南京大学学报(自然科学) JOURNAL OF NANJING UNIVERSITY (NATURAL SCIENCES)

Vol. 37, No. 4 July ,2001

Vertex-pancyclic Multipartite Tournaments

Zhou Goufei, Zhang Kemin, Xue Guohe
(Department of Mathematics, Nanjing University, Nanjing, 210093, China)

Abstract: A c-partite tournament is an oriented graph obtained from a complete c-partite graph. A multipartite tournament is a c-partite tournament with c 2. T being a multipartite tournament, we define $i_g(T) = \max |d^+(x) - d^-(y)|$ over all pairs of vertices x, y = V(T). We prove that if V_1, V_2, \ldots, V_c are the partite sets of a c-partite (c - 3) tournament T, with $|V_1| = |V_2| = \ldots$ $|V_1| + 1$ and $i_g(T) = 1$, then T is vertex-pancyclic.

Key words: multipartite tournaments, cycle, vertex-pancyclicity

A c-partite tournament is an oriented graph obtained from a complete c-partite graph. A multipartite tournament is a c-partite tournament with c-2. If T is a multipartite tournament and x-V(T), we denote V(x) the partite set to which x belongs and denote $v_T^* = \min_i \{|V_i|\}$, where V_i are partite sets of T. A factor in a digraph is a spanning collection of vertex disjoint cycles. A digraph D is pancyclic if it contains cycles of lengths 3,4,...,|V(D)| and D is vertex-pancyclic if for each w-V(D) there are cycles of lengths 3,4,...,|V(D)| containing w. The local irregularity of a digraph D is defined as $i_l(D) = \max |d^+(x) - d^-(x)|$ over all vertices x-V(D) and the the global irregularity is defined as $i_g(D) = \max |d^+(x) - d^-(y)|$ over all pairs of vertices x,y-V(D). A digraph D is strong if for each x,y-V(D), there is a path from x to y. A digraph D is k-strong if D-X is strong for all sets of vertices X, |X| < k and $X \subseteq V(D)$.

It is conjectured that all regular c-partite tournaments with c 4 are pancyclic. In fact, Yeo [1] proves that when c 5, all regular c-partite tournaments are vertex-pancyclic. Our main results are based on the technics of [1]. As for surveys on multipartite tournaments, see [2] and [1], * *.

1 Terminology and notations

We shall assume that the reader is familiar with the standard terminology on graphs and

^{*} Foundation item: NSFC(19871041) Received date: 2000 - 11 - 15

digraphs and refer the reader to [3].

Let D = (V, A) be a digraph. If xy = A(D), then we say that x dominates y and y is dominated by x. We also denote this by x = y. If $X, Y \subseteq V(D)$ and there is no arc from Y to X, then we say that $X \Rightarrow Y$. For a vertex x = V(D), the in-degree $d^{-}(x)$ (out-degree $d^{+}(x)$) of x is the number of vertices dominating x (dominated by x) in D. Furthermore, we use f(D) and f(D) and f(D) to denote the maximum and minimum out-degree (in-degree) in D respectively. If D is a subgraph in D, then D is the subgraph induced by V(D).

Let D be a digraph and let $\{x, y\} \subseteq V(D)$. We will use the following definitions $(x, D) = d^+(x) - d^-(x)$ and (x, y, D) = (x, D) - (y, D). Note that $i_l(D) = \max\{|(x, D)| | |x - V(D)| \}$.

Let D be digraph and C be a cycle in D. If $u, v \in V(C)$, we denote C[u, v] the directed path from u to v on C. If $x \in V(C)$, then x^+ denotes the successor of x on the cycle C. Analogously x^- denotes the predecessor of x on C. We define $x^+ = x^{+1}$ and $x^+ = (x^{+(-1)})^+$ for $x^+ = x^{+1}$ 2. Let $x^+ = x^+$ and $x^+ = x^+$ and $x^+ = x^+$ for $x^+ = x^+$ and $x^+ = x^+$ and $x^+ = x^+$ for $x^+ = x^+$ and $x^+ = x^+$ and $x^+ = x^+$ for $x^+ = x^+$ and $x^+ = x^+$ for $x^+ = x^+$ and $x^+ = x^+$ for $x^+ = x^+$ for

A cycle C_0 is k-reducible if there are cycles C_1 , C_2 , ... C_k such that $C_{i+1} = C_i [w_i^+, w_i^-] w_i^+$ for all i = 0, 1, ..., k-1, where $w_i = V(C_i)$. If $w_i = V(D)$, then a cycle C_0 is (w_i, k) -reducible if it is k-reducible, and $w_i = k$ -reducible to all the cycles C_1 , C_2 , ..., C_k .

2 Lemmas and main results

Main Theorem Any c-partite (c-13) tournament T with the partite sets V_1 , V_2 , ..., V_c such that $|V_1| = |V_2| = ... = |V_c| = |V_1| + 1$ and $i_g(T) = 1$ is vertex-pancyclic.

In order to prove this theorem, we need the following Lemmas:

Lemma 1 Let T be a c-partite tournament with partite sets V_1 , V_2 , ..., V_c and $i_g(T)$ 1, then

- (a) $^{+}(T) ^{+}(T) = 2.$
- (b) If $^{+}(T) ^{+}(T) = 2$, then $d^{-}(x) = ^{+}(T) + 1$ for each x = V(T).
- (c) $|V_i| |V_j| 2$, for all i = j.
- (d) If $d^+(x) d^+(y) = 2$, then $d^+(x) = {}^+(T)$, $d^+(y) = {}^+(T)$ and |V(y)| = |V(x)| + 2.

Proof (a) Suppose there exist u, $v \in V(T)$ such that $d^+(u) - d^+(v) = 3$. Since $i_{\varrho}(T)$

1, we have $d^{-}(u) = d^{+}(u) - 1 = d^{+}(v) + 3 - 1 = d^{+}(v) + 2$, a contradiction.

- (b) Suppose $^{+}(T) ^{+}(T) = 2$. Let u, v = V(T) with $d^{+}(u) d^{+}(v) = 2$, where $d^+(u) = {}^+(T)$ and $d^+(v) = {}^+(T)$. Let z = V(T). If $d^-(z) = {}^+(T) + 2$, then $d^{-}(z) - d^{+}(v) = 2$, a contradiction; If $d^{-}(z) = d^{+}(T)$, then $d^{+}(u) - d^{-}(z) = 2$, a contradiction too. So we have $d^{-}(x) = {}^{+}(T) + 1$ for each x = V(T).
- (c) Note that $d^{+}(x) + d^{-}(x) = |V(T)| |V(x)|$ for each x = V(T). Let x, y = 0V(T) so that $V(x) = V_i$ and $V(y) = V_j$. Then $V_i - |V_j| = V(x) - |V(y)| =$ $|d^{+}(x) - d^{+}(y) + d^{-}(x) - d^{-}(y)| |d^{+}(x) - d^{-}(y)| + |d^{-}(x) - d^{+}(y)| = 2.$
- (d) By (a), it is easy to see that $d^+(x) = {}^+(T)$ and $d^+(y) = {}^+(T)$. By (b), we know that d'(x) = d'(y). Hence we have |V(y)| - |V(x)| = (|V(T)| - d'(y) - d'(y))(y)) - $(|V(T)| - d^{+}(x) - d^{-}(x)) = d^{+}(x) - d^{+}(y) = 2.$

Corollary 2 Let T be a σ -partite tournament with the partite sets $V_1, V_2, ..., V_c$ such that $|V_1|$ $|V_2|$... $|V_c|$ $|V_1|$ +1 and $i_g(T)$ 1, then (T) - (T) 1.

Lemma 3 Let T be a c-partite tournament of order p with the partite sets $V_1, V_2, ..., V_c$ and $i_g(T) = 1$. Let $r = \max_{i=1}^{n} i_g(|V_i|)$, then the connectivity of T satisfies: (T) (p - 2r)/3.

Proof Let S be any vertex set of T such that T - S is not strong. Let $T_1, T_2, ..., T_l$ be the strong components of T - S, then there are T_i , T_i such that $N^+ (V(T_i)) \subseteq S$ and $N^- (V(T_i))$ $(T_i) \subseteq S$. Suppose, without loss of generality, that $|V(T_j)| = |V(T_i)|$ and j = 1, then $|V(T_1)|$ (p-|S|)/2. Since $i_g(T)=1$, we have T(T)=(p-r-1)/2. On the other hand, it is easy to verify that (T_1) $(V(T_1)| - 1)/2$. Hence we have

(p-r-1)/2 $T_1 + S = (V(T_1)/2 + S) = (p+3/S/2)/4.$ Which yields (T) = |S| (p-2r)/3.

Lemma 4 ([5]) Let T be a c-partite tournament with the partite sets $V_1, V_2, ..., V_c$ such that $|V_1| |V_2| \dots |V_c| |V_1| + 1$. If $i_l(T) (|V(T)|) - |V_{c-1}| - 2|V_c| + 2)/$ 2, then T is Hamiltonian.

Lemma 5 Let T be a σ partite tournament with the partite sets $V_1, V_2, ..., V_c$ such that $|V_1|$ $|V_2|$... $|V_c|$ $|V_1|$ + 1 and $i_g(T)$ 1. Then for any V(T), there exists a cycle C of length p in T containing , for all integers p with $|V(T)| \frac{2c-2}{3c-5} + \frac{4c}{3c-5} = p$ |V(T)|.

Proof Let n = |V(T)| and let T have partite sets $V_1, V_2, ..., V_c$ with $|V_1| = |V_2|$ $= ... = |V_s| = |V_{s+1}| - 1 = ... = |V_c| - 1$, where 1 s c.

Assume first, that V_1 . Let p be an integer with $n \frac{2c-2}{3c-5} + \frac{4c}{3c-5} = p$

Let $k = \lceil \frac{p}{c} \rceil$ and p = kc + r, $0 \quad r < c$. Let $V_i \subseteq V_i$ such that $|V_i| = k + 1$ for i = c, c - 1, ..., c - r + 1 and $|V_i| = k$ for i = 1, 2, ..., c - r, and such that $|V_i| = k + 1$.

$$n\frac{2c-2}{3c-5} + \frac{4c}{3c-5}$$
 p

Substract $p = \frac{2c-2}{3c-5}$ from both sides, we have

$$(n-p)\frac{2c-2}{3c-5} + \frac{4c}{3c-5}$$
 $p(1-\frac{2c-2}{3c-5})$

Multiply both sides with $\frac{3c-5}{2c}$, we have

$$(n-p)\frac{c-1}{c}+2 p\frac{c-3}{2c}$$

As p = kc + r, we get that

$$n - p - \frac{n - p}{c} + 2 \frac{p - 3k}{2} - \frac{3r}{2c}$$

Since $\frac{n-p}{c} - 1 < [\frac{n-p}{c}]$ and $\frac{3r}{2c} = 0$,

$$n - p - \left[\frac{n - p}{c}\right] + 1 < \frac{p - 3k}{2}$$

Since n, p, k and $\lceil \frac{n-p}{c} \rceil$ are integers,

$$n - p - \left[\frac{n - p}{c}\right] + 1 \qquad \frac{p - 3k - 1}{2}$$

Let T=T $i=1 \ V$ i and note that we have deleted at least [(n-p)/c] vertices from each partite set. This implies that $i_l(T) = n - p - [(n-p)/c] + 1 = \frac{p-3(k+1)+2}{2}$. So, by Lemma 4, T has a Hamiltonian cycle, which corresponds to a p-cycle in T containing.

The case that V_{s+1} V_{s+2} ... V_c can be proved by the similar argument as above. **Lemma** 6 Let T be a c-partite (c 5) tournament of order n with the partite sets V_1 , V_2 , ..., V_c such that $|V_1|$ $|V_2|$... $|V_c|$ $|V_1|$ + 1 and $i_g(T)$ 1. Then for each

pair x, y in V(T), there is a path of length at most 3 form x to y.

Proof Suppose on the contrary that there are $x, y \in V(T)$ such that there is no (x, y)-path of length at most 3 in T. Thus $(N^-(y) = \{y\}) \Rightarrow (N^+(x) = \{x\})$ and $(N^-(y) = \{y\})$ $(N^+(x) = \{x\}) = \emptyset$. This implies that $S = V(T) - N^+(x) - N^-(y) - \{x, y\}$ is a separating set in T. Thus, $|S| = \frac{|V(x)| + |V(y)|}{2} - 2 = |V_c| - 2 < \frac{n-2|V_c|}{3}$ since $i_g(T)$ 1 and c 5. This contradicts Lemma 3.

Lemma 7 ([5]) Let T be a c-partite tournament. Let $F = C_1 \quad C_2 \quad \dots \quad C_l$ be a factor in

T with the minimum number of cycles. Then there exists a partite set Q and an ordering of the cycles C_1 , C_2 , ..., C_l in F such that $\{x^+, y^-\} \subseteq Q$ for each arc xy with $x = V(C_j)$, $y = V(C_l)$ (j > 1).

Lemma 8 Let T be a c-partite tournament with the partite sets $V_1, V_2, ..., V_c$ such that $|V_1| |V_2| ... |V_c| |V_1| + 1$ and $i_g(T)$ 1. Let V(T) be arbitrary. If $F = C_1$ C_2 ... C_l is a cycle subgraph in T with V(F), then there is a cycle C in T with |V(C)| = |V(F)| and |V(C)|.

Proof Let $F = C_1$ C_2 ... C_m be a cycle subgraph with V(F), and assume that m is as small as possible. If m = 1, we are done. So we assume that m = 2. By examining T = T V(F) there exists a partite set Q such that the conditions of Lemma 7 hold. This implies that $\{x^+, y^-\} \subseteq Q$ for each arc xy with $x = V(C_j)$, $y = V(C_1)$ and j > 1. Assume, without loss of generality, that $V(F) - V(C_1)$, otherwise we can consider the reverse digraph of T.

Let $R = C_2$ C_3 ... C_m and let $P = p_1 p_2 ... p_k$ be the shortest possible path from R to C_1 . Assume that p_1 $V(C_j)$, j $\{2,3,...,m\}$. By Lemma 6 we have that 2 k 4. We now show Claim and three cases below.

Claim If $z = V(C_1)$, v = V(R), $z \Rightarrow V(R)$, $V(C_1) \Rightarrow v$ and V(z) = V(v), then there is a vertex u such that v = u = z. And if u is unique, then we have $(V(C_1) - \{z, z^+\}) \Rightarrow z$ and $v \Rightarrow (V(C_j) - \{v, v^-\})$.

In fact, suppose that $z \Rightarrow N^+(v)$, then we have $d^+(z) = d^+(v) + |\{z^+, v^-\}| = d^+(v) + 2$, which contradicts Corollary 2. And if u is unique, we can analogously check that $(V(C_1) - \{z, z^+\}) \Rightarrow z$ and $v \Rightarrow (V(C_j) - \{v, v^-\})$, otherwise we have $d^+(z) = d^+(v) + 2$, a contradiction.

Case 1 k = 2.

By applying Lemma 7 repeatedly, we have $\{p_1^+, p_2^-\} \subseteq Q, p_2^- \Rightarrow V(R) \text{ and } V(C_1) \Rightarrow p_1^+$. By Claim there is z = V(T) - V(F) such that $p_1^+ = z = p_2^-$.

If $p_2^{-3} = Q$, then by Lemma 7 we have $p_2^{-3} = p_1^{++}$. So the cycle subgraph $F = C_1$ $[p_2^{-1}, p_2^{-3}] C_j[p_1^{++}, p_1^{+}] z p_2^{-1} = (F - C_1 - C_j)$ has |V(F)| = |V(F)| = |V(F)| and as $p_2^{-1} = w$, we have V(F). Therefore F is a contradiction against the minimality of m. If $p_2^{-3} \notin Q$, then the cycle subgraph $F = C_1[p_2, p_2^{-3}] p_1^{+} z p_2^{-1} C_j[p_1^{++}, p_1] p_2$ $(F - C_1 - C_j)$ is also a contradiction against the minimality of m.

Case 2 k = 3.

By the minimality of k we must have $V(C_1) \Rightarrow V(R)$.

Subcase 2.1 $p_1^{++} = \text{and } V(p_1^{++}) V(p_3^{-}).$

The cycle subgraph $F = C_1[p_3, p_3]C_j[p_1^{++}, p_1]p_2p_3$ ($F - C_1 - C_j$) has V(F) since p_1^+ w, which is a contradiction to the minimality of m.

Subcase 2.2 $p_1^{++} = w$, $V(p_1^{++}) = V(p_3^{-})$ and $V(p_1^{+3}) - V(p_3^{-3})$.

By Claim there is a vertex z = V(T) - V(F) such that $p_1^{++} = z = p_3^{-}$. The cycle subgraph $F = C_1[p_3], p_3^{-3}]C_j[p_1^{+3}, p_1^{++}]zp_3$ (F - C_1 - C_j) has w = V(F) since p_3^{-} w and $w \notin V(C_1)$.

Subcase 2.3 $p_1^{++} = w$, $V(p_1^{++}) = V(p_3^{-})$ and $V(p_1^{+3}) = V(p_3^{-3})$.

If there is a vertex $z = V(T) - V(F) - \{p_2\}$ such that $p_1^{++} = z = p_3^{-}$, then $F = C_1$ $[p_3, p_3^{-3}]p_1^{++}zp_3^{-1}C_i[p_1^{+3}, p_1]p_2p_3$ (F - C_1 - C_i) is a contradiction to the minimality of m. If there is no such z, then by claim we have $V(C_1^1) - \{p_3^1\} \Rightarrow p_3^1$, so $F = C_i [p_1^+]$, p_1] p_2 C_1 [p_3 p_3^{-3}] p_3^{-1} p_1^{+} ($F - C_1 - C_i$) is a contradiction to the minimality of m.

Subcase 2.4 p_1^{++} w and $V(p_1^+)$ $V(p_3^{--})$.

The cycle subgraph $F = C_1[p_3, p_3^{-1}]C_j[p_1^+, p_1]p_2p_3$ ($F - C_1 - C_j$) is a contradiction to the minimality of m.

Subcase 2.5 p_1^{++} w, $V(p_1^+) = V(p_3^{--})$ and $V(p_1^{+3}) - V(p_3^{-3})$.

By claim there is a vertex z = V(T) - V(F) with $p_1^+ = z - p_3^-$. So $F = C_1[p_3^-]$, p_3^{-3} $C_i[p_1^{+3}, p_1^{+}]zp_3^{-1}$ (F - C_1 - C_i) is a contradiction to the minimality of m.

Subcase 2.6 p_1^{++} w, $V(p_1^+) = V(p_3^{--})$ and $V(p_1^{+3}) = V(p_3^{-3})$.

If there is vertex $z = V(T) - V(F) - \{p_2\}$ such that $p_1^+ = z = p_3^-$, then $F = C_1$ $[p_3, p_3^{-3}]p_1^+zp_3^{-1}$ $C_i[p_1^{+3}, p_1]p_2p_3$ $(F - C_1 - C_i)$ is a contradiction to the minimality of m. If no such vertex z exists, then we have $p_3^ p_1^+$ and p_1^+ p_1^{++} by lemma 7, so F = $C_1[p_3, p_3]C_j[p_1^{+3}, p_1]p_2p_3$ (F - C_1 - C_j) is contradiction to the minimality of mtoo.

Case 3. k = 4

By the minimality of k we have $V(C_1) \Rightarrow V(R)$. Furthermore, if $V(p_4^{-3}) = V(p_1^+)$, then Claim gives us a contradiction against the minimality of k. So we have $V(p_4^{-3})$ V (p_1^+)). Now $F = C_1[p_4, p_4^-] C_i[p_1^+, p_1] p_2 p_3 p_4$ $(F - C_1 - C_j)$ is a contradiction to the minimality of m.

Lemma 9 Let T be a c-partite (c 4) tournament with the partite sets $V_1, V_2, ..., V_c$ such that $|V_1|$ $|V_2|$... $|V_c|$ $|V_1|+1$ and $i_g(T)$ 1. Let $\{1,2,3\}$ and let F= C_1 C_2 ... C_l be a cycle subgraph in T. Let T = T - V(F) and let $\{x, y\} \subseteq V(T)$.

Then there exists at least ((x, y, T) - |V(x) V(F)| - |V(y) V(F)| - 1)/2 distinct -partners of (x, y) in F.

Proof Define

$$A_{1} = \{z \quad V(F) \mid z \quad x, y \quad z^{(+)}\}$$

$$A_{2} = \{z \quad V(F) \mid z \quad x, z^{(+)} \quad y\}$$

$$A_{3} = \{z \quad V(F) \mid x \quad z, y \quad z^{(+)}\}$$

$$A_{4} = \{z \quad V(F) \mid x \quad z, z^{(+)} \quad y\}$$

$$A_{5} = \{z \quad V(F) \mid z \quad V(x), y \quad z^{(+)}\}$$

$$A_{6} = \{z \quad V(F) \mid z \quad V(x), z^{(+)} \quad y\}$$

$$A_{7} = \{z \quad V(F) \mid z \quad x, z^{(+)} \quad V(y)\}$$

$$A_{8} = \{z \quad V(F) \mid z \quad z, z^{(+)} \quad V(y)\}$$

$$A_{9} = \{z \quad V(F) \mid z \quad V(x), y^{(+)} \quad V(y)\}.$$

Note that $(x, T) = (x, T) + |A_3| + |A_4| + |A_8| - |A_1| - |A_2| - |A_7|$ and $(y, T) = (y, T) + |A_1| + |A_3| + |A_5| - |A_2| - |A_4| - |A_6|$. Thus we have $(x, y, T) = (x, y, T) + 2|A_4| + |A_6| + |A_8| - 2|A_1| - |A_5| - |A_7|$ 1, which implies that $2|A_1| + 1$ $(x, y, T) - |A_5| - |A_7|$ (x, y, T) - |V(x)| + |V(y)| + |V(y)|.

Lemma 10 Let T be a c-partite (c 8) tournament with the partite sets $V_1, V_2, ..., V_c$ such that $|V_1| |V_2| ... |V_c| |V_1| + 1$ and $i_g(T)$ 1. Then for each V(D) there exists a (w, 2)-reducible 5-cycle in T.

Proof Let $A = N^+($) and $B = N^-($). Let A belong to the set A_l if and only if the longest path in A which ends in A has length A. Analogously define the sets A_l such that A_l if and only if the longest path in A which begins from A has length A. Let $A^* = \frac{|A|}{|A|}$ and A if A and A if A i

From the above definition it is obvious that A_0 , A_1 , B_0 , B_1 are all independent sets. Furthermore, we have $A_0 \Rightarrow A_1 \quad A^*$, $A_1 \Rightarrow A^*$ and $B^* \quad B_1 \Rightarrow B_0$, $B^* \Rightarrow B_1$. We now consider the following cases:

Case $1A^*$ Ø

If $B /\Rightarrow A^*$, then let $a_3 A^*$ and bB be chosen such that $a_3 b$. Let $a_1 a_2 a_3$ be a path of length 2 in A ending in A and observe that A =

Therefore assume that $B \Rightarrow A^*$. This implies that $S = V(w) - \{w\}$ is a separating set in T since $A = B = \{w\} - A^* \Rightarrow A^*$. However, $|S| = v_T^* < \frac{n-2v_T^*-2}{3} = \frac{n-2r}{3}$ when c = 8,

where $r = \max\{|V_i|\}$, which contradicts Lemma 3.

Case 2
$$B^*$$
 \emptyset

This is analogous to case 1.

Case 3
$$A^* = \emptyset$$
 and $B^* = \emptyset$.

In this case we have c=4 since A_0 , A_1 , B_0 , B_1 are all independent sets, which contradicts the initial assumption that c=7.

Lemma 11 Let T be a c-partite (c 13) tournament with the partite sets $V_1, V_2, ... V_c$ such that $|V_1| |V_2| ... |V_c| |V_1| + 1$ and $i_g(T)$ 1. Let w = V(T) be arbitrary. Then for all integers p with 3 $p = (c-2)v_T^* - 1$, there exists a cycle C in T with w = V(C) and |V(C)| = p.

Proof Let w = V(T) and let F be a cycle subgraph in T such that |V(F)| = p, w = V(F) and $|V(F)| = p \pmod{3}$. Such a cycle must exist since by lemma 10 there exists a 3-cycle, a 4-cycle and a 5-cycle all including the vertex w. We choose F such that F contains the maximum number of vertices with the desired properties. If |V(F)| = p, then we are done by lemma 8. So we assume that |V(F)| < p, which implies that $|V(F)| = p - 3 \pmod{2}$, $v_T^* - 4$.

Let T=T-V(F) and note that if T has a strong component with vertices from three of more partite sets, then there must exist a 3-cycle C in T and hence F C will be a contradiction against the maximality of |V(F)|, So there are vertices from at most two partite sets in any strong component of T, as $|V(F)| - (c-2)v_T^* - 4$, there are vertices from at least three partite sets in T, which implies that T is not strong. Let $Q_1, Q_2, ..., Q_m$ be the strong components of T such that $Q_i \Rightarrow Q_j$ for all 1 = i < j = m.

Let $x = Q_1$ be chosen such that $(x, T = Q_1) = 0$ and let $y = Q_m$ be chosen such that $(y, T = Q_m) = 0$. Since $|V(T)| = 2v_T^* + 4 > 2(v_T^* + 1) + 1$, there is a vertex z = V(T) - V(x) - V(y). If $z = Q_1$, then as Q_1 is strong and contains vertices from only two partite sets, there must be a vertex z = V(z) such that x = z. This implies that x = z = y is a (x, y)-path of length 2 in T. Analogously if $z = Q_m$, we can also obtain a(x, y)-path of length 2 in T. Hence there exists a (x, y)-path of length 2 in T, which we shall denote by R.

Since $(x, T) = (x, T Q_1) + |V(T) - V(x) - Q_1|$ and $(y, T) = (y, T Q_m) - |V(T) - V(y) - Q_m|$, we have that $(x, y, T) - |V(T) - V(x) - Q_1| + |V(T) - V(y) - Q_m|$ $|V(T) | - |Q_1| - |V(x) - |V(T)| + |V(T)| - |Q_m| - |V(y) - |V(T)|$ |V(T) | - |V(x) - |V(x)| - |V(y) - |V(x)|

By Lemma 9, $\{x, y\}$ has at least $(|V(T)| - 2(v_T^* + 1) - 1)/2 > 0$ 1-partners in F. Let z be any 1-partner in F and let C F be the cycle with z V(C). Now (F - C) $C[z^+, z]R$ is a contradiction against the maximality of |V(F)|.

Proof of Main Theorem By lemma 5 and lemma 11, it is sufficient to show that n(2c-2)/(3c-5)+2c/(3c-5)+1 $v_T^*(c-2)$. It holds when c=13.

References

- [1] Yeo A. Diregular c-partite tournaments are vertex-pancyclic when c 5. J Graph Theory, 1999, 32(2): $137 \sim 152$.
- [2] Gutin G. Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey. J Graph Theory, 1995, 19:481~505.
- [3] Bondy J A, U S R Murty. Graph Theory with Applications. New York: MacMillan Press, 1976.
- [4] Yeo A. How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity? Graphs Combin, 1999, 15(4):481 ~ 493.
- [5] Yeo A. One-diregular subgraphs in semicomplete multipartite digraphs. J Graph Theory, 1997,24:175~ 185.

多部竞赛图的点泛圈性

周国飞,张克民,薛国和

(南京大学数学系,南京,210093)

摘 要: 把 c 部完全图的每条边任意加上一个方向后得到的定向图称为 c 部竞赛图,设 T 为 c 部竞赛图,定义 $i_g(T) = \max_{x,y} |d^+(x) - d^-(y)|$. 给出了 c 部竞赛图具有点泛圈性的一个充分条件,即:设 T 为 c 部竞赛图 (c-13), V_1 , V_2 ,… V_c 为 T 的各分部. 如果 $|V_1| = |V_2|$ … $|V_c| = |V_1| + 1$ 并且 i_g (T) = 1,那么 T 具有点泛圈性.

关键词: 多部竞赛图,圈,点泛圈

中图分类号: O157.5