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Abstract In this paper we prove that if T is a regular n-partite tournament with n>6, then each arc of T lies

(3]

on a k-cycle for k=4,5,---,n. Our result generalizes theorems due to Alspach[l] and Guo!”! respectively.
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1 Introduction

We follow the terminologies and notations of [2]. Let D = (V(D), A(D)) be a digraph. If zy is
an arc of a digraph D, then we say that  dominates y, denoted by x — y. More generally, if
A and B are two disjoint vertex sets of D such that every vertex of A dominates every vertex
of B, then we say that A dominates B, denoted by A = B. The outset N*(z) of a vertex z is
the set of vertices dominated by z in D, and the inset N~ () is the set of vertices dominating
x in D. The irregularity i(D) is max |d*(z) — d~(y)| over all vertices z and y of D (x = y is
admissible). If i(D) = 0, we say D is regular. A k-cycle is a cycle of length k. Let U C V(D),
we use D(U) to denote the subdigraph induced by U. Let T be a multipartite tournament and
x € V(T), we use V(x) to denote the partite set of T' to which x belongs. A k-outpath of an
arc zy in a multipartite tournament is a directed path with length k starting from xy such that
x does not dominate the end vertex of the directed path.

Guo and Volkmann!¥ proved that every partite set of a strongly connected n-partite tour-
nament has at least one vertex which lies on a k-cycle for each k, 3 < k < n. Yeol®! proves that
if T is a regular n-partite tournament of order p with n > 5, then each vertex of T lies on a
cycle of length k, for k = 3,4, ---,p. Furthermore, Guol® proved that if T is a regular n-partite
(n > 3) tournament, then every arc of T' has an outpath of length k — 1 for all k satisfying
3<k<n.

In this paper we show that, if T' is a regular n-partite tournament with n > 6, then each
arc of T lies on a k-cycle for k =4,5,---,n.

2 Main results

Lemma. Let T be a regular n-partite tournament and let e = (u,v) be an arbitrary arc in
T, if e is not contained in any 4-cycle, then

(1) NtT(v)NN~(u) =V(w) for some w € V(T).

(2) V(u)=v and u= V(v).
Proof. (1) If there are two vertices z,y € N (v) N N~ (u) such that z — y, then uvayu is a
4-cycle containing e, which is a contradiction to the initial hypothesis. Hence N*(v) N N~ (u)
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is either an empty set or an independent set. So there is w € V(T) such that N*(v) NN~ (u) C
V(w). Assume that N*(v) N N~ (u) # V(w). Then since T is regular, each partite set has the
same cardinality (say s), hence we have ’N"’(v) ﬁN‘(u)| < ’V(w)‘ = s. On the one hand,

n—1 +n—1
s
2 2

INT()| + [N~ (u)| = s=(n—1)s;

On the other hand, since
INT()|+ [N~ (w)] = |NT() NN~ (u)| + [N*(0) UN" (u)| < s+ (n—2)s = (n— 1)s,

which implies that (n — 1)s < (n — 1)s, a contradiction. Therefore we have N (v) N N~ (u) =
V(w).

(2) Suppose that there is # € V(u) such that v — z. If uw = N7T(x), then d*(u) >
d*(x) + ‘{v}|, which contradicts the regularity of T. So there is y € N¥(x) such that y — u,
and then wvxyu is a 4-cycle containing e, again a contradiction. Hence we have V(u) = v.

Using arguments similar to that of the Lemma, we can also prove that u = V(v).
Theorem. Let T be a regular n-partite tournament with n > 6, then each arc of T lies on a
k-cycle for k=4,5,--- . n.

Proof. Since T is regular, it is not difficult to check that all partite sets of T" have the same
cardinality, say s. So it is clear that [NT(z)| = |[N~(z)| = @ for each z € V(T).

Let e = (u,v) be any arc in T, we shall first show that e lies on a 4-cycle.

Let A= N*(v) and B = N~ (u). If there exist a,b in AN B such that a — b, then uvabu is
a 4-cycle containing e. So we may assume that AN B is either an empty set or an independent
set. Let t = |[AN BJ, then ¢ < s. By the Lemma, we know that V(u) = v, it follows that
V(u) N A =0. Let k be the number of partite sets in T(A — B), then k < n — 2. Again by the

Lemma we know that there is « in A such that dﬂ Al (z) < %, it follows that

2

n—1)s n— Al —
{NJF(m)_A’Z( 21) - 2(372<_2|) t).

If there is y € NT(z) N B, then uvayu will be a 4-cycle containing e. So we assume that
N*t(z)n B =0. It follows that

[V(T)| = |A] +|B| = [ANB| + [N¥(2) — A + [{u, v}

)

that i (-Ds (n-1s  (n-Ds (n—3)(A4 -
ns > 5 + 5 —t+ 5 - 2(n—2) + 2,

it follows that t > %, since t < s, we have s > %, which implies that
(n? — 8n + 13)s + 4(n — 2) < 0, this is impossible since n > 6. Therefore we have that e is
contained in a 4-cycle.

Let C = v1vg - - - v, 01 be an m-cycle containing e, where e =(v;,,v1) and 4 <m < n — 1.
It suffices to show that e is contained in an (m + 1)-cycle. In the following, we always assume
that s > 2, since otherwise by [1] the theorem is valid.

Note that for each x € V(C), N*(z) — V(C) # 0 and N~ (z) — V(C) # 0, otherwise we
have m = |[V(C)| > d*t(z)+1 > (n —1)s/2 + 1 > n, a contradiction.

Let

S = {all vertices that beong to partite sets that are not represented on C'};

A={z|lz € S, V(C)==z}; B={ylye S,y=V(C)}; X=5—-A—-B.

We consider the following cases:
Case 1. A#0or B # 0.
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Without loses of generality, we may assume that A # ); for the case that B # (), we only
need to consider the converse of 7T'.

Let a € A, by the definition of A, we have V(C) = a. Note that N~ (v,,) — V(C) # 0.

If there is b € N~ (vy,) — V(C) such that a — b, then vivg - vy _2abv,v1 will be an
(m 4 1)-cycle containing e.

If N~ (vy,) — V(C) = a, then we have d™(a) > d™ (vm) + |{vm, v1}|, which contradicts the
regularity of T

So we assume that there isb € N~ (v,,) —V/(C) such that V(a) = V(b). Since s > 2, N~ (b)—
V(C) # (. Hence if there is ¢ € N~ (b) — V(C) such that a — ¢, then v1vs - - - vV —zacbvy,v; will
be an (m+1)-cycle containing e; and if N~ (b)—V(C') = a, then we have d™ (a) > d’(b)+|{vm}
which contradicts the regularity of T'.
Case 2. A=0and B=0.

In this case we have X # (. If there is x € X such that v; — x, then since z is adjacent
to each vertex of V(C), V(C) = z, which is a contradiction that € X. So we have X = v;.
Similarly, we have v,, = X.
Subcase 2.1. There is x € X such that x — v,,_1.

Then we have z = {vi,v2, -+, vm_1}. Since X = v, each vertex in N (v;) — V(C) is
adjacent to x.

If there is y € NT(vy) — V(C) such that y — =z, then viyxvs - v,y is an (m + 1)-cycle
containing e.

If 2 = N*(vy) = V(C), then d™(z) > d*(v1) + [{v1}|, a contradiction to the regularity of

b

T.
Subcase 2.2. v,,_1 = X.

By considering the converse of T' of subcase 2.1, we may also assume that X = vs.
Subcase 2.2.1. m =4.

If n > 7, then we have d¥(vg) > (n —4)s+1 > 3s+ 1; but d~(v4) < 3s — 1. Thus we have
d™(v4) # d~(v4), a contradiction. So we consider the case that n = 6.

Let ¢t be number of partite sets in T(X). Since n = 6 and m =4, ¢t > 2. If ¢t > 3, then
d*(vs) > |X|+]|{v1}| > 3s+1, which contradicts the regularity of . So we assume that t = 2.
Let 2,y € X such that  — y. Since n = 6, T(V(C)) is a tournament. If vy — vy, then we have
x = N1 (v;) —V(C), since otherwise let z € N*(v1) — V(C) such that z — z, then vy zzvov4v;
is a 5-cycle containing e. Hence d¥(z) > d*(vy) + [{v1,y}| — [{vs}|, a contradiction. So we
have vy — vo. Similarly we have vy — vy.

Since [V(T)| = |[NT(v1) = V(C)| + |N~(va) = V(C)| = [N F(v1) NN~ (vg) = V(C)| + | X| +
|V(C)], that is 6s > 3s — 1+ 3s —1— [NT(v1) N N~ (vg) — V(C)| + |25] + 4, which follows
that [N (v1) NN~ (vg) — V(C)| > s+ 2. Hence there exist ¢,d € NT(v1) N N~ (vs) — V(C)
such that ¢ — d. Note that vicdvsv; is another 4-cycle containing e, from the same argument
as above, we have vy — ¢ and d — vy, this contradicts that ¢ — v4 and v; — d.

Subcase 2.2.2. m > 5.

Suppose first that there is € X such that x — v,,_s.

Then z = {v1,va,+*,Vm_2}. Since z — vy, x is adjacent to each vertex of N*(v;)—V (C).
If there is y € Nt (v1) —V/(C) such that y — z, then v1yzvs - - - v,v1 is an (m+1)-cycle contain-
ing e. So we may assume that z = N (vy)—V(C), it follows that vy = {va, v, -+, vy_1}, since
otherwise let v; € {va,v3,*,vm_1} such that v;—wv1, we must have d*(z) > d*(vy) + |{v1}|,
a contradiction to regularity of 7. Hence we have v,, = NT(v1) — V(C) — V (v, ); otherwise
let y € NT(vy) — V(C) — V(vy,) such that y — vy, then vivs - vy_12yv,v1 will be an
(m 4 1)-cycle containing e, a contradiction. On the other hand, if vy — v;, then we must have
Uy — Vi—1, otherwise v1v; -« - Vyp—12Vg - - - V;_10,v1 Will be an (m + 1)-cycle containing e. Tt
follows that

[N+ (o) NV(O)] 2 [N* (01) V()] — [V(om) NV (O] 41,
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hence we have
dt (v) > dF(vy) + | X — ‘N+(v1) NV (vy) — V(C’)| — (|V(vm) NnV(C)| - 1),

which yields d¥ (vy,,) > d¥(v1) + (n —m)s—s-+1 > d"(v1) + 1, a contradiction to the regularity
of T.

Therefore we assume that v,,,_s = X. Consider the converse of T, we can also assume that
X = vs.

Now let x € X. If there exists y € NT(vy) — V(C) such that y — z, then viyzvs - - - v,,v1
is an (m + 1)-cycle containing e. So in the following we assume that z = N*(v) — V/(C).

If there is z € Nt (v1) — V(C) — V (vy,) such that z — v,,, then v1vs - - - Uy _2220,,v1 Will be
an (m-+1)-cycle containing e, a contradiction, so we have v,,, = N1 (v1)—V(C)—V (v;,); On the
other hand, if v1 — v;, then we must have v,, — v;_1, otherwise v1v; - - - Up_ 1202 - - - V;_1 VU1
will be an (m + 1)-cycle containing e. It follows that

INT(0) NV (CO)] = [NT (1) N V(C)| = [V (vm) NV(C)| + 1.
hence we have
At (vm) = d(v1) + | X[ = [N (v1) NV (vm) = V(O)| = (JV(vm) NV(C)| = 1),

which yields d* (v,,) > d*(v1)+ (n—m)s—s-+1 > d*(v) +1, a contradiction to the regularity
of T.
This completes the proof of the Theorem.

3 Remarks

For n <5, the theorem does not hold any more.

Let V1 = Al, ‘/2 = A2 UAg, Vg = {U}UA4, V4 = {U}UA5, V5 = AG UA7, where |V;| =38
and |Az| = |As] = |Ag| = |A7| = 4. We construct a 5-partite tournament as follows:

(1) Add arcs between Ay and A7 such that T(Ay U A7) is regular.

(2) Add arcs between Az and Ag such that T(As U Ag) is regular.

(3) Let A = AQUWUA% Ay = A4UA57 A3 = A1UA7U{U,U}, u = 142UA77
A4 = A3UA6, V3 = ‘/4, A5 = A1UA3U(16, v = 141U142U1477 A6 = A1UA2U{U,’U},
A7 = AU A5.

We can check that this is a regular 5-partite tournament but wv is not contained in any
4-cycle.

Moreover, we construct a 6-partite tournament 7" as follows: Let C, Cs, C3 be three disjoint
4-cycles, let V(T) = V(Cl) ] V(CQ) @] V(Og), and let V(Cl) = V(Cg) = V(Cg) = V(Cl) In
this tournament, we can see that each arc of any Cj is not contained in a 3-cycle. So our result
is the best possible in a certain sense.

Finally, we raise the following conjecture:

Conjecture. Let T be a regular n-partite (n > 6) tournament of order p, then each arc of T
lies on a k-cycle, for k =4,5,---,p.
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