TAIWANESE JOURNAL OF MATHEMATICS

Vol. 6, No. 2, pp. 235-239, June 2002

This paper is available online at http://www.math.nthu.edu.tw/tjm/

A NOTE ON REDUCIBLE CYCLES IN MULTIPARTITE TOURNAMENTS*

Pan Lin-Qiang, Miao Zheng-Ke and Zhang Ke-Min

Abstract. [3] proves that if T is a strong c-partite tournament $(c \ge 3)$, then there is a (k-3)-reducible k-cycle in T, for all $k=3,4,\cdots,c$. In this paper we investigate the smallest number of (k-3)-reducible k-cycles in strong c-partite tournaments for $3 \cdot k \cdot c$ and give some related problems.

1. Introduction

We assume that the reader is familar with the standard terminology on graphs and digraphs and refer the reader to [2].

A digraph D=(V(D),A(D)) is determined by its set of vertices V(D), and its set of arcs A(D). If xy is an arc of a digraph D, then we say that x dominates y and write $x \to y$. More generally, if A and B are two disjoint subdigraphs of D or subsets of V(D) such that every vertex of A dominates every vertex of B, then we say that A dominates B and write $A \to B$. We use $A \Rightarrow B$ to denote the fact that there is no arc leading from B to A. By a cycle (path, resp.) we mean a directed cycle (directed path, resp.). A digraph D is strong if for any two vertices x and y there exists a path from x to y and a path from y to x in y. A cycle of length y is called a y-cycle. A cycle (path, resp.) of a digraph y is Hamiltonian if it includes all the vertices of y. A digraph y is pancyclic if it contains a y-cycle for all y between 3 and y and y here y is evertex pancyclic if every vertex of y is contained in a y-cycle for all y between 3 and y then y is the subgraph induced by y.

A c-partite or multipartite tournament is a digraph obtained from a complete c-partite graph by substituting each edge with an arc. Let T be a multipartite

Received April 27, 2000.

Communicated by Frank K. Hwang.

2000 Mathematics Subject Classification: 05C20, 05C38.

Key words and phrases: Multipartite tournament, reducible cycle, pancyclicity.

*Project supported by NSFC (No. 19871040).

tournament and $v \in V(T)$. We use $V^c(v)$ to denote the partite set which v belongs to.

Let D be a digraph and let k be some integer. A cycle C_0 is k-reducible if there are cycles C_1, C_2, \cdots, C_k such that for all $i = 0, 1, \cdots, k-1$ there is a vertex w_i in C_i such that $C_{i+1} = C_i[w_i^+, w_i^-]w_i^+$. Let $w \in V(D)$. Then a cycle C_0 is (w, k)-reducible if it is k-reducible and w belongs to all the cycles C_1, C_2, \cdots, C_k (i.e., $w_i \neq w$ for all $i = 0, 1, \cdots, k-1$).

[1] proves that if T is a strong c-partite tournament $(c \ge 3)$, then there is a k-cycle in T for all $k = 3, 4, \dots, c$. [3] extends this result by showing that if T is a strong c-partite tournament $(c \ge 3)$, then there is a (k-3)-reducible k-cycle in T for all $k = 3, 4, \dots, c$. In this paper we investigate the smallest number of (k-3)-reducible k-cycles in strong c-partite tournaments for $3 \cdot k \cdot c$.

Theorem. Let T be a strong c-partite tournament. Then the number of (k-3)-reducible k-cycles is at least c-k+1 for $3 \cdot k \cdot c$. Moreover, the lower bound is best possible.

2. Proof of Theorem

Lemma 1 (Yeo [3]). If T is a strong c-partite tournament $(c \ge 3)$, then there is a (k-3)-reducible k-cycle in T for all $k = 3, 4, \dots, c$.

Lemma 2 (Goddard & Oellermann [4]). Every vertex of a strong c-partite tournament $(c \ge 3)$ belongs to a cycle which contains vertices from exactly q partite sets for each $q \in \{3, 4, \dots, c\}$.

Lemma 3 (Guo & Volkmann [5]). Every partite set of a strong c-partite $(c \ge 3)$ tournament has at least one vertex which lies on a k-cycle for each $k \in \{3, 4, \dots, c\}$.

The following Lemma 4 is interesting in itself; it generalizes Moon's theorem on vertex pancyclicity in strong tournaments [6].

Lemma 4. Let T be a strong c-partite tournament with partite sets V_1, V_2, \cdots, V_c . Then for any V_i there is a (k-3)-reducible k-cycle in T which contains at least one vertex of V_i for all $k=3,4,\cdots,c$.

Proof. We prove the lemma by induction on k. When k=3, Lemma 4 holds by Lemma 3. We assume $4 \cdot k \cdot c$ and V_i is given. By Lemma 1, there is a (k-3)-reducible k-cycle C_0 in T. If $V(C_0) \cap V_i \neq \emptyset$, we are done. So we assume that $V(C_0) \cap V_i = \emptyset$ and take a (k-4)-reducible (k-1)-cycle C_1 in T such that $V(C_1) \cap V_i = \emptyset$ (such a cycle exists by the reducibility of cycle C_0). If there is a

vertex $v \in V_i$ with $v \not\Rightarrow V(C_1)$ and $V(C_1) \not\Rightarrow v$, then since v is adjacent to every vertex in $V(C_1)$ there exists a vertex $u \in V(C_1)$ such that $u^- \to v$ and $v \to u$. We obtain a k-cycle $C_1[u,u^-]vu$, which is (k-3)-reducible and contains a vertex v of V_i . Therefore we assume that for each $v \in V_i$ either $v \Rightarrow V(C_1)$ or $V(C_1) \Rightarrow v$. Let $A_1 = \{v \in V_i | v \Rightarrow V(C_1)\}$ and $A_2 = \{v \in V_i | V(C_1) \Rightarrow v\}$. Clearly $A_1 \cup A_2 = V_i$. Since $V(C_1) \cap V_i = \emptyset$, it is easy to see that $A_1 \to V(C_1)$ and $V(C_1) \to A_2$. Let l be the length of a shortest path of all (C_1,A_1) -paths and (A_2,C_1) -paths. Without loss of generality, we assume that $P = y_0y_1 \cdots y_l$ is a (C_1,A_1) -path of length l. If $y_1 \in V^c(y_l)$, then $l \geq 3$ and $y_1 \in A_2$. Let $x \in V(C_1) - V^c(y_2)$ be arbitrary. If $x \to y_2$, then the path $xP[y_2,y_l]$ is a shorter (C_1,A_1) -path than P, a contradiction. If $y_2 \to x$, then the path y_1y_2x is a shorter (A_2,C_1) -path than P, a contradiction. So $y_1 \not\in V^c(y_l)$. Similarly, from the minimality of l we obtain that $V^c(y_l) \cap \{y_1,y_2,\cdots,y_{l-1}\} = \emptyset$ and $y_l \to \{y_0,y_1,\cdots,y_{l-2}\}$. Let $C_2 = PC_1[y_0^{+l},y_0]$. Since $y_l \to V(C_2) - \{y_{l-1}\}$, C_2 is a (k-3)-reducible k-cycle and contains a vertex y_1 of V_i .

This completes the proof of Lemma 4.

Corollary 5 (Moon [6]). Every strong tournament is vertex pancyclic.

Theorem 6. Let T be a strong c-partite tournament. Then the number of (k-3)-reducible k-cycles is at least c-k+1 for $3 \cdot k \cdot c$.

Proof. Let V_1, V_2, \dots, V_c be the partite sets of T and $3 \cdot k \cdot c$. We prove the theorem by induction on c. For c = k, the result follows from Lemma 1.

Suppose now that $c \geq k+1$ and that every strong (c-1)-partite tournament contains at least (c-1)-k+1 (k-3)-reducible k-cycles. According to Lemma 2, there exists a cycle C that contains vertices from exactly c-1 partite sets. T[V(C)] is a strong (c-1)-partite tournament, which contains by the induction hypothesis at least c-k (k-3)-reducible k-cycles. Without loss of generality, let V_1 be the partite set with $V_1 \cap V(C) = \emptyset$. By Lemma 4, T contains a (k-3)-reducible k-cycle C_2' with $V_1 \cap V(C_2') \neq \emptyset$. Clearly the (k-3)-reducible k-cycle C_2' is different from the (k-3)-reducible k-cycles in T[V(C)]. So T contains at least c-k+1 (k-3)-reducible k-cycles.

Corollary 7. Let T be a strong c-partite tournament $(c \ge 3)$. Then there are at least c - k + 1 pancyclic subgraphs of order k in T for all $k = 3, 4, \dots, c$.

Corollary 8 (Goddard & Oellermann [4]). Let T be a strong c-partite tournament $(c \ge 3)$. Then T contains at least c - 2 cycles of length 3.

Corollary 9. Let T be a strong c-partite tournament $(c \ge 3)$. Then T contains at least $\binom{c-1}{2}$ cycles.

Corollary 10 (Moon [6]). Let T be a strong tournament of order n. Then T contains at least n - k + 1 cycles of length k for $3 \cdot k \cdot n$.

Corollary 11 (Moon [6]). Let T be a strong tournament of order n. Then T contains at least $\binom{n-1}{2}$ cycles.

The tournament obtained by reversing the arcs of the unique Hamiltonian path in a transitive tournament T_n with n vertices is seen to have precisely n-k+1 (k-3)-reducible k-cycles for $3 \cdot k \cdot n$. This example shows that the estimation in Theorem 6 is best possible. We denote the above tournament by M_n .

We construct a 6-partite tournament T_6 with partite sets $V_i = \{V_i\}$, i = 1, 2, 3, 4, 5, and $V_6 = \{v_6, v_7\}$. Let $v_1 \to \{v_2, v_4, v_5, v_7\}$, $v_2 \to \{v_3, v_4, v_5, v_6, v_7\}$, $v_3 \to \{v_1, v_4, v_5, v_6, v_7\}$, $v_4 \to \{v_5, v_6\}$, $v_5 \to v_7$, $v_6 \to \{v_1, v_5\}$ and $v_7 \to v_4$. It is easy to see that T_6 is strong and T_6 contains no strong tournament with 6 vertices. This example shows that a strong n-partite tournament may not contain strong tournament with n vertices. So Theorem 6 is not a trivial generalization of Corollary 10.

Now we would like to give the following related problems.

Problem 12. Are there examples of strong c-partite tournaments which are not tournaments with exactly c - k + 1 (k - 3)-reducible k-cycles for $4 \cdot k \cdot c$?

The weak form of Problem 12 is also unsolved. We refer the reader who is interested in this problem to [7].

Problem 13 (Volkmann [7]). Are there examples of strong c-partite tournaments which are not tournaments with exactly c - k + 1 cycles of length k for $4 \cdot k \cdot c$?

In [8], Yao proved that for T_n a strong tournament of order n, if there is an integer k (3 < k < n) such that T_n contains exactly n - k + 1 k-cycles, then $T_n \cong M_n$.

Problem 14. How to characterize extremal strong c-partite tournaments containing minimum number of cycles?

REFERENCES

- 1. J. A. Bondy, Disconnected orientations and a conjecture of Las Vergnas, *J. London Math. Soc.* (2) **14** (1976), 277-282.
- J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elserier Pub. Co., New York, 1976.

- 3. A. Yeo, Diregular c-partite tournaments are vertex pancyclic when $c \ge 5$, J. Graph Theory **32** (1999), 137-152.
- 4. W. D. Goddard and O. R. Oellermann, On the cycle structure of multipartite tournaments, in: *Graph Theory*, *Combinatorics*, *and Applications*, Vol. 1, Wiley-Interscience, New York, 1991, pp. 525-533.
- 5. Y. Guo and L. Volkmann, Cycles in multipartite tournaments, *J. Combin. Theory Ser. B* **62** (1994), 363-366.
- 6. J. W. Moon, On subtournaments of a tournament, *Canad. Math. Bull.* **9** (1966), 297-301.
- 7. L. Volkmann, Cycles in multipartite tournament: results and problems, submitted.
- 8. Yao Tiangxing, On extremal tournaments containing minimum number of cycles, *J. Nanjing Univ. Math. Biquarterly* **1** (1985), 98-102.

Pan Lin-Qiang

Department of Control Science and Engineering Huazhong University of Science and Technology 1037 Luoyu Road, Wuhan, Hubei 430074, China

Miao Zheng-Ke and Zhang Ke-Min Department of Mathematics, Nanjing University Nanjing, Jiangsu 210093, China