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Abstract An outpath of a vertex v in a digraph is a path starting at v such that v dominates the

end vertex of the path only if the end vertex also dominates v. First we show that letting D be a

strongly connected semicomplete c-partite digraph (c ≥ 3), and one of the partite sets of it consists of a

single vertex, say v, then D has a c-pancyclic partial ordering from v, which generalizes a result about

pancyclicity of multipartite tournaments obtained by Gutin in 1993. Then we prove that letting D be

a strongly connected semicomplete c-partite digraph with c ≥ 3 and letting v be a vertex of D, then D

has a (c − 1)-pan-outpath partly ordering from v. This result improves a theorem about outpaths in

semicomplete multipartite digraphs obtained by Guo in 1999.
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1 Introduction

We use the terminology and notation of [1]. A digraph D = (V (D), A(D)) is determined by its
set of vertices V (D), and its set of arcs A(D). If xy is an arc of a digraph D, then we say that
x dominates y, denoted by x → y. More generally, if A and B are two disjoint subdigraphs of
D such that every vertex of A dominates every vertex of B, then we say that A dominates B,
denoted by A → B. By a cycle (path, resp.) we mean a directed cycle (directed path, resp.). A
cycle of length k is called a k-cycle. A digraph D is strongly connected, if for any two vertices
x and y, there are a path from x to y and a path from y to x in D. If S is a set of vertices in a
digraph D, then D[S] is the subdigraph induced by S.

A semicomplete n-partite digraph is a digraph obtained from a complete n-partite graph by
replacing each edge with an arc, or a pair of mutually opposite arcs with the same end vertices.
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An n-partite tournament is a semicomplete n-partite digraph with no cycles of length 2 and a
tournament is an n-partite tournament having exactly n vertices.

An outpath of a vertex x (an arc xy, resp.) in D is a path starting at x (xy, resp.) such that
x dominates the end vertex of the path only if the end vertex also dominates x. An outpath of
length k is called a k-outpath.

The concept of the so-called outpath was introduced by Guo [2], which is an extension of
the notation of a cycle in tournaments, i.e., a vertex v of a tournament T is in a k-cycle if and
only if v has a (k − 1)-outpath.

In [3], [4] Hendry introduced the concept of pancyclic ordering. In [5] Tewes considered pan-
cyclic ordering in strongly connected in-tournaments. For semicomplete multipartite digraphs,
we introduce slightly weak concepts of c-pancyclic partial ordering and (c−1)-pan-outpath par-
tial ordering, which are all generalizations of the concept of vertex pancyclicity in tournaments.

A semicomplete c-partite digraph D with c ≥ 3 has c-pancyclic partial ordering, if there are
c vertices in D which can be labelled x1, x2, . . . , xc such that D[{x1, x2, . . . , xt}] is Hamiltonian
for every t (3 ≤ t ≤ c). The ordering x1, x2, . . . , xc is called a c-pancyclic partial ordering from
x1, denoted by 〈x1, x2, . . . , xc〉.

A semicomplete c-partite digraph D with c ≥ 3 has a (c − 1)-pan-outpath partial order-
ing from v, if there are c vertices in D which can be labelled x1(= v), x2, . . . , xc such that
D[{x1, x2, . . . , xt}] has a (t − 1)-outpath from x1 for every t (3 ≤ t ≤ c). The ordering
x1, x2, . . . , xc is also denoted by 〈x1, x2, . . . , xc〉.

The well-known theorem of Moon [6] says that if T is a strong tournament on n vertices,
then every vertex of T is in a k-cycle for all k ∈ {3, 4, . . . , n}.

Guo [2] proves that letting D be a strongly connected semicomplete c-partite digraphs with
c ≥ 3 and letting v be a vertex of D, then v has a (k−1)-outpath for all k ∈ {3, 4, . . . , c}, which
generalizes the theorem on tournaments due to Moon.

As another generalization of the theorem on tournaments due to Moon, Gutin [7] proves
that letting D be a strongly connected c-partite (c ≥ 3) tournament, and one of the partite
sets of it consists of a single vertex, say v, then for each p ∈ {3, 4, . . . , c} there is a p-cycle of D

containing v.

In this paper, we improve both the result of Guo and that of Gutin.

2 Main Results

Theorem 1 Let D be a strongly connected semicomplete c-partite digraph with c ≥ 3, and
one of the partite sets of it consists of a single vertex, say v. Then D has a c-pancyclic partial
ordering from v.

Proof Let V1 = {v}, V2, . . ., Vc be the partite sets of D. First we show that v lies on a 3-cycle.
Since D is strongly connected and c ≥ 3, it is easy to show that there exists a cycle of length at
least 3 which contains v. Let C = v1v2 · · · vkv1 with v1 = v be such a shortest cycle. Suppose
that k ≥ 4. Since v is adjacent with every vertex of V (D) − {v}, we have v1v3 ∈ A(D) or
v3v1 ∈ A(D). If v1v3 ∈ A(D), then v is in a (k − 1)-cycle v1v3 · · · vkv1, which contradicts the
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choice of the cycle C. If v3v1 ∈ A(D), then v is in a 3-cycle v1v2v3v1, which also contradicts
the choice of the cycle C. Therefore, k = 3 and v lies on a cycle of length 3.

Suppose now that D contains m vertices v1 = v, v2, . . . , vm such that D[{v1, v2, . . . , vt}] is
Hamiltonian for every t (3 ≤ t ≤ m), where m satisfies 3 ≤ m < c. We shall show that D

contains m + 1 vertices x1 = v, x2, . . . , xm+1 such that D[{x1, x2, . . . , xt}] is Hamiltonian for
every t (3 ≤ t ≤ m + 1).

Without loss of generality, we assume the Hamiltonian cycle of D[{v1, v2, . . . , vm}] is Cm =
v1v2 · · · vmv1 with v1 = v. Let S = {x|x ∈ Vi, Vi ∩ {v1, v2, . . . , vm} = ∅, 2 ≤ i ≤ c}. It is clear
that S 	= ∅ and every vertex of S is adjacent with all vertices of {v1, v2, . . . , vm}. If there is a
vertex x in S such that N+(x)∩{v1, v2, . . . , vm} 	= ∅ and N−(x)∩{v1, v2, . . . , vm} 	= ∅, then it is
easy to check that x can be inserted into Cm to form an (m+1)-cycle and 〈v1, v2, . . . , vm, x〉 has
the desired property. So we assume that S can be decomposed into two subsets S1 and S2 such
that S2 → {v1, v2, . . . , vm} → S1. Without loss of generality, we assume that S1 is not empty.
Since D is strongly connected, there is a path from S1 to {v1, v2, . . . , vm}. Let P = y1y2 . . . yq

be such a shortest path. It is obvious that q ≥ 3 and yq = vk for some 1 ≤ k ≤ m. We consider
the following two cases:

Case 1 V (P ) ∩ S2 	= ∅.
Since S2 dominates {v1, v2, . . . , vm} and P is a shortest path, we have v1 → yq−2 and the

vertex yq−1 must be in S2, otherwise there is yi ∈ S2, (1 ≤ i ≤ q− 2) and then y1y2 . . . yiv1 is a
shorter path from S1 to {v1, v2, . . . , vm}, a contradiction. Hence 〈v1, yq−2, yq−1, vm, vm−1, . . . , v3〉
has the desired property.

Case 2 V (P ) ∩ S2 = ∅.
Subcase 2.1 yq = v1.
Clearly, yq → yi for all 1 ≤ i ≤ q − 2. Hence D contains m + 1 vertices such that

〈yq = v1, yq−1, yq−2, . . . , y1, v2, v3, . . . , vm−q+2〉 has the desired property.
Subcase 2.2 yq 	= v1.
By Subcase 2.1 we may assume that v1 	∈ N+(yq−1). Recall that yq = vk, 2 ≤ k ≤ m. For

convenience, let yq+i = vk+i for all i satisfying 0 ≤ i ≤ m− k and denote P ′ = y1y2 · · · yq+m−k.
Let α = max{j|v1 → P ′[y1, yj ]}. Clearly q − 1 ≤ α ≤ q + m − k. If α ≥ q + m − k − 1, then
D contains m+ q − 1 vertices such that 〈v1, yq+m−k, yq+m−k−1, . . . , y1, v2, v3, . . . , vk−1〉 has the
desired property.

So we may assume that q − 1 ≤ α ≤ q + m − k − 2, 2 ≤ k ≤ m. Note that yα+1 → v1. Let
β = max{i|P ′[yα+1, yi] → v1}. Clearly α + 1 ≤ β ≤ q + m − k. Since yq+m−k → v1, we have
either β = q + m − k or β ≤ (q + m − k) − 1.

If β = q + m − k, then D contains m + q − 1 vertices such that 〈v1, yα+1, yα, . . . , y1,

yα+2, yα+3, . . . , yq+m−k, v2, v3, . . . , vk−1〉 has the desired property.
If β ≤ (q + m − k) − 1, then v1 → yβ+1, D contains m + q − 1 vertices such that

〈v1, yα+1, yα, . . . , y1, yα+2, yα+3, . . . , yβ , yβ+1, . . . , yq+m−k, v2, v3, . . . , vk−1〉 has the desired prop-
erty.

This completes the proof of Theorem 1.

Corollary 2 [7] Let T be a strongly connected c-partite (c ≥ 3) tournament, and one of the
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partite sets of it consists of a single vertex, say v. Then for each p ∈ {3, 4, . . . , c} there is a
p-cycle of T containing v.

The method for the proof of the following Theorem 3 comes from [2], this proof is shorter
than the original one in the manuscript.

Theorem 3 Let D be a strongly connected semicomplete c-partite digraph with c ≥ 3 and let
v be a vertex of D. Then D has a (c − 1)-pan-outpath partial ordering from v.

Proof Let V1, V2,. . ., Vc be the partite sets of D and assume, without loss of generality, that
v ∈ V1. If V1 = {v}, then by Theorem 3.1, D has a c-pancyclic partial ordering from v. Hence
D has a (c − 1)-pan-outpath partial ordering from v.

Suppose now that |V1| ≥ 2. By adding arcs from V1\{v} to v, we obtain a semicomplete
(c + 1)-partite digraph D′ which is also strongly connected. Note that the vertex v forms a
partite set by itself in D′. By the same argument as above, D′ has a (c + 1)-pancyclic partial
ordering from v, say 〈v1 = v, v2, . . . , vc+1〉. If the Hamiltonian cycle Ck of D′[{v1, v2, . . . , vk}]
contains no arc from V1\{v} to v, then clearly the path Ck[v1, v

−
1 ] is a (k − 1)-outpath of v in

D, where 3 ≤ k ≤ c + 1. If the Hamiltonian cycle Ck of D′[{v1, v2, . . . , vk}] contains an arc
from V1\{v} to v, we delete it and obtain a (k − 1)-outpath of v in D, where 3 ≤ k ≤ c + 1. So
〈v1, v2, . . . , vc+1〉 is a c-pan-outpath partial ordering of D.

Corollary 4 [2] Let D be a strongly connected semicomplete c-partite digraph with c ≥ 3 and
let v be a vertex of D. Then v has a (k − 1)-outpath for all k ∈ {3, 4, . . . , c}.
Corollary 5 [7] Let T be a strong tournament. Then T has a pancyclic ordering from v for
every v ∈ V (T ).

Corollary 6 [6] Every strong tournament is vertex pancyclic.

From the proof of Theorem 3, we can obtain the following theorem about long outpaths:

Theorem 7 Let D be a strongly connected semicomplete c-partite digraph (c ≥ 3) with partite
sets V1, V2, . . ., Vc. If |Vi| ≥ 2 for all i = 1, 2, . . . , c, then D has a c-pan-outpath partial ordering
from v for every v ∈ V (D).

Lastly we give a problem about long outpaths in a strongly connected semicomplete n-
partite digraph.

Problem 8 Can we give conditions to ensure that for every vertex v, v has a k-outpath in a
strongly connected semicomplete c-partite (c ≥ 3) digraph D with k > c ?
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