－pancyclic．

Key words：multipartite tournaments，cycle，vertex－pancyclicity

A c－partite tournament is an oriented graph obtained from a complete c－partite graph．A multipartite tournament is a c－partite tournament with $c \geq 2$ ．If T is a multipartite tournament and $x \in V(T)$ ，we denote $V(x)$ the partite set to which x belongs and denote $v_{T}^{*}=\min _{i}$ $\left\{\left|V_{i}\right|\right\}$ ，where V_{i} are partite sets of T ．A factor in a digraph is a spanning collection of vertex disjoint cycles．A digraph D is pancyclic if it contains cycles of lengths $3,4, \cdots,|V(D)|$ and D is vertex－pancyclic if for each $w \in V(D)$ there are cycles of lengths $3,4, \cdots,|V(D)|$ con$^{-}$ taining w ．The local irregularity of a digraph D is defined as $i_{l}(D)=\max \left|d^{+}(x)-d^{-}(x)\right|$ over all vertices $x \in V(D)$ and the the global irregularity is defined as $i_{g}(D)=\max$ $\left|d^{+}(x)-d^{-}(y)\right|$ over all pairs of vertices $x, y \in V(D)$ ．A digraph D is strong if for each $x, y \in V(D)$ ，there is a path from x to y ．A digraph D is k－strong if $D^{-\mathrm{X}}$ is strong for all sets of vertices $X,|X|<k$ and $X \subseteq V(D)$ ．

It is conjectured that all regular c－partite tournaments with $c \geq 4$ are pancyclic．In fact， Yeo ${ }^{[1]}$ proves that when $c \geq 5$ ，all regular c－partite tournaments are vertex－pancyclic．Our main results are based on the technics of［1］．As for surveys on multipartite tournaments，see ［2］and［1］，＊＊．

1 Terminology and notations

We shall assume that the reader is familiar with the standard terminology on graphs and

[^0]digraphs and refer the reader to［3］．
Let $D=(V, A)$ be a digraph．If $x y \in A(D)$ ，then we say that x dominates y and y is dominated by x ．We also denote this by $x \rightarrow y$ ．If $X, Y \subseteq V(D)$ and there is no arc from Y to X ，then we say that $X \Rightarrow Y$ ．For a vertex $x \in V(D)$ ，the in－degree $d^{-}(x)$（out－degree d^{+} (x) ）of x is the number of vertices dominating x（dominated by x ）in D ．Furthermore，we use $\Delta^{+}(D)$ and $\delta^{+}(D)\left(\Delta^{-}(D)\right.$ and $\left.\delta^{-}(D)\right)$ to denote the maximum and minimum out－ degree（in－degree）in D respectively．If Q is a subgraph in D ，then $D\langle Q\rangle$ is the subgraph in－ duced by $V(Q)$ ．

Let D be a digraph and let $\{x, y\} \subseteq V(D)$ ．We will use the following definitions σ（ x ， $D)=d^{+}(x)-d^{-}(x)$ and $\sigma(x, y, D)=\sigma(x, D)-\sigma(y, D)$ ．Note that $i_{l}(D)=\max _{f} \mid \sigma$ $(x, D) \mid: x \in V(D)\}$ ．

Let D be digraph and C be a cycle in D ．If $u, v \in V(C)$ ，we denote $C[u, v]$ the di－ rected path from u to v on C ．If $x \in V(C)$ ，then x^{+}denotes the successor of x on the cycle C．Analogously x^{-}denotes the predecessor of x on C ．We define $x^{+}=x^{+1}$ and $x^{+\delta}=$ $\left(x^{+(\delta-1)}\right)^{+}$for $\delta \geq 2$ ．Let $C_{1}, C_{2}, \cdots, C_{l}$ be cycles in D and let $F=C_{1} \cup C_{2} \cup \cdots \cup C_{l}$ ．If $C_{1}, C_{2}, \cdots, C_{l}$ are pairwise disjoint，then we call that F is a cycle subgraph in D ．Let δ be an integer in $\{1,2, \cdots,|V(D)|\}$ and let $\{x, y\} \subseteq V(D)-V(C)$ be arbitrary．A δ－partner of (x, y) on F is a vertex $z \in V(F)$ such that $z \rightarrow x$ and $y \rightarrow z+\delta$ ．

A cycle C_{0} is k－reducible if there are cycles $C_{1}, C_{2}, \cdots C_{k}$ such that $C_{i+1}=C_{i}\left[w_{i}^{+}\right.$， $\left.w_{i}{ }_{i}\right] w_{i}^{+}$for all $i=0,1, \cdots, k-1$ ，where $w_{i} \in V\left(C_{i}\right)$ ．If $w \in V(D)$ ，then a cycle C_{0} is （ w, k ）－reducible if it is k－reducible，and w belongs to all the cycles $C_{1}, C_{2}, \cdots, C_{k}$ ．

2 Lemmas and main results

Main Theorem Any c－partite $(c \geq 13)$ tournament T with the partite sets $V_{1}, V_{2}, \cdots, V_{c}$ such that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right| \leq\left|V_{1}\right|+1$ and $i_{g}(T) \leq 1$ is vertex－pancyclic．

In order to prove this theorem，we need the following Lemmas：
Lemma 1 Let T be a c－partite tournament with partite sets $V_{1}, V_{2}, \cdots, V_{c}$ and $i_{g}(T) \leq$ 1 ，then
（a）$\Delta^{+}(T)-\delta^{+}(T) \leq 2$ ．
（b）If $\triangle^{+}(T)-\delta^{+}(T)=2$ ，then $d^{-}(x)=\delta^{+}(T)+1$ for each $x \in V(T)$ ．
（c）$\left|V_{i}\right|-\left|V_{j}\right| \leq 2$ ，for all $i \neq j$ ．
（d）If $d^{+}(x)-d^{+}(y)=2$ ，then $d^{+}(x)=\Delta^{+}(T), d^{+}(y)=\delta^{+}(T)$ and $|V(y)|=\mid V$ $(x) \mid+2$ ．
Proof（a）Suppose there exist $u, v \in V(T)$ such that $d^{+}(u)-d^{+}(v) \geq 3$ ．Since $i_{g}(T) \leq$

1，we have $d^{-}(u) \geq d^{+}(u)-1 \geq d^{+}(v)+3-1=d^{+}(v)+2$ ，a contradiction．
（b）Suppose $\triangle^{+}(T)-\delta^{+}(T)=2$ ．Let $u, v \in V(T)$ with $d^{+}(u)-d^{+}(v)=2$ ， where $d^{+}(u)=\triangle^{+}(T)$ and $d^{+}(v)=\delta^{+}(T)$ ．Let $z \in V(T)$ ．If $d^{-}(z) \geq \delta^{+}(T)+2$ ， then $d^{-}(z)-d^{+}(v) \geq 2$ ，a contradiction；If $d^{-}(z) \leq \delta^{+}(T)$ ，then $d^{+}(u)-d^{-}(z) \geq 2$ ， a contradiction too．So we have $d^{-}(x)=\delta^{+}(T)+1$ for each $x \in V(T)$ ．
（c）Note that $d^{+}(x)+d^{-}(x)=|V(T)|-|V(x)|$ for each $x \in V(T)$ ．Let $x, y \in$ $V(T)$ so that $V(x)=V_{i}$ and $V(y)=V_{j}$ ．Then $\left\|V_{i}\left|-\left|V_{j}\|=\| V(x)\right|-\right| V(y)\right\|=$ $\left|d^{+}(x)-d^{+}(y)+d^{-}(x)-d^{-}(y)\right| \leq\left|d^{+}(x)-d^{-}(y)\right|+\left|d^{-}(x)-d^{+}(y)\right| \leq 2$ ．
（d）By（a），it is easy to see that $d^{+}(x)=\Delta^{+}(T)$ and $d^{+}(y)=\delta^{+}(T)$ ．By（b），we know that $d^{-}(x)=d^{-}(y)$ ．Hence we have $|V(y)|-|V(x)|=\left(|V(T)|-d^{+}(y)-d^{-}\right.$ $(y))-\left(|V(T)|-d^{+}(x)-d^{-}(x)\right)=d^{+}(x)-d^{+}(y)=2$ ．
Corollary 2 Let T be a c－partite tournament with the partite sets $V_{1}, V_{2}, \cdots, V_{c}$ such that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right| \leq\left|V_{1}\right|+1$ and $i_{g}(T) \leq 1$ ，then $\triangle^{+}(T)-\delta^{+}(T) \leq 1$ ．
Lemma 3 Let T be a c－partite tournament of order p with the partite sets $V_{1}, V_{2}, \cdots, V_{c}$ and $i_{g}(T) \leq 1$ ．Let $\left.r=\max _{1 \leq i \leq c i}| | V_{i} \mid\right\}$ ，then the connectivity K of T satisfies： $\mathrm{K}(T) \geq$ $(p-2 r) / 3$ ．
Proof Let S be any vertex set of T such that $T-S$ is not strong．Let $T_{1}, T_{2}, \cdots, T_{l}$ be the strong components of $T-S$ ，then there are T_{i}, T_{j} such that $N^{+}\left(V\left(T_{i}\right)\right) \subseteq S$ and $N^{-}(V$ $\left.\left(T_{j}\right)\right) \subseteq S$ ．Suppose，without loss of generality，that $\left|V\left(T_{j}\right)\right| \leq\left|V\left(T_{i}\right)\right|$ and $j=1$ ，then $\left|V\left(T_{1}\right)\right| \leq(p-|S|) / 2$ ．Since $i_{g}(T) \leq 1$ ，we have $\delta^{-}(T) \geq(p-r-1) / 2$ ．On the other hand，it is easy to verify that $\delta^{-}\left(T_{1}\right) \leq\left(\left|V\left(T_{1}\right)\right|-1\right) / 2$ ．Hence we have

$$
(p-r-1) / 2 \leq \delta \cdot\left(T_{1}\right)+|S| \leq\left(\left|V\left(T_{1}\right)\right|-1\right) / 2+|S| \leq(p+3|S|-2) / 4
$$

Which yields $\mathrm{K}(T)=|S| \geq(p-2 r) / 3$ ．
Lemma 4 （［5］）Let T be a c－partite tournament with the partite sets $V_{1}, V_{2}, \cdots, V_{c}$ such that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right| \leq\left|V_{1}\right|+1$ ．If $\left.i_{l}(T) \leq(|V(T)|)-\left|V_{c-1}\right|-2\left|V_{c}\right|+2\right) /$ 2 ，then T is Hamiltonian．
Lemma 5 Let T be a c partite tournament with the partite sets $V_{1}, V_{2}, \cdots, V_{c}$ such that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right| \leq\left|V_{1}\right|+1$ and $i_{g}(T) \leq 1$ ．Then for any $\omega \in V(T)$ ，there exists a cycle C of length p in T containing ω ，for all integers p with $|V(T)| \frac{2 c-2}{3 c-5}+\frac{4 c}{3 c-5} \leq p \leq$ $|V(T)|$ ．

Proof Let $n=|V(T)|$ and let T have partite sets $V_{1}, V_{2}, \cdots, V_{c}$ with $\left|V_{1}\right|=\left|V_{2}\right|$ $=\cdots=\left|V_{s}\right|=\left|V_{s+1}\right|-1=\cdots=\left|V_{c}\right|-1$ ，where $1 \leq s \leq c$ ．

Assume first，that $\omega \in V_{1}$ ．Let p be an integer with $n \frac{2 c-2}{3 c-5}+\frac{4 c}{3 c-5} \leq p \leq n$ ．

Let $k=\left[\frac{p}{c}\right]$ and $p=k c+r, 0 \leq r<c$ ．Let $V_{i}^{\prime} \subseteq V_{i}$ such that $\left|V_{i}^{\prime}\right|=k+1$ for $i=c$ ， $c-1, \cdots, c-r+1$ and $\left|{V^{\prime}}_{i}\right|=k$ for $i=1,2, \cdots, c-r$ ，and such that $\omega \in V^{\prime}{ }_{1}$ ．

Since

$$
n \frac{2 c-2}{3 c-5}+\frac{4 c}{3 c-5} \leq p
$$

Substract $p \frac{2 c-2}{3 c-5}$ from both sides，we have

$$
(n-p) \frac{2 c-2}{3 c-5}+\frac{4 c}{3 c-5} \leq p\left(1-\frac{2 c-2}{3 c-5}\right)
$$

Multiply both sides with $\frac{3 c-5}{2 c}$ ，we have

$$
(n-p) \frac{c-1}{c}+2 \leq p \frac{c-3}{2 c}
$$

As $p=k c+r$ ，we get that

$$
n-p-\frac{n-p}{c}+2 \leq \frac{p-3 k}{2}-\frac{3 r}{2 c}
$$

Since $\frac{n-p}{c}-1<\left[\frac{n-p}{c}\right]$ and $\frac{3 r}{2 c} \geq 0$ ，

$$
n-p-\left[\frac{n-p}{c}\right]+1<\frac{p-3 k}{2}
$$

Since n, p, k and $\left[\frac{n-p}{c}\right]$ are integers，

$$
n-p-\left[\frac{n-p}{c}\right]+1 \leq \frac{p-3 k-1}{2}
$$

Let $T^{\prime}=T\left\langle\cup_{i=1}^{c} V_{i}^{\prime}\right\rangle$ and note that we have deleted at least $[(n-p) / c]$ vertices from each partite set．This implies that $i_{l}\left(T^{\prime}\right) \leq n-p-[(n-p) / c]+1 \leq \frac{p-3(k+1)+2}{2}$ ．So ， by Lemma $4, T^{\prime}$ has a Hamiltonian cycle，which corresponds to a p－cycle in T containing ω ．

The case that $\omega \in V_{s+1} \cup V_{s+2} \cup \cdots \cup V_{c}$ can be proved by the similar argument as above．
Lemma 6 Let T be a c partite $(c \geq 5)$ tournament of order n with the partite sets V_{1} ， V_{2}, \cdots, V_{c} such that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right| \leq\left|V_{1}\right|+1$ and $i_{g}(T) \leq 1$ ．Then for each pair x, y in $V(T)$ ，there is a path of length at most 3 form x to y ．
Proof Suppose on the contrary that there are $x, y \in V(T)$ such that there is no (x, y)－path of length at most 3 in T ．Thus $\left(N^{-}(y) \cup\{y\}\right) \Rightarrow\left(N^{+}(x) \cup\{x\}\right)$ and $\left(N^{-}(y) \cup\{y\}\right) \cap$ $\left(N^{+}(x) \cup\{x\}\right)=\emptyset$ ．This implies that $S=V(T)-N^{+}(x)-N^{-}(y)-\{x, y\}$ is a sepa－ rating set in T ．Thus，$|S| \leq \frac{|V(x)|+|V(y)|}{2}-2 \leq\left|V_{c}\right|-2<\frac{n-2\left|V_{d}\right|}{3}$ since $i_{g}(T) \leq$ 1 and $c \geq 5$ ．This contradicts Lemma 3.

Lemma 7 （［5］）Let T be a c－partite tournament．Let $F=C_{1} \cup C_{2} \cup \cdots \cup C_{l}$ be a factor in
T with the minimum number of cycles．Then there exists a partite set Q and an ordering of the cycles $C_{1}, C_{2}, \cdots, C_{l}$ in F such that $\left\{x^{+}, y^{-}\right\} \subseteq Q$ for each arc $x y$ with $x \in V\left(C_{j}\right), y \in$ $V\left(C_{1}\right)(j>1)$ ．

Lemma 8 Let T be a c－partite tournament with the partite sets $V_{1}, V_{2}, \cdots, V_{c}$ such that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right| \leq\left|V_{1}\right|+1$ and $i_{g}(T) \leq 1$ ．Let $\omega \in V(T)$ be arbitrary．If $F=C_{1}$ $\cup C_{2} \cup \cdots \cup C_{l}$ is a cycle subgraph in T with $\omega \in V(F)$ ，then there is a cycle C in T with $|V(C)|=|V(F)|$ and $\omega \in V(C)$ ．
Proof Let $\vec{F}^{\prime}=C^{\prime}{ }_{1} \cup C^{\prime}{ }_{2} \cup \cdots \cup C^{\prime}{ }_{m}$ be a cycle subgraph with $\omega \in V\left(F^{\prime}\right)$ ，and assume that m is as small as possible．If $m=1$ ，we are done．So we assume that $m \geq 2$ ．By examining $T^{\prime}=T\left\langle V\left(F^{\prime}\right)\right\rangle$ there exists a partite set Q such that the conditions of Lemma 7 hold．This implies that $\left\{x^{+}, y^{-}\right\} \subseteq Q$ for each arc $x y$ with $x \in V\left(C_{j}^{\prime}\right), y \in V\left(C^{\prime}{ }_{1}\right)$ and $j>1$ ．As－ sume，without loss of generality，that $\omega \in V\left(\dot{F}^{\prime}\right)-V\left(C^{\prime}{ }_{1}\right)$ ，otherwise we can consider the reverse digraph of T^{\prime} ．

Let $R=C^{\prime}{ }_{2} \cup C^{\prime}{ }_{3} \cup \cdots \cup C^{\prime}{ }_{m}$ and let $P=p_{1} p_{2} \cdots p_{k}$ be the shortest possible path from R to C_{1}^{\prime} ．Assume that $p_{1} \in V\left(C_{j}^{\prime}\right), j \in\{2,3 \cdots, m\}$ ．By Lemma 6 we have that $2 \leq k \leq 4$ ．We now show Claim and three cases below．
Claim If $z \in V\left(C_{1}^{\prime}\right), v \in V(R), z \Rightarrow V(R), V\left(C_{1}^{\prime}\right) \Rightarrow v$ and $V(z)=V(v)$ ，then there is a vertex u such that $v \rightarrow u \rightarrow z$ ．And if u is unique，then we have $\left(V\left(C^{\prime}{ }_{1}\right)-\left\{z, z^{+}\right\}\right) \Rightarrow z$ and $v \Rightarrow\left(V\left(C_{j}^{\prime}\right)-\left\{v, v^{-}\right\}\right)$．

In fact，suppose that $z \Rightarrow N^{+}(v)$ ，then we have $d^{+}(z) \geq d^{+}(v)+\left|\left\{z^{+}, v^{-}\right\}\right|=d^{+}$ $(v)+2$ ，which contradicts Corollary 2．And if u is unique，we can analogously check that（ V $\left.\left(\dot{C}_{1}^{\prime}\right)-\left\{z, z^{+}\right\}\right) \Rightarrow z$ and $v \Rightarrow\left(V\left(\dot{C}_{j}^{\prime}\right)-\left\{v, v^{-}\right\}\right)$，otherwise we have $d^{+}(z) \geq d^{+}(v)+$ 2 ，a contradiction．

Case $1 \quad k=2$ ．

By applying Lemma 7 repeatedly，we have $\left\{p_{1}^{+}, p_{2}^{-}\right\} \subseteq Q, p_{2}^{\dot{\prime}} \Rightarrow V(R)$ and $V\left(C_{1}^{\prime}\right) \Rightarrow$ p_{1}^{+}．By Claim there is $z \in V(T)-V\left(F^{\prime}\right)$ such that $p_{1}^{+} \rightarrow z \rightarrow p_{2}^{-}$．

If $p_{2}^{-3} \in Q$ ，then by Lemma 7 we have $p_{2}^{-3} \rightarrow p_{1}^{++}$．So the cycle subgraph $F^{\prime \prime}=C_{1}^{\prime}$ $\left[p_{2}^{-}, p_{2}^{-3}\right] C_{j}^{\prime}\left[p_{1}^{++}, p_{1}^{+}\right] z p_{2}^{-} \cup\left(F^{\prime}-C_{1}^{\prime}-C_{j}^{\prime}\right)$ has $\left|V\left(F^{\prime \prime}\right)\right|=\left|V\left(F^{\prime}\right)\right|=|V(F)|$ and as $p_{2}^{-} \neq w$ ，we have $\omega \in V\left(F^{\prime \prime}\right)$ ．Therefore $F^{\prime \prime}$ is a contradiction against the minimality of m ．If $p_{2}^{-3} \notin Q$ ，then the cycle subgraph $F^{\prime \prime}=C_{1}^{\prime}\left[p_{2}, p_{2}^{-3}\right] p_{1}^{+} z p_{2}^{-} C_{j}^{\prime}\left[p_{1}^{++}, p_{1}\right] p_{2} \cup$ $\left(\dot{F}^{\prime}-C_{1}^{\prime}-C^{\prime}{ }_{j}\right.$ ）is also a contradiction against the minimality of m ．
Case $2 k=3$ ．
By the minimality of k we must have $V\left(C^{\prime}{ }_{1}\right) \Rightarrow V(R)$.

Subcase $2.1 \quad p_{1}^{++}=\omega$ and $V\left(p_{1}^{++}\right) \neq V\left(p_{3}^{-}\right)$．
The cycle subgraph $F^{\prime \prime}=C^{\prime}{ }_{1}\left[p_{3}, p_{3}^{-}\right] C_{j}^{\prime}\left[p_{1}^{++}, p_{1}\right] p_{2} p_{3} \cup\left(\vec{F}^{\prime}-C_{1}^{\prime}-C_{j}^{\prime}\right)$ has $\omega \in V$ $\left(F^{\prime \prime}\right)$ since $p_{1}^{+} \neq w$ ，which is a contradiction to the minimality of m ．
Subcase $2.2 p_{1}^{++}=w, V\left(p_{1}^{++}\right)=V\left(p_{3}^{-}\right)$and $V\left(p_{1}^{+3}\right) \neq V\left(p_{3}^{-3}\right)$ ．
By Claim there is a vertex $z \in V(T)-V\left(\dot{F}^{\prime}\right)$ such that $p_{1}^{++} \rightarrow z \rightarrow p_{3}^{-}$．The cycle sub－ graph $F^{\prime \prime}=C_{1}\left[p_{3}^{-}, p_{3}^{-3}\right] C_{j}^{\prime}\left[p_{1}^{+3}, p_{1}^{++}\right] z p_{3}^{-} \cup\left(\vec{F}^{\prime}-C_{1}^{\prime}-C_{j}^{\prime}\right)$ has $w \in V\left(F^{\prime \prime}\right)$ since $p_{3}^{-} \neq w$ and $w \notin V\left(C^{\prime}{ }_{1}\right)$ ．

If there is a vertex $z \in V(T)-V\left(F^{\prime}\right)-\left\{p_{2}\right\}$ such that $p_{1}^{++} \rightarrow z \rightarrow p_{3}^{-}$，then $F^{\prime \prime}=C_{1}{ }^{\prime}$ $\left[p_{3}, p_{3}^{-3}\right] p_{1}^{++} z p_{3}^{-} C_{j}^{\prime}\left[p_{1}^{+3}, p 1\right] p_{2} p_{3} \cup\left(F^{\prime}-C_{1}^{\prime}-C_{j}^{\prime}\right)$ is a contradiction to the minimali－ ty of m ．If there is no such z ，then by claim we have $V\left(C_{1}^{1}\right)-\left\{p_{3}^{-}\right\} \Rightarrow p_{3}^{-}$，so $F^{\prime \prime}=C_{j}^{\prime}\left[p_{1}^{+}\right.$， $\left.p_{1}\right] p_{2} C^{\prime}{ }_{1}\left[p_{3} p_{3}^{-3}\right] p_{3}^{-} p_{1}^{+} \cup\left(\dot{F}^{\prime}-C_{1}^{\prime}-C_{j}^{\prime}\right)$ is a contradicfiom to the minimality of m ．
Subcase $2.4 p_{1}^{++} \neq w$ and $V\left(p_{1}^{+}\right) \neq V\left(p_{3}^{--}\right)$．
The cycle subgraph $F^{\prime \prime}=C^{\prime}{ }_{1}\left[p_{3}, p_{3}^{-}{ }^{-}\right] C_{j}^{\prime}\left[p_{1}^{+}, p_{1}\right] p_{2} p_{3} \cup\left(\vec{F}^{\prime}-C_{1}^{\prime}-C_{j}\right)$ is a contra－ diction to the minimality of m ．
Subcase $2.5 p_{1}^{++} \neq w, V\left(p_{1}^{+}\right)=V\left(p_{3}^{--}\right)$and $V\left(p_{1}^{+3}\right) \neq V\left(p_{3}^{-3}\right)$ ．
By claim there is a vertex $z \in V(T)-V\left(F^{\prime}\right)$ with $p_{1}^{+} \rightarrow z \rightarrow p_{3}^{-}$．So $F^{\prime \prime}=C_{1}{ }_{1}\left[p_{3}^{-}{ }^{-}\right.$， $\left.p_{3}^{-3}\right] C_{j}^{\prime}\left[p_{1}^{+3}, p_{1}^{+}\right] z p_{3}^{-}-\cup\left(\dot{F}^{\prime}-C_{1}^{\prime}-C^{\prime}{ }_{j}\right)$ is a contradiction to the minimality of m ．
Subcase $2.6 p_{1}^{++} \neq w, V\left(p_{1}^{+}\right)=V\left(p_{3}^{--}\right)$and $V\left(p_{1}^{+3}\right)=V\left(p_{3}^{-3}\right)$ ．
If there is vertex $z \in V(T)-V\left(\dot{F}^{\prime}\right)-\left\{p_{2}\right\}$ such that $p_{1}^{+} \rightarrow z \rightarrow p_{3}^{-}$，then $F^{\prime \prime}=C_{1}^{\prime}$ $\left[p_{3}, p_{3}^{-3}\right] p_{1}^{+} z p_{3}^{-} C_{j}^{\prime}\left[p_{1}^{+3}, p_{1}\right] p_{2} p_{3} \cup\left(\vec{F}^{\prime}-C_{1}^{\prime}-C_{j}^{\prime}\right)$ is a contradiction to the minimality of m ．If no such vertex z exists，then we have $p_{3}^{-} \rightarrow p_{1}^{+}$and $p_{1}^{+} \rightarrow p_{1}^{++}$by lemma 7 ，so $F^{\prime \prime}=$ $C^{\prime}{ }_{1}\left[p_{3}, p_{3}^{-}\right] C^{\prime}{ }_{j}\left[p_{1}^{+3}, p_{1}\right] p_{2} p_{3} \cup\left(F^{\prime}-C_{1}^{\prime}-C^{\prime}{ }_{j}\right)$ is contradiction to the minimality of m too．

Case 3．$k=4$
By the minimality of k we have $V\left(C_{1}^{\prime}\right) \Rightarrow V(R)$ ．Furthermore，if $V\left(p_{4}^{-3}\right)=V\left(p_{1}^{+}\right)$， then Claim gives us a contradiction against the minimality of k ．So we have $V\left(p_{4}^{-3}\right) \neq V$ $\left.\left(p_{1}^{+}\right)\right)$．Now $F^{\prime \prime}=C^{\prime}{ }_{1}\left[p_{4}, p_{4}^{-3}\right] C_{j}^{\prime}\left[p_{1}^{+}, p_{1}\right] p_{2} p_{3} p_{4} \cup\left(\vec{F}^{\prime}-C_{1}^{\prime}-C_{j}^{\prime}\right)$ is a contradiction to the minimality of m ．
Lemma 9 Let T be a c－partite $(c \geq 4)$ tournament with the partite sets $V_{1}, V_{2}, \cdots, V_{c}$ such that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right| \leq\left|V_{1}\right|+1$ and $i_{g}(T) \leq 1$ ．Let $\delta \in\{1,2,3\}$ and let $F=$ $C_{1} \cup C_{2} \cup \cdots \cup C_{l}$ be a cycle subgraph in T ．Let $T^{\prime}=T-V(F)$ and let $\{x, y\} \subseteq V\left(T^{\prime}\right)$ ．

Then there exists at least $\left(\sigma\left(x, y, T^{\prime}\right)-|V(x) \cap V(F)|-|V(y) \cap V(F)|-1\right) / 2$ dis $^{-}$ tinct δ－partners of (x, y) in F ．
Proof Define

$$
\begin{gathered}
A_{1}=\left\{z \in V(F) \mid z \rightarrow x, y \rightarrow z^{(+\delta)}\right\} \\
A_{2}=\left\{z \in V(F) \mid z \rightarrow x, z^{(+\delta)} \rightarrow y\right\} \\
A_{3}=\left\{z \in V(F) \mid x \rightarrow z, y \rightarrow z^{(+\delta)}\right\} \\
A_{4}=\left\{z \in V(F) \mid x \rightarrow z, z^{(+\delta)} \rightarrow y\right\} \\
A_{5}=\left\{z \in V(F) \mid z \in V(x), y \rightarrow z^{(+\delta)}\right\} \\
A_{6}=\left\{z \in V(F) \mid z \in V(x), z^{(+\delta)} \rightarrow y\right\} \\
A_{7}=\left\{z \in V(F) \mid z \rightarrow x, z^{(+\delta)} \in V(y)\right\} \\
A_{8}=\left\{z \in V(F) \mid x \rightarrow z, z^{(+\delta)} \in V(y)\right\} \\
A_{9}=\left\{z \in V(F) \mid z \in V(x), y^{(+\delta)} \in V(y)\right\}
\end{gathered}
$$

Note that $\sigma(x, T)=\sigma\left(x, T^{\prime}\right)+\left|A_{3}\right|+\left|A_{4}\right|+\left|A_{8}\right|-\left|A_{1}\right|-\left|A_{2}\right|-\left|A_{7}\right|$ and $\sigma(y, T)=$ $\sigma\left(y, T^{\prime}\right)+\left|A_{1}\right|+\left|A_{3}\right|+\left|A_{5}\right|-\left|A_{2}\right|-\left|A_{4}\right|-\left|A_{6}\right|$ ．Thus we have $\sigma(x, y, T)=\sigma(x$ ， $\left.y, T^{\prime}\right)+2\left|A_{4}\right|+\left|A_{6}\right|+\left|A_{8}\right|-2\left|A_{1}\right|-\left|A_{5}\right|-\left|A_{7}\right| \leq 1$ ，which implies that $2\left|A_{1}\right|+1 \geq$ $\sigma\left(x, y, T^{\prime}\right)-\left|A_{5}\right|-\left|A_{7}\right| \geq \sigma\left(x, y, T^{\prime}\right)-|V(x) \cap V(F)|-|V(y) \cap V(F)|$.
Lemma 10 Let T be a c－partite $(c \geq 8)$ tournament with the partite sets $V_{1}, V_{2}, \cdots, V_{c}$ such that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right| \leq\left|V_{1}\right|+1$ and $i_{g}(T) \leq 1$ ．Then for each $\omega \in V$（D） there exists a $(w, 2)$－reducible 5 －cycle in T ．

Proof Let $A=N^{+}(\omega)$ and $B=N^{-}(\omega)$ ．Let $\mathbf{\alpha} \in A$ belong to the set A_{l} if and only if the longest path in $T\langle A\rangle$ which ends in a has length l ．Analogously define the sets B_{l} such that b $\in B_{l}$ if and only if the longest path in $T\langle B\rangle$ which begins from b has length l ．Let $A *=\bigcup_{l=2}^{|A|}$ A_{l} and $B^{*}=\bigcup_{l=2}^{|B|} B_{l}$ ．

From the above definition it is obvious that $A_{0}, A_{1}, B_{0}, B_{1}$ are all independent sets．Fur－ thermore，we have $A_{0} \Rightarrow A_{1} \cup A^{*}, A_{1} \Rightarrow A^{*}$ and $B^{*} \cup B_{1} \Rightarrow B_{0}, B^{*} \Rightarrow B_{1}$ ．We now consider the following cases：
Case $1 A^{*} \neq \varnothing$
If $B / \Rightarrow A^{*}$ ，then let $a_{3} \in A^{*}$ and $b \in B$ be chosen such that $a_{3} \rightarrow b$ ．Let $a_{1} a_{2} a_{3}$ be a path of length 2 in $T\langle A\rangle$ ending in a_{3} and observe that $C=\omega a_{1} a_{2} a_{3} b w$ is a cycle of length 5 ． Since $w a_{2} a_{3} b w$ and $w a_{3} b w$ also are cycles，we have our desired cycles in this case．

Therefore assume that $B \Rightarrow A^{*}$ ．This implies that $S=V(w)-\{w\}$ is a separating set in T since $A \cup B \cup\{w\}-A^{*} \Rightarrow A^{*}$ ．However，$|S| \leq v_{T}^{*}<\frac{n-2 v_{T}^{*}-2}{3} \leq \frac{n-2 r}{3}$ when $c \geq 8$ ，
where $r=\max _{\{ }\left\{\left|V_{i}\right|\right\}$ ，which contradicts Lemma 3.
Case $2 B^{*} \neq \varnothing$
This is analogous to case 1.
Case $3 A^{*}=\varnothing$ and $B^{*}=\varnothing$ ．
In this case we have $c=4$ since $A_{0}, A_{1}, B_{0}, B_{1}$ are all independent sets，which contradicts the initial assumption that $c \geq 7$ ．
Lemma 11 Let T be a c－partite（ $c \geq 13$ ）tournament with the partite sets $V_{1}, V_{2}, \cdots V_{c}$ such that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right| \leq\left|V_{1}\right|+1$ and $i_{g}(T) \leq 1$ ．Let $w \in V(T)$ be arbitrary．Then for all integers p with $3 \leq p \leq(c-2) v_{T}^{*}-1$ ，there exists a cycle C in T with $w \in V(C)$ and $|V(C)|=p$ ．

Proof Let $w \in V(T)$ and let F be a cycle subgraph in T such that $|V(F)| \leq p, w \in V$ (F) and $|V(F)| \equiv p(\bmod 3)$ ．Such a cycle must exist since by lemma 10 there exists a 3^{-} cycle，a 4 －cycle and a 5 －cycle all including the vertex w ．We choose F such that F contains the maximum number of vertices with the desired properties．If $|V(F)|=p$ ，then we are done by lemma 8 ．So we assume that $|V(F)|<p$ ，which implies that $|V(F)| \leq p-3 \leq(c-2)$ $v_{T}^{*}-4$ ．

Let $T^{\prime}=T-V(F)$ and note that if T^{\prime} has a strong component with vertices from three of more partite sets，then there must exist a 3－cycle C in T and hence $F \cup C$ will be a contra－ diction against the maximality of $|V(F)|$ ，So there are vertices from at most two partite sets in any strong component of T^{\prime} ，as $|V(F)| \leq(c-2) v_{T}^{*}-4$ ，there are vertices from at least three partite sets in T^{\prime} ，which implies that T^{\prime} is not strong．Let $Q_{1}, Q_{2}, \cdots, Q_{m}$ be the strong components of T^{\prime} such that $Q_{i} \Rightarrow Q_{j}$ for all $1 \leq i<j \leq m$ ．

Let $x \in Q_{1}$ be chosen such that $\sigma\left(x, T\left\langle Q_{1}\right\rangle\right) \geq 0$ and let $y \in Q_{m}$ be chosen such that σ $\left(y, T\left\langle Q_{m}\right\rangle\right) \leq 0$ ．Since $\left|V\left(T^{\prime}\right)\right| \geq 2 v_{T}^{*}+4>2\left(v_{T}^{*}+1\right)+1$ ，there is a vertex $z \in V\left(T^{\prime}\right)$－ $V(x)-V(y)$ ．If $z \in Q_{1}$ ，then as Q_{1} is strong and contains vertices from only two partite sets，there must be a vertex $z^{\prime} \in V(z)$ such that $x \rightarrow z^{\prime}$ ．This implies that $x \rightarrow z^{\prime} \rightarrow y$ is a（ x ， y ）－path of length 2 in T^{\prime} ．Analogously if $Z \in Q_{m}$ ，we can also obtain a（ x, y ）－path of length 2 in T^{\prime} Finally if $z \notin Q_{1} \cup Q_{m}$ ，then $x \rightarrow z \rightarrow y$ is a (x, y)－path of length 2 in T^{\prime} ．Hence there exists a (x, y)－path of length 2 in T^{\prime} ，which we shall denote by R ．

Since $\sigma\left(x, T^{\prime}\right)=\sigma\left(x, T\left\langle Q_{1}\right\rangle\right)+\left|V\left(T^{\prime}\right)-V(x)-Q_{1}\right|$ and $\sigma\left(y, T^{\prime}\right)=\sigma(y, T$ $\left.\left\langle Q_{m}\right\rangle\right)-\left|V\left(T^{\prime}\right)-V(y)-Q_{m}\right|$ ，we have that

$$
\begin{aligned}
& \sigma\left(x, y, T^{\prime}\right) \geq\left|V\left(T^{\prime}\right)-V(x)-Q_{1}\right|+\left|V\left(T^{\prime}\right)-V(y)-Q_{m}\right| \geq \\
& \left|V\left(T^{\prime}\right)\right|-\left|Q_{1}\right|-\left|V(x) \cap V\left(T^{\prime}\right)\right|+\left|V\left(T^{\prime}\right)\right|-\left|Q_{m}\right|-\left|V(y) \cap V\left(T^{\prime}\right)\right| \geq \\
& \left|V\left(T^{\prime}\right)\right|-\left|V(x) \cap V\left(T^{\prime}\right)\right|-\left|V(y) \cap V\left(T^{\prime}\right)\right| .
\end{aligned}
$$

By Lemma 9 ，$\{x, y\}$ has at least $\left(\left|V\left(T^{\prime}\right)\right|-2\left(v_{T}^{*}+1\right)-1\right) / 2>01$－partners in F ．Let z be any 1－partner in F and let $C \in F$ be the cycle with $z \in V(C)$ ．Now $(F-C) \cup C\left[z^{+}, z\right] R$ is a contradiction against the maximality of $|V(F)|$ ．
Proof of Main Theorem By lemma 5 and lemma 11，it is sufficient to show that $n(2 c-2)$／ $(3 c-5)+2 c /(3 c-5)+1 \leq v_{T}^{*}(c-2)$ ．It holds when $c \geq 13$ ．

References

［1］Yeo A．Diregular c－partite tournaments are vertex－pancyclic when $c \geq 5$ ．J Graph Theory，1999，32（2）： 137 ～ 152.
［2］Gutin G．Cycles and paths in semicomplete multipartite digraphs，theorems and algorithms：a survey．J Graph Theory，1995，19：481～505．
［3］Bondy J A，U S R Murty．Graph Theory with Applications．New York：MacMillan Press， 1976.
［4］Yeo A．How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity？Graphs Combin， 1999 ，15（4）：481～493．
［5］Yeo A．One－diregular subgraphs in semicomplete multipartite digraphs．J Graph Theory， 1997 ，24：175～ 185.

多部竞赛图的点泛圈性

周国飞，张克民，薛国和

（南京大学数学系，南京，210093）
摘 要：把 c－部完全图的每条边任意加上一个方向后得到的定向图称为 c－部竞赛图，设 T 为 c－部竞赛图，定义 $i_{g}(T)=\max _{x, y \in V C T}\left|d^{+}(x)-d^{-}(y)\right|$ 。给出了 c－部竞赛图具有点泛圈性的一个充分条件，即：设 T为 c 部竞赛图 $(c \geq 13), V_{1}, V_{2}, \cdots V_{c}$ 为 T 的各分部。如果 $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right| \leq\left|V_{1}\right|+1$ 并且 i_{g} （ $T) \leq 1$ ，那么 T 具有点泛圈性．
关键词：多部竞赛图，圈，点泛圈
中图分类号：O157．5

[^0]: ＊Foundation item：NSFC（19871041）
 Received date：2000－11－15

