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A SEVEN-COLOR THEOREM ON EDGE-FACE
COLORING OF PLANE GRAPHS !
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Abstract Melnikov(1975) conjectured that the edges and faces of a plane graph G can
be colored with A(G) 4 3 colors so that any two adjacent or incident elements receive
distinct colors, where A(G) denotes the maximum degree of G. This paper proves the
conjecture for the case A(G) < 4.
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1 Introduction

Let G be a plane graph with the vertex set V(G), the edge set E(G), the face set F(G),
and the maximum degree A(G). The edge-face chromatic number x_,(G) of G is the minimum
number of colors assigned to E(G)U F(G) such that any two adjacent or incident elements have
different colors. By the definition, x_,(G) > A(G) is trivial. In 1975, Melnikov(#l raised the
following conjecture.

5

Conjecture 1.1 For every plane graph G, x.,(G) < A(G) +3.

The conjecture has been confirmed for the case A(G) < 3[3% and for the case A(G) > 8[2.
In particular, Borodinl?l proved that every plane graph G with A(G) > 10 is (A(G) + 1)-edge-
face colorable. The purpose of this paper is to settle the case A{G) = 4.

We shall use the standard terms and symbols in [1] except the following notations defined.
Let p(G) and ¢(G) denote the vertex number and the edge number of a plane graph G, re-
spectively. Let Vi(G) denote a set of all the vertices in G of degree k, k = 0,1,---,A(G). For
f € F(G), we denote the boundary of f by b(f). The unique outer face of G is written as
fout{G). Let a(y) denote the color assigned to y € E(G) U F(G) in a given edge-face coloring
o. For u € V(G), let Cy(u) denote the set of colors which are assigned to the edges incident to
uin 0.
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2 Preliminary

Let G be a plane graph and u a cut vertex of G. Then wu is said to be splitable if
there are plane graphs G; and G such that G = G1 U G2, V(G1) N V(G2) = {u}, and
min{dg, (u),dg,(u)} < 2.

Lemma 2.1 Let G be a plane graph and u a splitable cut vertex of G. Then

X.;(G) < max{x,,(G1),x.,(G2),dc(u) + 1}.

Proof Since u is a splitable cut vertex of G, there are plane graphs G; and G, such
that G = Gy U Ga, V(G1) N V(G3) = {u}, and min{dg, (u),dg,(u)} < 2. Suppose that
dg,(u) < 2. Obviously, de(u) = dg,(u) + de,(u). Moreover, we may suppose that u lies
on the outer face of G, and hence on the outer faces of G; and G> at the same time. Let
k = max{x,,(G1),x.,(G2),dc(u) + 1}. Thus G; has a k-edge-face coloring o; with a color set
Cifori=1,2. Bydg(u)+1 <k and dg, (u) < 2, we can choose ¢y and o3 so that (a) C1 = Cs;
(b) 01(fout(G1)) = oa{fout(G2)); and () Cy, (uw) N Co,(u) = §. Therefore, combining oy with
02, we obtain a k-edge-face coloring o of G with the color set Cy. It follows that x,,(G) < k.

Lemma 2.2 If G is a plane graph with A(G) < 5, then each cut vertex of G is splitable.

Lemma 2.3 Let G be a connected plane graph with cut edges and p(G) > 3. Then G
contains at least one splitable cut vertex.

Lemmas 2.2 and 2.3 are obvious. Let G be a 2-connected plane graph and {e;, ez} be a
2-edge cut of G. Then both e; and e; must simultaneously lie on the boundary of some face fy.
We say that {ej,e2} C b( fo) is a special 2-edge cut of G if G —e; —e; is disconnected, and there
exists an edge e € b(fo) — {e1,e2} such that eg is adjacent to both e; and e;. Let eg = z122
with e;Neg = {x;}, ¢ = 1,2. In fact, {x1,22} is a 2-vertex cut of G. Set G —e; — ey = Hy1 U Hs,
where eg € E(H3), G1 = H; U {eq, e1,¢€2}, and G2 = Ha. Hence G = G1 UGs, G1NG: = {eo},
and fo € F(Gy).

Lemma 2.4 If A(G) <4 and x,,(G;) <7 fori=1,2, then x,,(G) < 7.

Proof Let f; denote the face of G separated by e; and ez and f; # fo, and f, the face of
G with eg as a boundary edge and f, # fo. First, by x.,(G2) <7, G2 has a 7-edge-face coloring
oo with a color set C. It is easy to see that, for any 7-edge-face coloring oy of Gy, three colors
o1(fo), o1(eo) and o1(f1) must be pairwise distinct, and they can be prescribed any values. We
now fix o1(eg) = o2(eq), and o1{f1) = o2(f1). If e; and e, are required to color different colors
in 01, we put o1(e1) € C—(Co,(z1)U{01(f1)}), and o1(e2) € C—(Co,(22) U{01(f1),01(€1)})-
Otherwise we let

o1(e1) = g1(e2) € C — (Co,(21) U Co,(z2) U {o1(f1)})-

Afterwards, o1(fo) € C — {o1(e1),01(e2),01(f1),01(€0),02(f2)}. Noting that de,(z;) = 2 and
deg,(zi) = dg(z;) — 1 < 3, we have |C,,(zi)| < 3,2 = 1,2, [Cy,(21) U Cy,(m2)| < 5. Since
|C| = 7, the above coloring is available. Combining o3 with o3, we obtain a 7-edge-face coloring
of G.

Suppose that {e;,es} C b(fo) is a non-special 2-edge cut of a 2-connected plane graph G.
Thus dg(fo) > 6. Let e; = z1y1, €2 = Z2y2, and G — 3 — ez = H1 U Hy with 23,25 € V(H,),
y1.y2 € V(H,). Then clearly 2122, y142 € E(G). Set Hy = Hy + z122 and Hy = Ha + y1y2.
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So H; is a 2-connected plane graph with q(H;) < ¢(G), i = 1,2. The following two lemmas are
straightforward.

Lemma 2.5 If A(G) < 4and x_,(H;) <7,i=1,2, then x_,(G) < 7.

Lemma 2.6 Let G be a plane multigraph with A(G) > 3, and G a subdivision of G. If
G is (A(G) + 3)-edge-face colorable, then so is G.

Let G be a connected plane graph and C}, denote a cycle in G of length k. Then the rest of
G is partitioned into two edge-disjoint parts, where the part which contains the outer face of G is
called the exterior of Cy and the other the interior. Let Vipe(Cr) and Vex((Cr) denote the sets of
vertices which are contained in the interior and the exterior of Cy, respectively. If Vine(Cy) # 0
and Vexe(Ck) # 0, we say that Ci is a k-separating cycle of G. In particular, C3 is called a
separating triangle. We claim that each 2-separating cycle Cy = ziejz2e5x1 will yield a 2-edge
cut of G when G is 2-connected and A(G) = 4. Note that e; and e, are, in fact, two multiple
edges between z; and z;. Let G1 = G[Vine(C2) U {21, £2}]. Thus d¢, (1) = dg,(z2) = 3 and
dg(z1) = dg(z2) = 4. Let €? € E(G) — E(G,) be incident to z; in G, i = 1,2. Then {e?,€3} is
a 2-edge cut of G. : '

For u € V(G) with dg(u) > 3, we set Ng(u) = Ng(u) U {u}. If G[Ng(u)] contains no a
separating triangle passing through u, then w is said to be a regular vertex of G. Clearly, if u
is a regular vertex of G, then, for any »,w € Ng{u), vw € E(G) if and only if uvw € F(G).
Similarly, let f be a face of G and fy, fa,- -, fin be its neighbour faces in the clockwise order,
here m = dg(f) > 3. If, for any i # j, f; is adjacent to f; if and only if |i — j| = 1(inod m) and
the common boundary vertex of f;, f;, and f is of degree 3, then f is called a regular face of
G.

Lemma 2.7 If G is a 2-connected simple plane graph with 6(G) > 3, then G contains a
regular vertex of degree no more than 5.

Proof If G contains no separating triangle, then the theorem is obvious. Thus suppose
that G contains separating triangles. Choose a separating triangle T' = zyz with as few internal
vertices as possible. Consider the graph H = G[Vi,(T) U {z,y, z}]. Since G is 2-connected, so
is H. This implies that 6(G) > 2. Moreover, Vo(H) C {z,y,2} and |V3(H)| < 1 by §(G) > 3.
Now let us estimate the number of vertices in H of degree at most 5. Let p; = |V;(H)|. By

> du(u) = 2q(H) < 6p(H) ~ 12,

ueV(H)
we have
A(H) A(H)
Z ip; < 6p(H)—12=6 Zpi—12.
=2 i=2
Equivalently,

4py + 3ps + 2ps + ps > 12.

If p; = 0, then 3pa + 2ps + ps > 12, and it follows easily that p3 + ps + ps > 4. If p; = 1, then
3p3 + 2py + ps > 8 and further we have p3 + ps + ps > 3. Thus we obtain in two cases that
P2 + 3 + ps + ps > 4. This implies that there is at least one vertex u € V(H) — {z,y, 2} such
that 3 < dg(u) = dg(u) < 5. We claim that w is just a desired vertex to the theorem. In fact, if
there exists a separating triangle 7 = uwvw in G[N g(u)], then obviously @ # Vine(T*) C Vine(T).



246 ACTA MATHEMATICA SCIENTIA Vol.21 Ser.B

But it follows from u € Vige(T) — Vine(T") that 1 < |Vipe(T")| < |Vine(T')|, which contradicts the
choice of T

Lemma 2.8 If G is a 2-connected and 3-edge connected simple plane graph with §(G) > 3,
then G contains a regular face of degree no more than 5.

Proof First note that G*, the dual of G, is a 2-connected simple plane graph with
8(G*) > 3. Thus G* contains a regular vertex u* of degree at most 5 by Lemma 2.7. From the
one-to-one relation between F(G) and V(G*), it follows that f, the image of u*, is a regular
face of G with degree no more than 5.

In order to prove the following lemma, we say that a color a is forbidden at the vertex v
if any edge incident to v can not get «. Moreover, we write J, = {1,2,---,n}.

Lemma 2.9 Let C = ujus---uyu; be a cycle of length » > 3 and B a set of six colors.
Let B; C B denote a subset of all forbidden colors at the vertex u; and |B;}| =2,i=1,2,---,n.
Then E(C') can be properly colored with the colors in B whatever By, Bs, - -+, By, are prescribed.

Proof We declare that all suffixes here are taken modulo n. For ¢ € J,, let 4;;41 =
B — B; — Bjy1, which is a set of admissible colors of the edge u;u;+1. In view of |B| = 6 and
{B;| = 2, we have

[Aiiy1] = {B| = |Bi U Bigi| > |B| = |Bi| — |Biy1| = 2,

and |A,',,'+1I =2 if and only if B; N Bj4y = 0.
If there is j € J, such that B; N By # 0, ie., [A;j11] > 3, we color u; 1uji2, ujt2ujya,
o+, uj_1t;, and ujujy, successively. Otherwise, we have

BN B;y1 = ¢ forallied,. (21)

First suppose n = 2k + 1 > 3. Let us prove the following inequality

2k+1
U il 2 3.
i=1
Suppose that this is not true, we immediately have 4; ; = Az 3 = -+ = Agpy1,; and |4 ;11| = 2.
Furthermore,
BiUB; =ByUB3=--- =By UBay1 = Bop1 U By

by B; C B for all i € J,,. Since 2k + 1 is odd, it follows
Bl = .33 = e T sz—l = B2k+1, (2.2)

or
Bz = B4 = = sz = sz+1. (23)

But By = By, in (2.2) and Ba; = Bagyi in (2.3) contradict (2.1) because ujusg 41, YakUzk41 €
E(C). Thus there is j € J, such that A;_;; # Aj ;1. We color uju;41 with some color from

Aj i1 — Aj_y;, then color ujy1ujye, Ujpatjpa, - -, Uj—14;, successively.
Next let n = 2k > 4. If there is j € J, such that A; ;11 # Aj_1,j, we shall have a coloring
similarly to the previous case. If A1z = 423 = -+ = Azr—1,2¢ = Ax,1, & proper coloring can

be easily given.
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3 Seven-Color Theorem

Theorem 3.1 If G is a multiple plane graph with A(G) = 4, then x_,(G) < 7.

Proof We proceed by induction on ¢(G). The theorem holds trivially for ¢(G) < 4. Let
G be a multiple plane graph with A(G) = 4 and with m(> 5) edges. By Lemmas 2.2, 2.5 and
2.6, we may suppose that G is 2-connected, without 2-edge cut, without separating 2-cycle, and
8G) > 3.

If G contains two multiple edges e and e; between two vertices u and v, then the 2-cycle
C = ueyvezu forms a 2-face fi of G. By the induction assumption, G — e; has a 7-edge-face
coloring A. Based on A, we can color e; and f, successively.

Now assume that G has no multiple edges. By Lemma 2.8, G contains a regular face f
with 3 < dg(f) < 5. We only give a proof for the case dg(f) = 5 since other cases can be
similarly handled. Suppose that b{(f) = ujeiuzesusezusesusesuy, where e; = u;u;4; for each
i € Js. Let F(f) = {f1, f2, f3, fa, f5} denote a set of faces in G each of which is adjacent to f,
satisfying e; € b(f;) for i € J5. Since 3 < dg(u;) < 4, we only consider the following four cases
to form a 7-edge-face coloring o of G.

Case 0 [V3(G)NV(b(f))|=0. .

Since de(u;) = 4 for all ¢ € Js, Lemma 2.8 implies that any two faces of F(f) are
nonadjacent. Let H = G — {e1,e2,e3,€e4,e5}. Let fo denote the face of H with us, ug, u3, ug, us
as boundary vertices. By the induction assumption, H has a 7-edge-face coloring A with a color
set C. Let B; = C\(u;) for i € J5, and B = C — {A(fo)}. It is clear that |B| = |C|— 1 =6 and
[B;] = 2 for all ¢ € J5. By Lemma 2.9, e1,e5,---, €5 can be properly colored with the colors in
B. Then we put

o(f1) = o(f2) = --- = o(fs) = A fo),
o(f) € C~ {M(fo),o(e1),0(e2),0(ea), a(eq), o(es)}.

Case 1 |V3(G)NV(b(f))] =1

Let dg(u1) = 3, dg(w;) = 4, i = 2,3,4,5. By Lemma 2.8, no two faces of F(f) ~ {fs} are
adjacent. Define the graph H = G — {e1,€2,€e3,€4}. Let fo denote the face of H with e as a
boundary edge and fo # fs. By the induction assumption, H has a 7-edge-face coloring X with
a color set C. Restore G and discolor the edge es. Now we put

a(fs) = A(fs),0(f1) = o(f2) = o(f3) = a(fs) = M fo).

Then let B; = Cx{u;), i =2,3,4, B; = Ca(u;) — {X(es)}, = 1,5. We claim that there must
exist some color a € C' — {A(fo),A(fs)} such that a can be assigned to two edges in b(f). In
fact, if this were absurd, then each color of C — {A(fo), A(fs)} must occur on U?=1 B; at least
twice, and so the total number of times is at least 10. But, by [By] =1 and |B;| =2, i # 1, we
have lUf’=1 Bl < E?:I |B;| = 9, a contradiction. If a can be used to color both e; and ez, we
put o(e1) = o{ea) = «, and then color ey, eq, €5, and f, successively. If & can be used to color
both e; and e4, we put o(e2) = o(es} = @ and then color e3,e;, €5, and f successively.

Case 2 |V3(G)NV(b(f)) =2.

If there is ¢ € Js such that dg(u:) = dg(uit1) = 3, the proof is simple. Thus we suppose
dg(uy) = de(us) = 3, de(w;) = 4, i = 2,3,5. So f4 is not adjacent to f5, and fy, fo, and
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f3 are pairwise nonadjacent. Set H = G — {e;,ez,€3,e4,€5} + ujuga. Let A be a T-edge-face
coloring of H with a color set C. Let f" and f” stand for the faces of H separated by ujuq4
with us € d(f') and uz,uz € b(f”). In G we first color f; and f5 with A(f"), and fi, fo, f3
with A(f""). Then let B; = Cx(u;), 1 = 2,3,5, and B; = Ci(u;) — {AMuius)}, 7 = 1,4. Since
(By| = {Bs| = 1, |Ba| = |Ba| = |Bs| = 2, and {UL_, Bsl < Y0, |Bi| = 8, it follows that
there is @ € C ~ {A(f'), A(f")} such that & can be properly assigned to two edges in b(f).
If o(e1) = o(e3) = a, we color ez,e4,¢5, and f successively. If o(es) = o(es) = «, we color
€3,€1,eq, and f successively. For the other cases, we shall give a similar coloring.

Case 3 [Va(G) NV(b())| > 3.

Without loss of generality, we suppose that dg(ui) = dg(u2) = 3. Form a 7-edge-face
coloring A of G — e;. Restore G and remove the colors from es, e3,e4,e5. If there is ¢; # €;
such that dg(uw;) = de{uiy1) = 4, we color e, f,eir1,€i42, *,€5,€i_1,€i_2,*+,e2, and e
successively. Otherwise we color f,e,, e3,eq4,€5, and e; successively.

We now exhaust all cases and therefore the proof is complete.
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