A NOTE ON REDUCIBLE CYCLES IN MULTIPARTITE TOURNAMENTS*

Pan Lin-Qiang, Miao Zheng-Ke and Zhang Ke-Min

Abstract

T\) is a strong c-partite tournament $(c \geq 3)$, then there is a $(k-3)$-reducible k-cycle in T, for all $k=3,4, \cdots, c$. In this paper we investigate the smallest number of $(k-3)$-reducible k-cycles in strong c-partite tournaments for $3 \cdot k \cdot c$ and give some related problems.

1. Introduction

We assume that the reader is familar with the standard terminology on graphs and digraphs and refer the reader to [2].

A digraph $D=(V(D), A(D))$ is determined by its set of vertices $V(D)$, and its set of arcs $A(D)$. If $x y$ is an arc of a digraph D, then we say that x dominates y and write $x \rightarrow y$. More generally, if A and B are two disjoint subdigraphs of D or subsets of $V(D)$ such that every vertex of A dominates every vertex of B, then we say that A dominates B and write $A \rightarrow B$. We use $A \Rightarrow B$ to denote the fact that there is no arc leading from B to A. By a cycle (path, resp.) we mean a directed cycle (directed path, resp.). A digraph D is strong if for any two vertices x and y there exists a path from x to y and a path from y to x in D. A cycle of length k is called a k-cycle. A cycle (path, resp.) of a digraph D is Hamiltonian if it includes all the vertices of D. A digraph D is pancyclic if it contains a k-cycle for all k between 3 and $|V(D)|$. A digraph D is vertex pancyclic if every vertex of D is contained in a k-cycle for all $k \in\{3,4, \cdots,|V(D)|\}$. If S is a set of vertices in a digraph D, then $D[S]$ is the subgraph induced by S.

A c-partite or multipartite tournament is a digraph obtained from a complete c-partite graph by substituting each edge with an arc. Let T be a multipartite

[^0]tournament and $v \in V(T)$. We use $V^{c}(v)$ to denote the partite set which v belongs to.

Let D be a digraph and let k be some integer. A cycle C_{0} is k-reducible if there are cycles $C_{1}, C_{2}, \cdots, C_{k}$ such that for all $i=0,1, \cdots, k-1$ there is a vertex w_{i} in C_{i} such that $C_{i+1}=C_{i}\left[w_{i}^{+}, w_{i}^{-}\right] w_{i}^{+}$. Let $w \in V(D)$. Then a cycle C_{0} is (w, k)-reducible if it is k-reducible and w belongs to all the cycles $C_{1}, C_{2}, \cdots, C_{k}$ (i.e., $w_{i} \neq w$ for all $i=0,1, \cdots, k-1$).
[1] proves that if T is a strong c-partite tournament $(c \geq 3)$, then there is a k-cycle in T for all $k=3,4, \cdots, c$. [3] extends this result by showing that if T is a strong c-partite tournament $(c \geq 3)$, then there is a $(k-3)$-reducible k-cycle in T for all $k=3,4, \cdots, c$. In this paper we investigate the smallest number of $(k-3)$-reducible k-cycles in strong c-partite tournaments for $3 \cdot k \cdot c$.

Theorem. Let T be a strong c-partite tournament. Then the number of $(k-3)$ reducible k-cycles is at least $c-k+1$ for $3 \cdot k \cdot c$. Moreover, the lower bound is best possible.

2. Proof of Theorem

Lemma 1 (Yeo [3]). If T is a strong c-partite tournament ($c \geq 3$), then there is a $(k-3)$-reducible k-cycle in T for all $k=3,4, \cdots, c$.

Lemma 2 (Goddard \& Oellermann [4]). Every vertex of a strong c-partite tournament $(c \geq 3)$ belongs to a cycle which contains vertices from exactly q partite sets for each $q \in\{3,4, \cdots, c\}$.

Lemma 3 (Guo \& Volkmann [5]). Every partite set of a strong c-partite $(c \geq 3)$ tournament has at least one vertex which lies on a k-cycle for each $k \in\{3,4, \cdots, c\}$.

The following Lemma 4 is interesting in itself; it generalizes Moon's theorem on vertex pancyclicity in strong tournaments [6].

Lemma 4. Let T be a strong c-partite tournament with partite sets V_{1}, V_{2}, \cdots, V_{c}. Then for any V_{i} there is a $(k-3)$-reducible k-cycle in T which contains at least one vertex of V_{i} for all $k=3,4, \cdots, c$.

Proof. We prove the lemma by induction on k. When $k=3$, Lemma 4 holds by Lemma 3. We assume $4 \cdot k \cdot c$ and V_{i} is given. By Lemma 1 , there is a $(k-3)$-reducible k-cycle C_{0} in T. If $V\left(C_{0}\right) \cap V_{i} \neq \emptyset$, we are done. So we assume that $V\left(C_{0}\right) \cap V_{i}=\emptyset$ and take a $(k-4)$-reducible $(k-1)$-cycle C_{1} in T such that $V\left(C_{1}\right) \cap V_{i}=\emptyset$ (such a cycle exists by the reducibility of cycle C_{0}). If there is a
vertex $v \in V_{i}$ with $v \nRightarrow V\left(C_{1}\right)$ and $V\left(C_{1}\right) \nRightarrow v$, then since v is adjacent to every vertex in $V\left(C_{1}\right)$ there exists a vertex $u \in V\left(C_{1}\right)$ such that $u^{-} \rightarrow v$ and $v \rightarrow u$. We obtain a k-cycle $C_{1}\left[u, u^{-}\right] v u$, which is $(k-3)$-reducible and contains a vertex v of V_{i}. Therefore we assume that for each $v \in V_{i}$ either $v \Rightarrow V\left(C_{1}\right)$ or $V\left(C_{1}\right) \Rightarrow v$.

Let $A_{1}=\left\{v \in V_{i} \mid v \Rightarrow V\left(C_{1}\right)\right\}$ and $A_{2}=\left\{v \in V_{i} \mid V\left(C_{1}\right) \Rightarrow v\right\}$. Clearly $A_{1} \cup A_{2}=V_{i}$. Since $V\left(C_{1}\right) \cap V_{i}=\emptyset$, it is easy to see that $A_{1} \rightarrow V\left(C_{1}\right)$ and $V\left(C_{1}\right) \rightarrow A_{2}$. Let l be the length of a shortest path of all $\left(C_{1}, A_{1}\right)$-paths and $\left(A_{2}, C_{1}\right)$-paths. Without loss of generality, we assume that $P=y_{0} y_{1} \cdots y_{l}$ is a $\left(C_{1}, A_{1}\right)$-path of length l. If $y_{1} \in V^{c}\left(y_{l}\right)$, then $l \geq 3$ and $y_{1} \in A_{2}$. Let $x \in V\left(C_{1}\right)-$ $V^{c}\left(y_{2}\right)$ be arbitrary. If $x \rightarrow y_{2}$, then the path $x P\left[y_{2}, y_{l}\right]$ is a shorter $\left(C_{1}, A_{1}\right)$-path than P, a contradiction. If $y_{2} \rightarrow x$, then the path $y_{1} y_{2} x$ is a shorter $\left(A_{2}, C_{1}\right)$ path than P, a contradiction. So $y_{1} \notin V^{c}\left(y_{l}\right)$. Similarly, from the minimality of l we obtain that $V^{c}\left(y_{l}\right) \cap\left\{y_{1}, y_{2}, \cdots, y_{l-1}\right\}=\emptyset$ and $y_{l} \rightarrow\left\{y_{0}, y_{1}, \cdots, y_{l-2}\right\}$. Let $C_{2}=P C_{1}\left[y_{0}^{+l}, y_{0}\right]$. Since $y_{l} \rightarrow V\left(C_{2}\right)-\left\{y_{l-1}\right\}, C_{2}$ is a $(k-3)$-reducible k-cycle and contains a vertex y_{1} of V_{i}.

This completes the proof of Lemma 4.
Corollary 5 (Moon [6]). Every strong tournament is vertex pancyclic.
Theorem 6. Let T be a strong c-partite tournament. Then the number of $(k-3)$-reducible k-cycles is at least $c-k+1$ for $3 \cdot k \cdot c$.

Proof. Let $V_{1}, V_{2}, \cdots, V_{c}$ be the partite sets of T and $3 \cdot k \cdot c$. We prove the theorem by induction on c. For $c=k$, the result follows from Lemma 1 .

Suppose now that $c \geq k+1$ and that every strong ($c-1$)-partite tournament contains at least $(c-1)-k+1(k-3)$-reducible k-cycles. According to Lemma 2, there exists a cycle C that contains vertices from exactly $c-1$ partite sets. $T[V(C)]$ is a strong $(c-1)$-partite tournament, which contains by the induction hypothesis at least $c-k(k-3)$-reducible k-cycles. Without loss of generality, let V_{1} be the partite set with $V_{1} \cap V(C)=\emptyset$. By Lemma 4, T contains a $(k-3)$-reducible k-cycle C_{2}^{\prime} with $V_{1} \cap V\left(C_{2}^{\prime}\right) \neq \emptyset$. Clearly the $(k-3)$-reducible k-cycle C_{2}^{\prime} is different from the $(k-3)$-reducible k-cycles in $T[V(C)]$. So T contains at least $c-k+1$ ($k-3$)-reducible k-cycles.

Corollary 7. Let T be a strong c-partite tournament $(c \geq 3)$. Then there are at least $c-k+1$ pancyclic subgraphs of order k in T for all $k=3,4, \cdots, c$.

Corollary 8 (Goddard \& Oellermann [4]). Let T be a strong c-partite tournament $(c \geq 3)$. Then T contains at least $c-2$ cycles of length 3 .

Corollary 9. Let T be a strong c-partite tournament $(c \geq 3)$. Then T contains at least $\binom{c-1}{2}$ cycles.

Corollary 10 (Moon [6]). Let T be a strong tournament of order n. Then T contains at least $n-k+1$ cycles of length k for $3 \cdot k \cdot n$.

Corollary 11 (Moon [6]). Let T be a strong tournament of order n. Then T contains at least $\binom{n-1}{2}$ cycles.

The tournament obtained by reversing the arcs of the unique Hamiltonian path in a transitive tournament T_{n} with n vertices is seen to have precisely $n-k+1$ $(k-3)$-reducible k-cycles for $3 \cdot k \cdot n$. This example shows that the estimation in Theorem 6 is best possible. We denote the above tournament by M_{n}.

We construct a 6 -partite tournament T_{6} with partite sets $V_{i}=\left\{V_{i}\right\}, i=$ $1,2,3,4,5$, and $V_{6}=\left\{v_{6}, v_{7}\right\}$. Let $v_{1} \rightarrow\left\{v_{2}, v_{4}, v_{5}, v_{7}\right\}, v_{2} \rightarrow\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$, $v_{3} \rightarrow\left\{v_{1}, v_{4}, v_{5}, v_{6}, v_{7}\right\}, v_{4} \rightarrow\left\{v_{5}, v_{6}\right\}, v_{5} \rightarrow v_{7}, v_{6} \rightarrow\left\{v_{1}, v_{5}\right\}$ and $v_{7} \rightarrow v_{4}$. It is easy to see that T_{6} is strong and T_{6} contains no strong tournament with 6 vertices. This example shows that a strong n-partite tournament may not contain strong tournament with n vertices. So Theorem 6 is not a trivial generalization of Corollary 10.

Now we would like to give the following related problems.
Problem 12. Are there examples of strong c-partite tournaments which are not tournaments with exactly $c-k+1(k-3)$-reducible k-cycles for $4 \cdot k \cdot c$?

The weak form of Problem 12 is also unsolved. We refer the reader who is interested in this problem to [7].

Problem 13 (Volkmann [7]). Are there examples of strong c-partite tournaments which are not tournaments with exactly $c-k+1$ cycles of length k for $4 \cdot k \cdot c$?

In [8], Yao proved that for T_{n} a strong tournament of order n, if there is an integer $k(3<k<n)$ such that T_{n} contains exactly $n-k+1 k$-cycles, then $T_{n} \cong M_{n}$.

Problem 14. How to characterize extremal strong c-partite tournaments containing minimum number of cycles?

References

1. J. A. Bondy, Disconnected orientations and a conjecture of Las Vergnas, J. London Math. Soc. (2) 14 (1976), 277-282.
2. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elserier Pub. Co., New York, 1976.
3. A. Yeo, Diregular c-partite tournaments are vertex pancyclic when $c \geq 5, J$. Graph Theory 32 (1999), 137-152.
4. W. D. Goddard and O. R. Oellermann, On the cycle structure of multipartite tournaments, in: Graph Theory, Combinatorics, and Applications, Vol. 1, Wiley-Interscience, New York, 1991, pp. 525-533.
5. Y. Guo and L. Volkmann, Cycles in multipartite tournaments, J. Combin. Theory Ser. B 62 (1994), 363-366.
6. J. W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966), 297-301.
7. L. Volkmann, Cycles in multipartite tournament: results and problems, submitted.
8. Yao Tiangxing, On extremal tournaments containing minimum number of cycles, J. Nanjing Univ. Math. Biquarterly 1 (1985), 98-102.

Pan Lin-Qiang
Department of Control Science and Engineering Huazhong University of Science and Technology 1037 Luoyu Road, Wuhan, Hubei 430074, China
Miao Zheng-Ke and Zhang Ke-Min
Department of Mathematics, Nanjing University
Nanjing, Jiangsu 210093, China

[^0]: Received April 27, 2000.
 Communicated by Frank K. Hwang.
 2000 Mathematics Subject Classification: 05C20, 05C38.
 Key words and phrases: Multipartite tournament, reducible cycle, pancyclicity.
 *Project supported by NSFC (No. 19871040).

