Cycles Containing a Given Arc in Regular Multipartite Tournaments

Guo-fei Zhou, Ke-min Zhang
Department of Mathematics, Nanjing University, Nanjing 210093, China (E-mail: gfzhou@nju.edu.cn)

Abstract

In this paper we prove that if T is a regular n-partite tournament with $n \geq 6$, then each arc of T lies on a k-cycle for $k=4,5, \cdots, n$. Our result generalizes theorems due to Alspach ${ }^{[1]}$ and Guo ${ }^{[3]}$ respectively.

Keywords Multitepartite tournaments, cycle
2000 MR Subject Classification 05C20

1 Introduction

We follow the terminologies and notations of [2]. Let $D=(V(D), A(D))$ be a digraph. If $x y$ is an arc of a digraph D, then we say that x dominates y, denoted by $x \rightarrow y$. More generally, if A and B are two disjoint vertex sets of D such that every vertex of A dominates every vertex of B, then we say that A dominates B, denoted by $A \Rightarrow B$. The outset $N^{+}(x)$ of a vertex x is the set of vertices dominated by x in D, and the inset $N^{-}(x)$ is the set of vertices dominating x in D. The irregularity $i(D)$ is max $\left|d^{+}(x)-d^{-}(y)\right|$ over all vertices x and y of $D(x=y$ is admissible). If $i(D)=0$, we say D is regular. A k-cycle is a cycle of length k. Let $U \subseteq V(D)$, we use $D\langle U\rangle$ to denote the subdigraph induced by U. Let T be a multipartite tournament and $x \in V(T)$, we use $V(x)$ to denote the partite set of T to which x belongs. A k-outpath of an arc $x y$ in a multipartite tournament is a directed path with length k starting from $x y$ such that x does not dominate the end vertex of the directed path.

Guo and Volkmann ${ }^{[4]}$ proved that every partite set of a strongly connected n-partite tournament has at least one vertex which lies on a k-cycle for each $k, 3 \leq k \leq n$. Yeo ${ }^{[6]}$ proves that if T is a regular n-partite tournament of order p with $n \geq 5$, then each vertex of T lies on a cycle of length k, for $k=3,4, \cdots, p$. Furthermore, Guo ${ }^{[3]}$ proved that if T is a regular n-partite $(n \geq 3)$ tournament, then every arc of T has an outpath of length $k-1$ for all k satisfying $3 \leq k \leq n$.

In this paper we show that, if T is a regular n-partite tournament with $n \geq 6$, then each arc of T lies on a k-cycle for $k=4,5, \cdots, n$.

2 Main results

Lemma. Let T be a regular n-partite tournament and let $e=(u, v)$ be an arbitrary arc in T, if e is not contained in any 4 -cycle, then
(1) $N^{+}(v) \cap N^{-}(u)=V(w)$ for some $w \in V(T)$.
(2) $V(u) \Rightarrow v$ and $u \Rightarrow V(v)$.

Proof. (1) If there are two vertices $x, y \in N^{+}(v) \cap N^{-}(u)$ such that $x \rightarrow y$, then uvxyu is a 4 -cycle containing e, which is a contradiction to the initial hypothesis. Hence $N^{+}(v) \cap N^{-}(u)$

[^0]is either an empty set or an independent set. So there is $w \in V(T)$ such that $N^{+}(v) \cap N^{-}(u) \subseteq$ $V(w)$. Assume that $N^{+}(v) \cap N^{-}(u) \neq V(w)$. Then since T is regular, each partite set has the same cardinality (say s), hence we have $\left|N^{+}(v) \cap N^{-}(u)\right|<|V(w)|=s$. On the one hand,
$$
\left|N^{+}(v)\right|+\left|N^{-}(u)\right|=\frac{n-1}{2} s+\frac{n-1}{2} s=(n-1) s
$$

On the other hand, since

$$
\left|N^{+}(v)\right|+\left|N^{-}(u)\right|=\left|N^{+}(v) \cap N^{-}(u)\right|+\left|N^{+}(v) \cup N^{-}(u)\right|<s+(n-2) s=(n-1) s
$$

which implies that $(n-1) s<(n-1) s$, a contradiction. Therefore we have $N^{+}(v) \cap N^{-}(u)=$ $V(w)$.
(2) Suppose that there is $x \in V(u)$ such that $v \rightarrow x$. If $u \Rightarrow N^{+}(x)$, then $d^{+}(u) \geq$ $d^{+}(x)+|\{v\}|$, which contradicts the regularity of T. So there is $y \in N^{+}(x)$ such that $y \rightarrow u$, and then uvxyu is a 4-cycle containing e, again a contradiction. Hence we have $V(u) \Rightarrow v$.

Using arguments similar to that of the Lemma, we can also prove that $u \Rightarrow V(v)$.
Theorem. Let T be a regular n-partite tournament with $n \geq 6$, then each arc of T lies on a k-cycle for $k=4,5, \cdots, n$.
Proof. Since T is regular, it is not difficult to check that all partite sets of T have the same cardinality, say s. So it is clear that $\left|N^{+}(x)\right|=\left|N^{-}(x)\right|=\frac{(n-1) s}{2}$ for each $x \in V(T)$.

Let $e=(u, v)$ be any arc in T, we shall first show that e lies on a 4-cycle.
Let $A=N^{+}(v)$ and $B=N^{-}(u)$. If there exist a, b in $A \cap B$ such that $a \rightarrow b$, then uvabu is a 4-cycle containing e. So we may assume that $A \cap B$ is either an empty set or an independent set. Let $t=|A \cap B|$, then $t \leq s$. By the Lemma, we know that $V(u) \Rightarrow v$, it follows that $V(u) \cap A=\emptyset$. Let k be the number of partite sets in $T\langle A-B\rangle$, then $k \leq n-2$. Again by the Lemma we know that there is x in A such that $d_{T[A]}^{+}(x) \leq \frac{(n-3)(|A|-t)}{2(n-2)}$, it follows that

$$
\left|N^{+}(x)-A\right| \geq \frac{(n-1) s}{2}-\frac{(n-3)(|A|-t)}{2(n-2)}
$$

If there is $y \in N^{+}(x) \cap B$, then uvxyu will be a 4-cycle containing e. So we assume that $N^{+}(x) \cap B=\emptyset$. It follows that

$$
|V(T)| \geq|A|+|B|-|A \cap B|+\left|N^{+}(x)-A\right|+|\{u, v\}|
$$

that is

$$
n s \geq \frac{(n-1) s}{2}+\frac{(n-1) s}{2}-t+\frac{(n-1) s}{2}-\frac{(n-3)(|A|-t)}{2(n-2)}+2
$$

it follows that $t \geq \frac{[(n-3) s+4](n-2)}{3 n-7}$, since $t \leq s$, we have $s \geq \frac{[(n-3) s+4](n-2)}{3 n-7}$, which implies that $\left(n^{2}-8 n+13\right) s+4(n-2) \leq 0$, this is impossible since $n \geq 6$. Therefore we have that e is contained in a 4 -cycle.

Let $C=v_{1} v_{2} \cdots v_{m} v_{1}$ be an m-cycle containing e, where $e=\left(v_{m}, v_{1}\right)$ and $4 \leq m \leq n-1$. It suffices to show that e is contained in an $(m+1)$-cycle. In the following, we always assume that $s \geq 2$, since otherwise by [1] the theorem is valid.

Note that for each $x \in V(C), N^{+}(x)-V(C) \neq \emptyset$ and $N^{-}(x)-V(C) \neq \emptyset$, otherwise we have $m=|V(C)| \geq d^{+}(x)+1 \geq(n-1) s / 2+1 \geq n$, a contradiction.

Let
$S=\{$ all vertices that beong to partite sets that are not represented on $C\} ;$
$A=\{x \mid x \in S, V(C) \Rightarrow x\} ; B=\{y \mid y \in S, y \Rightarrow V(C)\} ; \quad X=S-A-B$.
We consider the following cases:
Case 1. $A \neq \emptyset$ or $B \neq \emptyset$.

Without loses of generality, we may assume that $A \neq \emptyset$; for the case that $B \neq \emptyset$, we only need to consider the converse of T.

Let $a \in A$, by the definition of A, we have $V(C) \Rightarrow a$. Note that $N^{-}\left(v_{m}\right)-V(C) \neq \emptyset$.
If there is $b \in N^{-}\left(v_{m}\right)-V(C)$ such that $a \rightarrow b$, then $v_{1} v_{2} \cdots v_{m-2} a b v_{m} v_{1}$ will be an $(m+1)$-cycle containing e.

If $N^{-}\left(v_{m}\right)-V(C) \Rightarrow a$, then we have $d^{-}(a) \geq d^{-}\left(v_{m}\right)+\left|\left\{v_{m}, v_{1}\right\}\right|$, which contradicts the regularity of T.

So we assume that there is $b \in N^{-}\left(v_{m}\right)-V(C)$ such that $V(a)=V(b)$. Since $s \geq 2, N^{-}(b)-$ $V(C) \neq \emptyset$. Hence if there is $c \in N^{-}(b)-V(C)$ such that $a \rightarrow c$, then $v_{1} v_{2} \cdots v_{m-3} a c b v_{m} v_{1}$ will be an $(m+1)$-cycle containing e; and if $N^{-}(b)-V(C) \Rightarrow a$, then we have $d^{-}(a) \geq d^{-}(b)+\left|\left\{v_{m}\right\}\right|$, which contradicts the regularity of T.
Case 2. $\quad A=\emptyset$ and $B=\emptyset$.
In this case we have $X \neq \emptyset$. If there is $x \in X$ such that $v_{1} \rightarrow x$, then since x is adjacent to each vertex of $V(C), V(C) \Rightarrow x$, which is a contradiction that $x \in X$. So we have $X \Rightarrow v_{1}$. Similarly, we have $v_{m} \Rightarrow X$.
Subcase 2.1. There is $x \in X$ such that $x \rightarrow v_{m-1}$.
Then we have $x \Rightarrow\left\{v_{1}, v_{2}, \cdots, v_{m-1}\right\}$. Since $X \Rightarrow v_{1}$, each vertex in $N^{+}\left(v_{1}\right)-V(C)$ is adjacent to x.

If there is $y \in N^{+}\left(v_{1}\right)-V(C)$ such that $y \rightarrow x$, then $v_{1} y x v_{3} \cdots v_{m} v_{1}$ is an $(m+1)$-cycle containing e.

If $x \Rightarrow N^{+}\left(v_{1}\right)-V(C)$, then $d^{+}(x) \geq d^{+}\left(v_{1}\right)+\left|\left\{v_{1}\right\}\right|$, a contradiction to the regularity of T.
Subcase 2.2. $v_{m-1} \Rightarrow X$.
By considering the converse of T of subcase 2.1 , we may also assume that $X \Rightarrow v_{2}$.
Subcase 2.2.1. $m=4$.
If $n \geq 7$, then we have $d^{+}\left(v_{4}\right) \geq(n-4) s+1 \geq 3 s+1$; but $d^{-}\left(v_{4}\right) \leq 3 s-1$. Thus we have $d^{+}\left(v_{4}\right) \neq d^{-}\left(v_{4}\right)$, a contradiction. So we consider the case that $n=6$.

Let t be number of partite sets in $T\langle X\rangle$. Since $n=6$ and $m=4, t \geq 2$. If $t \geq 3$, then $d^{+}\left(v_{4}\right) \geq|X|+\left|\left\{v_{1}\right\}\right| \geq 3 s+1$, which contradicts the regularity of T. So we assume that $t=2$. Let $x, y \in X$ such that $x \rightarrow y$. Since $n=6, T\langle V(C)\rangle$ is a tournament. If $v_{2} \rightarrow v_{4}$, then we have $x \Rightarrow N^{+}\left(v_{1}\right)-V(C)$, since otherwise let $z \in N^{+}\left(v_{1}\right)-V(C)$ such that $z \rightarrow x$, then $v_{1} z x v_{2} v_{4} v_{1}$ is a 5-cycle containing e. Hence $d^{+}(x) \geq d^{+}\left(v_{1}\right)+\left|\left\{v_{1}, y\right\}\right|-\left|\left\{v_{3}\right\}\right|$, a contradiction. So we have $v_{4} \rightarrow v_{2}$. Similarly we have $v_{3} \rightarrow v_{1}$.

Since $|V(T)| \geq\left|N^{+}\left(v_{1}\right)-V(C)\right|+\left|N^{-}\left(v_{4}\right)-V(C)\right|-\left|N^{+}\left(v_{1}\right) \cap N^{-}\left(v_{4}\right)-V(C)\right|+|X|+$ $|V(C)|$, that is $6 s \geq \frac{5}{2} s-1+\frac{5}{2} s-1-\left|N^{+}\left(v_{1}\right) \cap N^{-}\left(v_{4}\right)-V(C)\right|+|2 s|+4$, which follows that $\left|N^{+}\left(v_{1}\right) \cap N^{-}\left(v_{4}\right)-V(C)\right| \geq s+2$. Hence there exist $c, d \in N^{+}\left(v_{1}\right) \cap N^{-}\left(v_{4}\right)-V(C)$ such that $c \rightarrow d$. Note that $v_{1} c d v_{4} v_{1}$ is another 4 -cycle containing e, from the same argument as above, we have $v_{4} \rightarrow c$ and $d \rightarrow v_{1}$, this contradicts that $c \rightarrow v_{4}$ and $v_{1} \rightarrow d$.
Subcase 2.2.2. $m \geq 5$.
Suppose first that there is $x \in X$ such that $x \rightarrow v_{m-2}$.
Then $x \Rightarrow\left\{v_{1}, v_{2}, \cdots, v_{m-2}\right\}$. Since $x \rightarrow v_{1}, x$ is adjacent to each vertex of $N^{+}\left(v_{1}\right)-V(C)$. If there is $y \in N^{+}\left(v_{1}\right)-V(C)$ such that $y \rightarrow x$, then $v_{1} y x v_{3} \cdots v_{m} v_{1}$ is an ($m+1$)-cycle containing e. So we may assume that $x \Rightarrow N^{+}\left(v_{1}\right)-V(C)$, it follows that $v_{1} \Rightarrow\left\{v_{2}, v_{3}, \cdots, v_{m-1}\right\}$, since otherwise let $v_{i} \in\left\{v_{2}, v_{3}, \cdots, v_{m-1}\right\}$ such that $v_{i} \rightarrow v_{1}$, we must have $d^{+}(x) \geq d^{+}\left(v_{1}\right)+\left|\left\{v_{1}\right\}\right|$, a contradiction to regularity of T. Hence we have $v_{m} \Rightarrow N^{+}\left(v_{1}\right)-V(C)-V\left(v_{m}\right)$; otherwise let $y \in N^{+}\left(v_{1}\right)-V(C)-V\left(v_{m}\right)$ such that $y \rightarrow v_{m}$, then $v_{1} v_{3} \cdots v_{m-1} x y v_{m} v_{1}$ will be an $(m+1)$-cycle containing e, a contradiction. On the other hand, if $v_{1} \rightarrow v_{i}$, then we must have $v_{m} \rightarrow v_{i-1}$, otherwise $v_{1} v_{i} \cdots v_{m-1} x v_{2} \cdots v_{i-1} v_{m} v_{1}$ will be an $(m+1)$-cycle containing e. It follows that

$$
\left|N^{+}\left(v_{m}\right) \cap V(C)\right| \geq\left|N^{+}\left(v_{1}\right) \cap V(C)\right|-\left|V\left(v_{m}\right) \cap V(C)\right|+1
$$

hence we have

$$
d^{+}\left(v_{m}\right) \geq d^{+}\left(v_{1}\right)+|X|-\left|N^{+}\left(v_{1}\right) \cap V\left(v_{m}\right)-V(C)\right|-\left(\left|V\left(v_{m}\right) \cap V(C)\right|-1\right)
$$

which yields $d^{+}\left(v_{m}\right) \geq d^{+}\left(v_{1}\right)+(n-m) s-s+1 \geq d^{+}\left(v_{1}\right)+1$, a contradiction to the regularity of T.

Therefore we assume that $v_{m-2} \Rightarrow X$. Consider the converse of T, we can also assume that $X \Rightarrow v_{3}$.

Now let $x \in X$. If there exists $y \in N^{+}\left(v_{1}\right)-V(C)$ such that $y \rightarrow x$, then $v_{1} y x v_{3} \cdots v_{m} v_{1}$ is an $(m+1)$-cycle containing e. So in the following we assume that $x \Rightarrow N^{+}\left(v_{1}\right)-V(C)$.

If there is $z \in N^{+}\left(v_{1}\right)-V(C)-V\left(v_{m}\right)$ such that $z \rightarrow v_{m}$, then $v_{1} v_{2} \cdots v_{m-2} x z v_{m} v_{1}$ will be an ($m+1$)-cycle containing e, a contradiction, so we have $v_{m} \Rightarrow N^{+}\left(v_{1}\right)-V(C)-V\left(v_{m}\right)$; On the other hand, if $v_{1} \rightarrow v_{i}$, then we must have $v_{m} \rightarrow v_{i-1}$, otherwise $v_{1} v_{i} \cdots v_{m-1} x v_{2} \cdots v_{i-1} v_{m} v_{1}$ will be an $(m+1)$-cycle containing e. It follows that

$$
\left|N^{+}\left(v_{m}\right) \cap V(C)\right| \geq\left|N^{+}\left(v_{1}\right) \cap V(C)\right|-\left|V\left(v_{m}\right) \cap V(C)\right|+1 .
$$

hence we have

$$
d^{+}\left(v_{m}\right) \geq d^{+}\left(v_{1}\right)+|X|-\left|N^{+}\left(v_{1}\right) \cap V\left(v_{m}\right)-V(C)\right|-\left(\left|V\left(v_{m}\right) \cap V(C)\right|-1\right),
$$

which yields $d^{+}\left(v_{m}\right) \geq d^{+}\left(v_{1}\right)+(n-m) s-s+1 \geq d^{+}\left(v_{1}\right)+1$, a contradiction to the regularity of T.

This completes the proof of the Theorem.

3 Remarks

For $n \leq 5$, the theorem does not hold any more.
Let $V_{1}=A_{1}, \quad V_{2}=A_{2} \cup A_{3}, V_{3}=\{u\} \cup A_{4}, V_{4}=\{v\} \cup A_{5}, \quad V_{5}=A_{6} \cup A_{7}$, where $\left|V_{i}\right|=8$ and $\left|A_{2}\right|=\left|A_{3}\right|=\left|A_{6}\right|=\left|A_{7}\right|=4$. We construct a 5-partite tournament as follows:
(1) Add arcs between A_{2} and A_{7} such that $T\left\langle A_{2} \cup A_{7}\right\rangle$ is regular.
(2) Add arcs between A_{3} and A_{6} such that $T\left\langle A_{3} \cup A_{6}\right\rangle$ is regular.
(3) Let $A_{1} \Rightarrow A_{2} \cup V_{4} \cup A_{7}, A_{2} \Rightarrow A_{4} \cup A_{5}, A_{3} \Rightarrow A_{1} \cup A_{7} \cup\{u, v\}, u \Rightarrow A_{2} \cup A_{7}$, $A_{4} \Rightarrow A_{3} \cup A_{6}, V_{3} \Rightarrow V_{4}, A_{5} \Rightarrow A_{1} \cup A_{3} \cup a_{6}, v \Rightarrow A_{1} \cup A_{2} \cup A_{7}, A_{6} \Rightarrow A_{1} \cup A_{2} \cup\{u, v\}$, $A_{7} \Rightarrow A_{4} \cup A_{5}$.

We can check that this is a regular 5-partite tournament but $u v$ is not contained in any 4 -cycle.

Moreover, we construct a 6 -partite tournament T as follows: Let C_{1}, C_{2}, C_{3} be three disjoint 4-cycles, let $V(T)=V\left(C_{1}\right) \cup V\left(C_{2}\right) \cup V\left(C_{3}\right)$, and let $V\left(C_{1}\right) \Rightarrow V\left(C_{2}\right) \Rightarrow V\left(C_{3}\right) \Rightarrow V\left(C_{1}\right)$. In this tournament, we can see that each arc of any C_{i} is not contained in a 3 -cycle. So our result is the best possible in a certain sense.

Finally, we raise the following conjecture:
Conjecture. Let T be a regular n-partite ($n \geq 6$) tournament of order p, then each arc of T lies on a k-cycle, for $k=4,5, \cdots, p$.

References

[1] Alspach, B. Cycles of each length in regular tournaments. Canad. Math. Bull., 10: 283-286 (1967)
[2] Bondy, J.A., Murty, U.S.R. Graph theory with applications. MacMillan Press, New York (1976)
[3] Guo, Y. Outpaths in semicomplete multipartite digraphs. Discrete Applied Math., 95: 273-277 (1999)
[4] Guo, Y., Volkmann, L. Cycles in multipartite tournaments. J. Combin. Theory (Seirs B), 62: 363-366 (1994)
[5] Volkmann L. Cycles in multipartite tournaments: results and problems. Discrete Math., 245: 19-53 (2002)
[6] Yeo, A. Diregular c-partite tournaments are vertex-pancyclic when $c \geq 5$. J. Graph Theory, 32: 137-152 (1999)

[^0]: Manuscript received October 8, 1999. Revised August 12, 2002.

