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Abstract In this paper we prove that if T is a regular n-partite tournament with n≥6, then each arc of T lies

on a k-cycle for k=4,5,···,n. Our result generalizes theorems due to Alspach[1] and Guo[3] respectively.
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1 Introduction

We follow the terminologies and notations of [2]. Let D =
(
V (D), A(D)

)
be a digraph. If xy is

an arc of a digraph D, then we say that x dominates y, denoted by x → y. More generally, if
A and B are two disjoint vertex sets of D such that every vertex of A dominates every vertex
of B, then we say that A dominates B, denoted by A ⇒ B. The outset N+(x) of a vertex x is
the set of vertices dominated by x in D, and the inset N−(x) is the set of vertices dominating
x in D. The irregularity i(D) is max |d+(x) − d−(y)| over all vertices x and y of D (x = y is
admissible). If i(D) = 0, we say D is regular. A k-cycle is a cycle of length k. Let U ⊆ V (D),
we use D〈U〉 to denote the subdigraph induced by U . Let T be a multipartite tournament and
x ∈ V (T ), we use V (x) to denote the partite set of T to which x belongs. A k-outpath of an
arc xy in a multipartite tournament is a directed path with length k starting from xy such that
x does not dominate the end vertex of the directed path.

Guo and Volkmann[4] proved that every partite set of a strongly connected n-partite tour-
nament has at least one vertex which lies on a k-cycle for each k, 3 ≤ k ≤ n. Yeo[6] proves that
if T is a regular n-partite tournament of order p with n ≥ 5, then each vertex of T lies on a
cycle of length k, for k = 3, 4, · · · , p. Furthermore, Guo[3] proved that if T is a regular n-partite
(n ≥ 3) tournament, then every arc of T has an outpath of length k − 1 for all k satisfying
3 ≤ k ≤ n.

In this paper we show that, if T is a regular n-partite tournament with n ≥ 6, then each
arc of T lies on a k-cycle for k = 4, 5, · · · , n.

2 Main results

Lemma. Let T be a regular n-partite tournament and let e = (u, v) be an arbitrary arc in
T , if e is not contained in any 4-cycle, then

(1) N+(v) ∩ N−(u) = V (w) for some w ∈ V (T ).
(2) V (u) ⇒ v and u ⇒ V (v).

Proof. (1) If there are two vertices x, y ∈ N+(v) ∩ N−(u) such that x → y, then uvxyu is a
4-cycle containing e, which is a contradiction to the initial hypothesis. Hence N+(v) ∩ N−(u)
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is either an empty set or an independent set. So there is w ∈ V (T ) such that N+(v)∩N−(u) ⊆
V (w). Assume that N+(v) ∩ N−(u) = V (w). Then since T is regular, each partite set has the
same cardinality (say s), hence we have

∣
∣N+(v) ∩N−(u)

∣
∣ <

∣
∣V (w)

∣
∣ = s. On the one hand,

∣∣N+(v)
∣∣ +

∣∣N−(u)
∣∣ =

n − 1
2

s +
n − 1

2
s = (n − 1)s;

On the other hand, since
∣∣N+(v)

∣∣ +
∣∣N−(u)

∣∣ =
∣∣N+(v) ∩ N−(u)

∣∣ +
∣∣N+(v) ∪ N−(u)

∣∣ < s + (n − 2)s = (n − 1)s,

which implies that (n − 1)s < (n − 1)s, a contradiction. Therefore we have N+(v) ∩ N−(u) =
V (w).

(2) Suppose that there is x ∈ V (u) such that v → x. If u ⇒ N+(x), then d+(u) ≥
d+(x) +

∣∣{v}∣∣, which contradicts the regularity of T . So there is y ∈ N+(x) such that y → u,
and then uvxyu is a 4-cycle containing e, again a contradiction. Hence we have V (u) ⇒ v.

Using arguments similar to that of the Lemma, we can also prove that u ⇒ V (v).
Theorem. Let T be a regular n-partite tournament with n ≥ 6, then each arc of T lies on a
k-cycle for k = 4, 5, · · · , n.
Proof. Since T is regular, it is not difficult to check that all partite sets of T have the same
cardinality, say s. So it is clear that

∣∣N+(x)
∣∣ =

∣∣N−(x)
∣∣ = (n−1)s

2 for each x ∈ V (T ).
Let e = (u, v) be any arc in T , we shall first show that e lies on a 4-cycle.
Let A = N+(v) and B = N−(u). If there exist a, b in A∩B such that a → b, then uvabu is

a 4-cycle containing e. So we may assume that A∩B is either an empty set or an independent
set. Let t = |A ∩ B|, then t ≤ s. By the Lemma, we know that V (u) ⇒ v, it follows that
V (u) ∩ A = ∅. Let k be the number of partite sets in T 〈A − B〉, then k ≤ n − 2. Again by the
Lemma we know that there is x in A such that d+

T [A](x) ≤ (n−3)(|A|−t)
2(n−2) , it follows that

∣∣N+(x) − A
∣∣ ≥ (n − 1)s

2
− (n − 3)(|A| − t)

2(n − 2)
.

If there is y ∈ N+(x) ∩ B, then uvxyu will be a 4-cycle containing e. So we assume that
N+(x) ∩ B = ∅. It follows that

∣
∣V (T )

∣
∣ ≥ |A| + |B| − |A ∩ B| + ∣

∣N+(x) − A
∣
∣ +

∣
∣{u, v}∣∣,

that is

ns ≥ (n − 1)s
2

+
(n − 1)s

2
− t +

(n − 1)s
2

− (n − 3)(|A| − t)
2(n − 2)

+ 2,

it follows that t ≥ [(n−3)s+4](n−2)
3n−7 , since t ≤ s, we have s ≥ [(n−3)s+4](n−2)

3n−7 , which implies that
(n2 − 8n + 13)s + 4(n − 2) ≤ 0, this is impossible since n ≥ 6. Therefore we have that e is
contained in a 4-cycle.

Let C = v1v2 · · · vmv1 be an m-cycle containing e, where e =(vm, v1) and 4 ≤ m ≤ n − 1.
It suffices to show that e is contained in an (m + 1)-cycle. In the following, we always assume
that s ≥ 2, since otherwise by [1] the theorem is valid.

Note that for each x ∈ V (C), N+(x) − V (C) = ∅ and N−(x) − V (C) = ∅, otherwise we
have m = |V (C)| ≥ d+(x) + 1 ≥ (n − 1)s/2 + 1 ≥ n, a contradiction.

Let
S = {all vertices that beong to partite sets that are not represented on C};
A = {x|x ∈ S, V (C) ⇒ x}; B = {y|y ∈ S, y ⇒ V (C)}; X = S − A − B.
We consider the following cases:

Case 1. A = ∅ or B = ∅.
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Without loses of generality, we may assume that A = ∅; for the case that B = ∅, we only
need to consider the converse of T .

Let a ∈ A, by the definition of A, we have V (C) ⇒ a. Note that N−(vm) − V (C) = ∅.
If there is b ∈ N−(vm) − V (C) such that a → b, then v1v2 · · · vm−2abvmv1 will be an

(m + 1)-cycle containing e.
If N−(vm) − V (C) ⇒ a, then we have d−(a) ≥ d−(vm) +

∣∣{vm, v1}
∣∣, which contradicts the

regularity of T .
So we assume that there is b ∈ N−(vm)−V (C) such that V (a) = V (b). Since s ≥ 2, N−(b)−

V (C) = ∅. Hence if there is c ∈ N−(b)−V (C) such that a → c, then v1v2 · · · vm−3acbvmv1 will
be an (m+1)-cycle containing e; and if N−(b)−V (C) ⇒ a, then we have d−(a) ≥ d−(b)+

∣∣{vm}∣∣,
which contradicts the regularity of T .
Case 2. A = ∅ and B = ∅.

In this case we have X = ∅. If there is x ∈ X such that v1 → x, then since x is adjacent
to each vertex of V (C), V (C) ⇒ x, which is a contradiction that x ∈ X. So we have X ⇒ v1.
Similarly, we have vm ⇒ X.
Subcase 2.1. There is x ∈ X such that x → vm−1.

Then we have x ⇒ {v1, v2, · · · , vm−1}. Since X ⇒ v1, each vertex in N+(v1) − V (C) is
adjacent to x.

If there is y ∈ N+(v1) − V (C) such that y → x, then v1yxv3 · · · vmv1 is an (m + 1)-cycle
containing e.

If x ⇒ N+(v1) − V (C), then d+(x) ≥ d+(v1) +
∣∣{v1}

∣∣, a contradiction to the regularity of
T .
Subcase 2.2. vm−1 ⇒ X.

By considering the converse of T of subcase 2.1, we may also assume that X ⇒ v2.
Subcase 2.2.1. m = 4.

If n ≥ 7, then we have d+(v4) ≥ (n − 4)s + 1 ≥ 3s + 1; but d−(v4) ≤ 3s − 1. Thus we have
d+(v4) = d−(v4), a contradiction. So we consider the case that n = 6.

Let t be number of partite sets in T 〈X〉. Since n = 6 and m = 4, t ≥ 2. If t ≥ 3, then
d+(v4) ≥ |X|+ ∣∣{v1}

∣∣ ≥ 3s+1, which contradicts the regularity of T . So we assume that t = 2.
Let x, y ∈ X such that x → y. Since n = 6, T 〈V (C)〉 is a tournament. If v2 → v4, then we have
x ⇒ N+(v1)− V (C), since otherwise let z ∈ N+(v1)− V (C) such that z → x, then v1zxv2v4v1

is a 5-cycle containing e. Hence d+(x) ≥ d+(v1) +
∣∣{v1, y}

∣∣ − ∣∣{v3}
∣∣, a contradiction. So we

have v4 → v2. Similarly we have v3 → v1.
Since

∣∣V (T )
∣∣ ≥ ∣∣N+(v1)− V (C)

∣∣ +
∣∣N−(v4)− V (C)

∣∣− ∣∣N+(v1)∩N−(v4)− V (C)
∣∣ + |X|+∣∣V (C)

∣∣, that is 6s ≥ 5
2s − 1 + 5

2s − 1 − ∣∣N+(v1) ∩ N−(v4) − V (C)
∣∣ + |2s| + 4, which follows

that
∣∣N+(v1) ∩ N−(v4) − V (C)

∣∣ ≥ s + 2. Hence there exist c, d ∈ N+(v1) ∩ N−(v4) − V (C)
such that c → d. Note that v1cdv4v1 is another 4-cycle containing e, from the same argument
as above, we have v4 → c and d → v1, this contradicts that c → v4 and v1 → d.
Subcase 2.2.2. m ≥ 5.

Suppose first that there is x ∈ X such that x → vm−2.
Then x ⇒ {v1, v2, · · · , vm−2}. Since x → v1, x is adjacent to each vertex of N+(v1)−V (C).

If there is y ∈ N+(v1)−V (C) such that y → x, then v1yxv3 · · · vmv1 is an (m+1)-cycle contain-
ing e. So we may assume that x ⇒ N+(v1)−V (C), it follows that v1 ⇒ {v2, v3, · · · , vm−1}, since
otherwise let vi ∈ {v2, v3, · · · , vm−1} such that vi→v1, we must have d+(x) ≥ d+(v1) +

∣
∣{v1}

∣
∣,

a contradiction to regularity of T . Hence we have vm ⇒ N+(v1) − V (C) − V (vm); otherwise
let y ∈ N+(v1) − V (C) − V (vm) such that y → vm, then v1v3 · · · vm−1xyvmv1 will be an
(m + 1)-cycle containing e, a contradiction. On the other hand, if v1 → vi, then we must have
vm → vi−1, otherwise v1vi · · · vm−1xv2 · · · vi−1vmv1 will be an (m + 1)-cycle containing e. It
follows that ∣∣N+(vm) ∩ V (C)

∣∣ ≥ ∣∣N+(v1) ∩ V (C)
∣∣ − ∣∣V (vm) ∩ V (C)

∣∣ + 1,



684 G.F. Zhou, K.M. Zhang

hence we have

d+(vm) ≥ d+(v1) + |X| − ∣∣N+(v1) ∩ V (vm) − V (C)
∣∣ − (|V (vm) ∩ V (C)| − 1

)
,

which yields d+(vm) ≥ d+(v1)+(n−m)s−s+1 ≥ d+(v1)+1, a contradiction to the regularity
of T .

Therefore we assume that vm−2 ⇒ X. Consider the converse of T , we can also assume that
X ⇒ v3.

Now let x ∈ X. If there exists y ∈ N+(v1) − V (C) such that y → x, then v1yxv3 · · · vmv1

is an (m + 1)-cycle containing e. So in the following we assume that x ⇒ N+(v1) − V (C).
If there is z ∈ N+(v1)−V (C)−V (vm) such that z → vm, then v1v2 · · · vm−2xzvmv1 will be

an (m+1)-cycle containing e, a contradiction, so we have vm ⇒ N+(v1)−V (C)−V (vm); On the
other hand, if v1 → vi, then we must have vm → vi−1, otherwise v1vi · · · vm−1xv2 · · · vi−1vmv1

will be an (m + 1)-cycle containing e. It follows that
∣∣N+(vm) ∩ V (C)

∣∣ ≥ ∣∣N+(v1) ∩ V (C)
∣∣ − ∣∣V (vm) ∩ V (C)

∣∣ + 1.

hence we have

d+(vm) ≥ d+(v1) + |X| − ∣∣N+(v1) ∩ V (vm) − V (C)
∣∣ − (|V (vm) ∩ V (C)| − 1

)
,

which yields d+(vm) ≥ d+(v1)+(n−m)s−s+1 ≥ d+(v1)+1, a contradiction to the regularity
of T .

This completes the proof of the Theorem.

3 Remarks

For n ≤ 5, the theorem does not hold any more.
Let V1 = A1, V2 = A2 ∪A3, V3 = {u} ∪A4, V4 = {v} ∪A5, V5 = A6 ∪A7, where |Vi| = 8

and |A2| = |A3| = |A6| = |A7| = 4. We construct a 5-partite tournament as follows:
(1) Add arcs between A2 and A7 such that T 〈A2 ∪ A7〉 is regular.
(2) Add arcs between A3 and A6 such that T 〈A3 ∪ A6〉 is regular.
(3) Let A1 ⇒ A2 ∪ V4 ∪ A7, A2 ⇒ A4 ∪ A5, A3 ⇒ A1 ∪ A7 ∪ {u, v}, u ⇒ A2 ∪ A7,

A4 ⇒ A3 ∪ A6, V3 ⇒ V4, A5 ⇒ A1 ∪ A3 ∪ a6, v ⇒ A1 ∪ A2 ∪ A7, A6 ⇒ A1 ∪ A2 ∪ {u, v},
A7 ⇒ A4 ∪ A5.

We can check that this is a regular 5-partite tournament but uv is not contained in any
4-cycle.

Moreover, we construct a 6-partite tournament T as follows: Let C1, C2, C3 be three disjoint
4-cycles, let V (T ) = V (C1) ∪ V (C2) ∪ V (C3), and let V (C1) ⇒ V (C2) ⇒ V (C3) ⇒ V (C1). In
this tournament, we can see that each arc of any Ci is not contained in a 3-cycle. So our result
is the best possible in a certain sense.

Finally, we raise the following conjecture:
Conjecture. Let T be a regular n-partite (n ≥ 6) tournament of order p, then each arc of T
lies on a k-cycle, for k = 4, 5, · · · , p.
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