The Ramsey numbers of stars versus wheels

Yaojun Chen, Yunqing Zhang, Kemin Zhang

Department of Mathematics, Nanjing University, Nanjing 210093, China
Received 5 October 2002; accepted 11 December 2003
Available online 15 January 2004

Abstract

For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest positive integer n such that for any graph G of order n, either G contains G_{1} or the complement of G contains G_{2}. Let S_{n} denote a star of order n and W_{m} a wheel of order $m+1$. This paper shows that $R\left(S_{n}, W_{6}\right)=2 n+1$ for $n \geq 3$ and $R\left(S_{n}, W_{m}\right)=3 n-2$ for m odd and $n \geq m-1 \geq 2$. © 2003 Elsevier Ltd. All rights reserved.

Keywords: Ramsey number; Star; Wheel

1. Introduction

All graphs considered in this paper are finite simple graph without loops. For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest positive integer n such that for any graph G of order n, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. Let $G=(V(G), E(G))$ be a graph. The neighborhood of vertex v is denoted by $N(v)$ and $N[v]=N(v) \cup\{v\}$. For a vertex $v \in V(G)$ and a subgraph H of $G, N_{H}(v)=N(v) \cap V(H)$. Let $d_{H}(v)=\left|N_{H}(v)\right|$. For two vertex disjoint sets S and T, we define $d_{T}(S)=\sum_{s \in S} d_{T}(s)$. The connectivity, independence number, maximum degree and minimum degree of G are denoted by $\kappa(G), \alpha(G), \Delta(G)$ and $\delta(G)$, respectively. For $S \subseteq V(G), G[S]$ denotes the subgraph induced by S in G. A complete graph of order n is denoted by K_{n}. A complete bipartite graph of order $m+n$ is denoted by $K_{m, n}$ and a Star S_{n} is $K_{1, n-1}$. A path and a cycle of order n are denoted by P_{n} and C_{n}, respectively. Let m be a positive integer and G a graph, we use $m G$ to denote m vertex disjoint copies of G. A Wheel $W_{n}=\{x\}+C_{n}$ is a graph of $n+1$ vertices, x called the hub of the wheel. The length of a shortest and longest cycle of G are denoted by $g(G)$ and $c(G)$, respectively.

[^0]A graph on n vertices is pancyclic if it contains cycles of every length $l, 3 \leq l \leq n$ and weakly pancyclic if it contains cycles of every length $l, g(G) \leq l \leq c(G)$.

Ramsey theory studies conditions when a combinatorial object contains necessarily some smaller given objects. The role of Ramsey number is to quantify some of the general existential theorems in Ramsey theory. The classical Ramsey number is $R(k, l)$ for complete graphs. Since it is very difficult to determine $R(k, l)$, people turn to consider Ramsey numbers concerning general graph results, such as Ramsey numbers of path versus cycle, cycle versus star, tree versus wheel and so on, see for instance [1, 4-6, 8]. Recently, the following results are obtained.

Theorem A (Surahmat and Baskoro [9]). $R\left(S_{n}, W_{4}\right)=2 n-1$ for $n \geq 3$ and $n \equiv$ $1(\bmod 2)$ and $R\left(S_{n}, W_{4}\right)=2 n+1$ for $n \geq 4$ and $n \equiv 0(\bmod 2)$.

Theorem B (Surahmat and Baskoro [9]). $R\left(S_{n}, W_{5}\right)=3 n-2$ for $n \geq 4$.
Theorem C (Baskoro et al. [1]). Let T_{n} be a tree other than S_{n}, then $R\left(T_{n}, W_{4}\right)=2 n-1$ for $n \geq 3$ and $R\left(T_{n}, W_{5}\right)=3 n-2$ for $n \geq 4$.

Furthermore, motivated by Theorem C, Baskoro et al. [1] posed the following.
Conjecture 1. Let T_{n} be a tree other than S_{n} and $n \geq m-1$. Then $R\left(T_{n}, W_{m}\right)=2 n-1$ for $m \geq 6$ and even, and $R\left(T_{n}, W_{m}\right)=3 n-2$ for $m \geq 7$ and odd.

In this paper, we consider the Ramsey numbers of star versus wheel in a more general situation. The main results of this paper are the following.

Theorem 1. $R\left(S_{n}, W_{6}\right)=2 n+1$ for $n \geq 3$.
Theorem 2. $R\left(S_{n}, W_{m}\right)=3 n-2$ for m odd and $n \geq m-1 \geq 2$.
Remark. By Theorem 2, we can see that $R\left(S_{n}, W_{m}\right)$ is a function of n if m is odd. However, it is not the case when m is even. In fact, if m is even, then $R\left(S_{n}, W_{m}\right)$ is a function related to both n and m as can be seen by the following examples.

Let $m \geq 6$ be an even integer, $n=k m / 2+2$, where $k \geq 2$ is an integer, and $G=H \cup K_{n-1}$, where $\bar{H}=(k+1) K_{m / 2}$. Obviously, G is a graph of order $2 n+m / 2-3$ and $\Delta(G)=n-2$ and hence G contains no S_{n}. It is not difficult to see \bar{G} contains no W_{m}. Thus we have $R\left(S_{n}, W_{m}\right) \geq 2 n+m / 2-2$ if $n=k m / 2+2$ for some integer $k \geq 2$.

Problem 1. Determine $R\left(S_{n}, W_{m}\right)$ for m even and $n \geq m-1 \geq 7$.

2. Some lemmas

In order to prove our results, we need the following lemmas.
Lemma 1 (Bondy [2]). Let G be a graph of order n. If $\delta(G) \geq n / 2$, then either G is pancyclic or n is even and $G=K_{n / 2, n / 2}$.

Lemma 2 (Dirac [7]). Let G be a 2 -connected graph of order $n \geq 3$ with $\delta(G)=\delta$. Then $c(G) \geq \min \{2 \delta, n\}$.

Lemma 3 (Brandt [3]). Every non-bipartite graph G of order n with $\delta(G) \geq(n+2) / 3$ is weakly pancyclic.

Lemma 4. Let G be a 2 -connected graph of order 8 with $\delta(G)=3$. Then G contains $a C_{6}$.

Proof. Let $V(G)=\left\{v_{i} \mid 1 \leq i \leq 8\right\}$ and $C=v_{1} v_{2} \cdots v_{k}$ a longest cycle of G. By Lemma $2, k \geq 6$. If $k=6$, we are done. If $k=7$, then by the maximality of C, v_{8} has no two consecutive neighbors on C. Since $\delta(G)=3$, we may assume $N\left(v_{8}\right)=\left\{v_{1}, v_{3}, v_{5}\right\}$. Thus $v_{1} v_{2} v_{3} v_{4} v_{5} v_{8} v_{1}$ is a C_{6}. If $k=8$, we assume $d\left(v_{1}\right)=3$ and hence C has a chord $v_{1} v_{i}$. If $i \in\{4,6\}$, then G contains a C_{6}. Hence $i \in\{3,5,7\}$. By symmetry, we may assume $i \in\{3,5\}$. Since $\delta(G)=3, C$ has a chord $v_{5} v_{j}$. By an analogous argument as above, we have $j \in\{1,3,7\}$. If $i=3$, then $j \neq 1$ and hence $j \in\{3,7\}$ which implies G contains a C_{6}. Hence we have $i=5$. In this case, $v_{3} v_{7} \notin E(G)$ for otherwise $v_{1} v_{2} v_{3} v_{7} v_{6} v_{5} v_{1}$ is a C_{6}. If $\left\{v_{2}, v_{4}\right\} \cap N\left(v_{7}\right) \neq \emptyset$, then G contains a C_{6}. Hence we may assume $v_{2} v_{7}, v_{4} v_{7} \notin E(G)$. Thus noting that $d\left(v_{1}\right)=3$ and $\delta(G)=3$, we have $v_{7} v_{5} \in E(G)$. By symmetry, we have $v_{3} v_{5} \in E(G)$ which implies $v_{1} v_{2} v_{3} v_{5} v_{7} v_{8} v_{1}$ is a C_{6}.

Lemma 5. Let G be a 2 -connected graph of order 9 with $\delta(G)=4$. Then G contains $a C_{6}$.

Proof. Let $V(G)=\left\{v_{i} \mid 1 \leq i \leq 9\right\}$ and $C=v_{1} v_{2} \cdots v_{k}$ a longest cycle of G. By Lemma $2, k \geq 8$. If $k=8$, then by the maximality of C, v_{9} has no two consecutive neighbors in C. Since $\delta(G)=4$, we may assume $N\left(v_{9}\right)=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$. Thus $g(G) \leq 4$. If G is non-bipartite, then G contains a C_{6} by Lemma 3. If G is bipartite, then since $\delta(G)=4$, it is not difficult to see that $G=K_{4,5}$ and hence G contains a C_{6}. If $k=9$, then G is non-bipartite. Since $\delta(G)=4, C$ has a chord which implies $g(G) \leq 5$. Thus G contains a C_{6} by Lemma 3 .

3. Proof of Theorem 1

Proof of Theorem 1. Let $n \geq 3$ be an integer and $G=H \cup K_{n-1}$, where $\bar{H}=C_{n+1}$ if $n \neq 5$ and $\bar{H}=2 C_{3}$ if $n=5$. Obviously, $|G|=2 n$. It is not difficult to see neither G contains a star S_{n} nor \bar{G} contains a W_{6} and hence $R\left(S_{n}, W_{6}\right) \geq 2 n+1$.

In order to show $R\left(S_{n}, W_{6}\right) \leq 2 n+1$, we use induction on n. Let G be a graph of order $2 n+1$. As the basis of induction, we first show $R\left(S_{n}, W_{6}\right)=2 n+1$ for $3 \leq n \leq 6$.

Suppose G contains no S_{n}. Then $\Delta(G) \leq n-2$ which implies $\delta(\bar{G}) \geq n+2$. Let $v \in V(G)$ be a vertex such that $d_{\bar{G}}(v)=d=\Delta(\bar{G})=n+2+k$, where $k \geq 0$. Set $N_{\bar{G}}(v)=V_{0}, U=V(G)-V_{0} \cup\{v\}$ and $F=\bar{G}\left[V_{0}\right]$. It is not difficult to see that $\delta(F) \geq 3+k$. If $v_{i} \in V_{0}$ and $d_{F}\left(v_{i}\right)=3+k$, then we must have

$$
\begin{equation*}
U \subseteq N_{\bar{G}}\left(v_{i}\right) \tag{1}
\end{equation*}
$$

If $n=3$, then we can see \bar{G} contains a W_{6}. If $n=4$, then $\delta(F) \geq 3+k \geq(6+k) / 2=$ $\left|V_{0}\right| / 2$ which implies F contains a C_{6} by Lemma 1. If $n=5$, then $\delta(\bar{G}) \geq 7$. We have $d \geq 8$ since the number of vertices of odd degree is even, which implies $k \geq 1$ and hence
we have $\delta(F) \geq 3+k \geq(7+k) / 2=\left|V_{0}\right| / 2$ which implies F contains a C_{6} by Lemma 1. Thus \bar{G} contains a W_{6} with the hub v when $n=4,5$ and hence we may assume $n=6$.

If $k \geq 2$, then $\delta(F) \geq 3+k \geq(8+k) / 2=\left|V_{0}\right| / 2$ which implies F contains a C_{6} by Lemma 1 and hence \bar{G} contains a W_{6}. Thus we may assume $k \leq 1$.

If $k=0$, then $d=8$. If $\delta(F) \geq 4$, then by Lemma $1, F$ contains a C_{6} and hence \bar{G} contains a W_{6}. Thus we have $\delta(F)=3$. If F is not connected, then since $\delta(F)=3$, we can see $F=2 K_{4}$. By (1), $U \subseteq N_{\bar{G}}\left(v_{i}\right)$ for any $v_{i} \in V_{0}$ and hence \bar{G} contains a W_{6} with the hub v_{i} for any $v_{i} \in V_{0}$. If $\kappa(F)=1$, we let w be a cut-vertex and H_{1} a component of $F-w$ such that $\left|H_{1}\right|$ is as small as possible. Then $\left|H_{1}\right|=3, V\left(H_{1}\right) \cup\{w\}$ is a 4-clique and $d_{F}(h)=3$ for any $h \in V\left(H_{1}\right)$. Let $V\left(H_{1}\right)=\left\{h_{1}, h_{2}, h_{3}\right\}$. If $\left|N_{\bar{G}}(w) \cap U\right| \leq 1$, then $\bar{G}[U]$ contains at least two edges since $\delta(\bar{G}) \geq 8$. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. If $\bar{G}[U]$ contains a P_{3}, say $P=u_{1} u_{2} u_{3}$, then by (1), $h_{2} u_{1} u_{2} u_{3} h_{3} u_{4} h_{2}$ is a C_{6} and hence \bar{G} contains a W_{6} with the hub h_{1}. If $\bar{G}[U]$ contains no P_{3}, then $\bar{G}[U]=2 K_{2}$. Assume $E(\bar{G}[U])=\left\{u_{1} u_{2}, u_{3} u_{4}\right\}$, then by (1), $h_{2} u_{1} u_{2} h_{3} u_{3} u_{4} h_{2}$ is a C_{6} and hence \bar{G} contains a W_{6} with the hub h_{1}. Thus we may assume $\left|N_{\bar{G}}(w) \cap U\right| \geq 2$. Let $u_{1}, u_{2} \in N_{\bar{G}}(w)$, then $h_{2} u_{1} w u_{2} h_{3} u_{3} h_{2}$ is a C_{6} and hence \bar{G} contains a W_{6} with the hub h_{1}. If $\kappa(F) \geq 2$, then by Lemma $4, F$ contains a C_{6} and hence \bar{G} contains a W_{6} with the hub v.

If $k=1$, then $d=9$. By Lemma 1, we may assume $\delta(F)=4$. Since $\delta(F)=4$ and $d=9$, we have $\kappa(F) \geq 1$. If $\kappa(F)=1$, then it is not difficult to see that F is two K_{5} 's with one vertex, say w, in common. Obviously $F-w=2 K_{4}$. Take a K_{4} in $F-w$ and let $V_{1}=V\left(K_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. It is not difficult to see $d_{F}\left(v_{i}\right)=4$ for any $v_{i} \in V_{1}$. Thus by (1), we can see $\bar{G}\left[U \cup V_{1}\right]$ contains a W_{6} with the hub v_{1}. If $\kappa(F) \geq 2$, then by Lemma 5, F contains a C_{6} and hence \bar{G} contains a W_{6} with the hub v. Thus, we have $R\left(S_{n}, W_{6}\right)=2 n+1$ for $3 \leq n \leq 6$.

Now, assume $n \geq 7$ and Theorem 1 holds for smaller values of n.
If \bar{G} contains no W_{6}, then we have $\alpha(G) \leq 6$. If $\alpha(G) \leq 2$, then $\Delta(G) \geq n$ which implies G contains a star S_{n}. Hence we may assume $3 \leq \alpha(G) \leq 6$ and consider the following three cases separately.

Case 1. $\alpha(G)=3$.
We consider the following two subcases separately.
Subcase 1.1. G contains an induced subgraph $G_{0}=3 K_{2}$.
Let $V\left(G_{0}\right)=V_{0}=\left\{a_{i} \mid 1 \leq i \leq 6\right\}$ and $E\left(G_{0}\right)=\left\{a_{1} a_{2}, a_{3} a_{4}, a_{5} a_{6}\right\}$. Since $n \geq 7$, we have $n-3 \geq 4$. By induction hypothesis, $G-V_{0}$ contains a star S_{n-3} with center v_{1}. Since $\alpha(G)=3$ and both $\left\{a_{1}, a_{3}, a_{5}\right\}$ and $\left\{a_{2}, a_{4}, a_{6}\right\}$ are independent sets, we have $\left|N_{V_{0}}\left(v_{1}\right)\right| \geq 2$. If $d_{V_{0}}\left(v_{1}\right) \geq 3$, then G contains a star S_{n} with center v_{1}. Hence we may assume $\left|N_{V_{0}}\left(v_{1}\right)\right|=2$. Assume without loss of generality that $a_{1} \in N\left(v_{1}\right)$. Then $a_{2} \in N\left(v_{1}\right)$ for otherwise we can obtain an independent set of order 4 . Thus we have $N_{V_{0}}\left(v_{1}\right)=\left\{a_{1}, a_{2}\right\}$.

Let $V_{1}=V_{0} \cup\left\{v_{1}\right\}$. Obviously, $G\left[V_{1}\right]=2 K_{2} \cup K_{3}$. Since $n \geq 7$, we have $n-4 \geq 3$. By induction hypothesis, $G-V_{1}$ contains a star S_{n-4} with center v_{2}. For the same reason as above, we have $d_{V_{1}}\left(v_{2}\right)=2$ or 3 and if $d_{V_{1}}\left(v_{2}\right)=2$, then $N_{V_{1}}\left(v_{2}\right)=\left\{a_{3}, a_{4}\right\}$ or $\left\{a_{5}, a_{6}\right\}$. Assume $N_{V_{1}}\left(v_{2}\right)=\left\{a_{3}, a_{4}\right\}$, then it is no difficult to see that $\bar{G}\left[\left(V_{1}-\left\{a_{6}\right\}\right) \cup\left\{v_{2}\right\}\right]$ contains
a W_{6} with the hub a_{5}, a contradiction. Hence we have $d_{V_{1}}\left(v_{2}\right)=3$. Let $U=\left\{a_{1}, a_{2}, v_{1}\right\}$. If $d_{U}\left(v_{2}\right)=0$, we may assume that $N_{V_{1}}\left(v_{2}\right)=\left\{a_{3}, a_{4}, a_{5}\right\}$. If $d_{U}\left(v_{2}\right)=1$, then since $\alpha(G)=3$, we may assume $a_{3}, a_{4} \in N_{V_{1}}\left(v_{2}\right)$. Thus we can see $\bar{G}\left[V_{1} \cup\left\{v_{2}\right\}-\left\{a_{5}\right\}\right]$ contains a W_{6} with the hub a_{6} if $d_{U}\left(v_{2}\right) \leq 1$, a contradiction. If $d_{U}\left(v_{2}\right)=2$, we may assume $N_{V_{1}}\left(v_{2}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Thus, $\left\{v_{1}, v_{2}, a_{4}, a_{5}\right\}$ is an independent set which contradicts $\alpha(G)=3$. Hence we have $d_{U}\left(v_{2}\right)=3$.

Let $V_{2}=V_{1} \cup\left\{v_{2}\right\}$. Clearly, $G\left[V_{2}\right]=2 K_{2} \cup K_{4}$. Since $n \geq 7$, we have $n-4 \geq 3$. By induction hypothesis, $G-V_{2}$ contains a star S_{n-4} with center v. For the same reason as above, we have $d_{V_{2}}(v)=3$. Let $U_{1}=U \cup\left\{v_{2}\right\}$. If $d_{U_{1}}(v)=0$, then we may assume $N_{V_{2}}(v)=\left\{a_{3}, a_{4}, a_{5}\right\}$. If $d_{U_{1}}(v)=1$, say $a_{1} \in N(v)$, then since $\alpha(G)=3$, we may assume $a_{3}, a_{4} \in N_{V_{1}}(v)$. Thus we see $\bar{G}\left[V_{2} \cup\{v\}-\left\{a_{1}, a_{5}\right\}\right]$ contains a W_{6} with the hub a_{6} if $d_{U_{1}}(v) \leq 1$, a contradiction. If $d_{U_{1}}(v)=2$, we may assume that $N_{V_{2}}(v)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Thus, $\left\{v_{1}, a_{4}, a_{5}, v\right\}$ is an independent set which contradicts $\alpha(G)=3$. If $d_{U_{1}}(v)=3$, say $N_{V_{2}}(v)=\left\{v_{1}, v_{2}, a_{1}\right\}$, then $\left\{a_{2}, a_{3}, a_{5}, v\right\}$ is an independent set which contradicts $\alpha(G)=3$.

Subcase 1.2. G does not contain an induced subgraph $3 \mathrm{~K}_{2}$.
Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ be a maximum independent set of G. Since $n \geq 7$, we have $n-2 \geq 5$. By induction hypothesis, $G-A$ contains a star S_{n-2} with center v_{1}. If $d_{A}\left(v_{1}\right) \geq 2$, then G contains a star S_{n}. Hence $d_{A}\left(v_{1}\right) \leq 1$. Since A is a maximum independent set of G, we have $d_{A}\left(v_{1}\right)=1$. Assume $N_{A}\left(v_{1}\right)=\left\{a_{1}\right\}$ and $A_{1}=A \cup\left\{v_{1}\right\}$. Since $n \geq 7$, we have $n-2 \geq 5$. By induction hypothesis, $G-A_{1}$ contains a star S_{n-2} with center v_{2}. For the same reason as above, we have $d_{A_{1}}\left(v_{2}\right)=1$. If $N_{A_{1}}\left(v_{2}\right) \cap\left\{a_{2}, a_{3}\right\}=\emptyset$, then $A \cup\left\{v_{2}\right\}$ or $\left\{a_{2}, a_{3}, v_{1}, v_{2}\right\}$ is an independent set which contradicts $\alpha(G)=3$. Thus we may assume $N_{A_{1}}\left(v_{2}\right)=\left\{a_{2}\right\}$.

Let $X=\left\{a_{1}, a_{2}, v_{1}, v_{2}\right\}$ and $Y=V(G)-N\left[a_{3}\right] \cup X$. Since \bar{G} contains no W_{6}, we have the following claims.

Claim 1. For any vertex $y \in Y, d_{X}(y) \geq 2$ and if $d_{X}(y)=2$, then $N_{X}(y)=\left\{a_{1}, v_{1}\right\}$ or $\left\{a_{2}, v_{2}\right\}$.

Proof. If $d_{X}(y) \leq 1$, say $N_{X}(y) \cap\left(X-\left\{a_{1}\right\}\right)=\emptyset$, then $\left\{v_{1}, v_{2}, a_{3}, y\right\}$ is an independent set which contradicts $\alpha(G)=3$. As for the latter part, the proof is similar.

Claim 2. For any vertex $y \in Y$, there is some vertex $y^{\prime} \in Y$ such that $y y^{\prime} \notin E(G)$.
Proof. Since G contains no S_{n}, we have $\left|N\left[a_{3}\right]\right| \leq n-1$. Noting that $|X|=4$, we have $|Y| \geq n-2$. If there is some vertex $y \in Y$ such that $Y-\{y\} \subseteq N(y)$, then by Claim 1, we have $d(y) \geq n-1$ which implies G contains a star S_{n}, a contradiction.

Claim 3. For any two vertices $y_{1}, y_{2} \in Y$ with $y_{1} y_{2} \notin E(G), d_{X}\left(y_{1}\right)+d_{X}\left(y_{2}\right) \geq 6$.
Proof. Assume $d_{X}\left(y_{1}\right) \leq d_{X}\left(y_{2}\right)$. If $d_{X}\left(y_{1}\right)+d_{X}\left(y_{2}\right) \leq 5$, then $d_{X}\left(y_{1}\right) \leq 2$. Thus by Claim 1 we may assume $N_{X}\left(y_{1}\right)=\left\{a_{1}, v_{1}\right\}$. Since $\alpha(G)=3$ and $y_{1} y_{2} \notin E(G)$, $\left\{a_{3}, y_{1}, y_{2}\right\}$ is a maximum independent set of G which implies $\left\{a_{2}, v_{2}\right\} \subseteq N_{X}\left(y_{2}\right)$. Since $d_{X}\left(y_{1}\right)+d_{X}\left(y_{2}\right) \leq 5$, we have $\left\{a_{1}, v_{1}\right\} \nsubseteq N_{X}\left(y_{2}\right)$. Assume $a_{1} \notin N_{X}\left(y_{2}\right)$, then
$y_{1} y_{2} a_{1} a_{2} v_{1} v_{2} y_{1}$ is a C_{6} in \bar{G}. Noting that $X \cup\left\{y_{1}, y_{2}\right\} \subseteq V(G)-N\left[a_{3}\right], \bar{G}$ contains a W_{6} with the hub a_{3}, a contradiction.

Let $Y_{0}=\left\{y \mid y \in Y\right.$ and $\left.d_{X}(y)=2\right\}$.
Claim 4. For any two vertices $y_{1}, y_{2} \in Y_{0}, N_{X}\left(y_{1}\right)=N_{X}\left(y_{2}\right)$.
Proof. Otherwise we may assume $N_{X}\left(y_{i}\right)=\left\{a_{i}, v_{i}\right\}$ by Claim 1, where $i=1,2$. In this case, it is not difficult to see that \bar{G} contains a W_{6} with $V\left(W_{6}\right)=X \cup\left\{a_{3}, y_{1}, y_{2}\right\}$ and the hub a_{3}, a contradiction.

Claim 5. $d_{Y}(X) \leq 3|Y|-3$.
Proof. Let $N\left(a_{3}\right)=B$. Since G does not contain an induced subgraph $3 K_{2}$, we have $d_{X}(b) \geq 1$ for any $b \in B$. Thus we have $d_{B}(X) \geq|B|$.

If $d_{Y}(X) \geq 3|Y|-2$, then since $d_{B}(X) \geq|B|$, we have $d_{Y}(X)+d_{B}(X) \geq 3|Y|+|B|-2$. Noting that $|X|=4$, we have $d_{Y}(X)+d_{B}(X) \geq 3|Y|+|B|-2=3(2 n-4-|B|)+|B|-2=$ $6 n-14-2|B|$. Since G contains no star S_{n}, we have $|B| \leq n-2$. Thus we have $d_{Y}(X)+d_{B}(X) \geq 6 n-14-2(n-2)=4 n-10$ which implies there is some vertex $x \in X$ such that $d_{Y}(x)+d_{B}(x) \geq n-2$. Since $d_{X}(x)=1$, we have $d(x) \geq n-1$ which implies G contains a star S_{n}, a contradiction.

If $\left|Y_{0}\right| \leq 2$, then by Claim 1, we have $d_{Y}(X) \geq 3|Y|-2$ which contradicts Claim 5 . Hence $\left|Y_{0}\right| \geq 3$. If $\bar{G}[Y]$ contains a matching M which saturates Y_{0}, then by Claim 3, we have $d_{Y}(X) \geq \sum_{y \in V(M)} d_{X}(y)+\sum_{y \in Y-V(M)} d_{X}(y) \geq 3|Y|$ which contradicts Claim 5. Hence $\bar{G}[Y]$ contains no matching M which saturates Y_{0}. Thus by Claim 2, there are two vertices $y_{1}, y_{2} \in Y_{0}$ and a vertex $y_{0} \in Y$ such that $y_{0} y_{1}, y_{0} y_{2} \notin E(G)$. By Claim 4, we may assume $N_{X}(y)=\left\{a_{1}, v_{1}\right\}$ for any vertex $y \in Y_{0}$. Since $\left|Y_{0}\right| \geq 3$, we can choose a vertex $y_{3} \in Y_{0}-\left\{y_{1}, y_{2}\right\}$. It is not difficult to see that $y_{0} y_{1} a_{2} y_{3} v_{2} y_{2} y_{0}$ is a C_{6} in $\bar{G}[X \cup Y]$. Thus, noting that $X \cup Y=V(G)-N\left[a_{3}\right]$, we can see that \bar{G} contains a W_{6} with the hub a_{3}, a contradiction.

Case 2. $\alpha(G)=4$.
In this case, we first show the following claim.
Claim 6. G has at least one of the following graphs as an induced subgraph: $3 K_{1} \cup K_{3}$, $2 K_{1} \cup P_{4}$ and $2 K_{1} \cup 2 K_{2}$.

Proof. Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ be a maximum independent set of G. Then $d_{A}(v) \geq 1$ for any vertex $v \in V(G)-A$. If there is at most one vertex, say v in $V(G)-A$ such that $d_{A}(v)=1$, then $d(A) \geq 2(2 n-3)-1=4 n-7$ which implies there is at least one vertex $a \in A$ such that $d(a) \geq n-1$ and hence G contains a star S_{n}, a contradiction. Thus there are at least two vertices in $V(G)-A$, say v_{1}, v_{2}, such that $d_{A}\left(v_{1}\right)=d_{A}\left(v_{2}\right)=1$. If $N_{A}\left(v_{1}\right)=N_{A}\left(v_{2}\right)$, then G contains $3 K_{1} \cup K_{3}$ as an induced subgraph. If $N_{A}\left(v_{1}\right) \neq N_{A}\left(v_{2}\right)$ and $v_{1} v_{2} \in E(G)$, then G contains $2 K_{1} \cup P_{4}$ as an induced subgraph. If $N_{A}\left(v_{1}\right) \neq N_{A}\left(v_{2}\right)$ and $v_{1} v_{2} \notin E(G)$, then G contains $2 K_{1} \cup 2 K_{2}$ as an induced subgraph.

By Claim 6, we need to consider the following three cases separately.

Subcase 2.1. G contains an induced subgraph $G_{0}=3 K_{1} \cup K_{3}$.
Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$. Assume that $V\left(G_{0}\right)=V_{0}=A \cup B$ and $E\left(G_{0}\right)=\left\{a_{1} a_{2}, a_{2} a_{3}, a_{1} a_{3}\right\}$. Since $n \geq 7$, we have $n-3 \geq 4$. By induction hypothesis, $G-V_{0}$ contains a star S_{n-3} with center v. It is easy to see that $1 \leq d_{V_{0}}(v) \leq 2$. If $d_{V_{0}}(v)=1$, then since $\alpha(G)=4$, we have $N_{V_{0}}(v) \cap A=\emptyset$ and hence we may assume $N_{V_{0}}(v)=\left\{b_{1}\right\}$. If $d_{V_{0}}(v)=2$, then since $\alpha(G)=4$, we have $d_{A}(v) \leq 1$. If $d_{A}(v)=1$, we may assume $N_{V_{0}}(v)=\left\{a_{1}, b_{1}\right\}$. If $d_{A}(v)=0$, we may assume $N_{V_{0}}(v)=\left\{b_{1}, b_{2}\right\}$. Thus $\bar{G}\left[V_{0} \cup\{v\}\right]$ contains a W_{6} with the hub b_{3} in any case, a contradiction.

Subcase 2.2. G contains an induced subgraph $G_{0}=2 K_{1} \cup P_{4}$.
Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$. Assume $V\left(G_{0}\right)=V_{0}=A \cup B$ and $E\left(G_{0}\right)=\left\{a_{1} a_{2}, a_{2} a_{3}, a_{3} a_{4}\right\}$. Since $n \geq 7$, we have $n-3 \geq 4$. By induction hypothesis, $G-V_{0}$ contains a star S_{n-3} with center v_{1}. It is easy to see that $1 \leq d_{V_{0}}\left(v_{1}\right) \leq 2$. If $d_{V_{0}}\left(v_{1}\right)=1$, then since $\alpha(G)=4$, we have $N_{V_{0}}\left(v_{1}\right) \cap A=\emptyset$ and hence we may assume $N_{V_{0}}\left(v_{1}\right)=\left\{b_{1}\right\}$. Thus $\bar{G}\left[V_{0} \cup\left\{v_{1}\right\}\right]$ contains a W_{6} with the hub b_{2}, a contradiction. Hence we may assume $d_{V_{0}}\left(v_{1}\right)=2$. If $d_{B}\left(v_{1}\right)=0$, then since $\alpha(G)=4, A-N_{V_{0}}\left(v_{1}\right)$ must be a clique. Thus by symmetry we may assume $N_{V_{0}}\left(v_{1}\right)=\left\{a_{1}, a_{2}\right\}$ or $\left\{a_{1}, a_{4}\right\}$. If $d_{B}\left(v_{1}\right)=1$, then by symmetry we may assume $N_{V_{0}}\left(v_{1}\right)=\left\{a_{1}, b_{1}\right\}$ or $\left\{a_{2}, b_{1}\right\}$. Thus, it is not difficult to see $\bar{G}\left[V_{0} \cup\left\{v_{1}\right\}\right]$ contains a W_{6} with the hub b_{2} if $d_{B}\left(v_{1}\right) \leq 1$, a contradiction. Hence we may assume $d_{B}\left(v_{1}\right)=2$.

Let $V_{1}=V_{0} \cup\left\{v_{1}\right\}$, then $G\left[V_{1}\right]=P_{3} \cup P_{4}$. Since $n \geq 7$, we have $n-4 \geq 3$. By induction hypothesis, $G-V_{1}$ contains a star S_{n-4} with center v_{2}. Obviously, $1 \leq$ $d_{V_{1}}\left(v_{2}\right) \leq 3$. If $d_{V_{1}}\left(v_{2}\right)=1$, then since $\alpha(G)=4$, we have $N_{V_{1}}\left(v_{2}\right) \subseteq B$. Assume $N_{V_{1}}\left(v_{2}\right)=\left\{b_{1}\right\}$, then $\bar{G}\left[V_{0} \cup\left\{v_{2}\right\}\right]$ contains a W_{6} with the hub b_{2}, a contradiction. Hence we have $d_{V_{1}}\left(v_{2}\right) \geq 2$. Now, let $d_{V_{1}}\left(v_{2}\right)=2$. If $d_{A}\left(v_{2}\right)=2$, then since $\alpha(G)=4$, we may assume $N_{V_{1}}\left(v_{2}\right)=\left\{a_{1}, a_{2}\right\}$ or $\left\{a_{1}, a_{4}\right\}$. If $d_{A}\left(v_{2}\right)=1$, then since $\alpha(G)=4$, we have $N_{V_{1}}\left(v_{2}\right) \cap B \neq \emptyset$. By symmetry we may assume $N_{V_{1}}\left(v_{2}\right)=\left\{a_{1}, b_{1}\right\}$ or $\left\{a_{2}, b_{1}\right\}$. Thus, it is not difficult to see $\bar{G}\left[V_{0} \cup\left\{v_{2}\right\}\right]$ contains a W_{6} with the hub b_{2} if $d_{A}\left(v_{2}\right) \geq 1$, a contradiction. If $d_{A}\left(v_{2}\right)=0$, then by symmetry we may assume $N_{V_{1}}\left(v_{2}\right)=\left\{b_{1}, v_{1}\right\}$ or $\left\{b_{1}, b_{2}\right\}$. Thus, $\bar{G}\left[V_{0} \cup\left\{v_{2}\right\}\right]$ contains a W_{6} with the hub b_{2} in the former case and $\bar{G}\left[V_{1} \cup\left\{v_{2}\right\}-\left\{a_{2}\right\}\right]$ contains a W_{6} with the hub a_{1} in the latter case, a contradiction. Therefore we have $d_{V_{1}}\left(v_{2}\right)=3$.

If $d_{A}\left(v_{2}\right)=3$, then we may assume $N_{V_{1}}\left(v_{2}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$ or $\left\{a_{1}, a_{2}, a_{4}\right\}$. Thus, $\bar{G}\left[V_{1} \cup\left\{v_{2}\right\}-\left\{a_{3}\right\}\right]$ contains a W_{6} with the hub a_{4} in the former case and $\bar{G}\left[V_{0} \cup\left\{v_{2}\right\}\right]$ contains a W_{6} with the hub b_{2} in the latter case, a contradiction.

If $d_{A}\left(v_{2}\right)=2$ and $v_{1} \in N_{V_{1}}\left(v_{2}\right)$, then since $\alpha(G)=4, A-N\left(v_{2}\right)$ must be a clique. Thus, we may assume by symmetry that $N_{V_{1}}\left(v_{2}\right)=\left\{a_{1}, a_{2}, v_{1}\right\}$ or $\left\{a_{1}, a_{4}, v_{1}\right\}$. If $d_{A}\left(v_{2}\right)=2$ and $v_{1} \notin N_{V_{1}}\left(v_{2}\right)$, then by symmetry we may assume $N_{V_{1}}\left(v_{2}\right)=\left\{a_{1}, a_{2}, b_{1}\right\}$ or $\left\{a_{1}, a_{3}, b_{1}\right\}$ or $\left\{a_{1}, a_{4}, b_{1}\right\}$ or $\left\{a_{2}, a_{3}, b_{1}\right\}$. Thus, $\bar{G}\left[V_{0} \cup\left\{v_{2}\right\}\right]$ contains a W_{6} with the hub b_{2} in all the cases above, a contradiction.

If $d_{A}\left(v_{2}\right)=1$, then by symmetry we may assume $N_{V_{1}}\left(v_{2}\right)=\left\{a_{1}, b_{1}, v_{1}\right\}$ or $\left\{a_{2}, b_{1}, v_{1}\right\}$ or $\left\{a_{1}, b_{1}, b_{2}\right\}$ or $\left\{a_{2}, b_{1}, b_{2}\right\}$. It is not difficult to check that $\bar{G}\left[V_{1} \cup\left\{v_{2}\right\}-\left\{a_{3}\right\}\right]$ contains a W_{6} with the hub a_{4} in all the cases above, a contradiction.

If $d_{A}\left(v_{2}\right)=0$, then $N_{V_{1}}\left(v_{2}\right)=\left\{b_{1}, v_{1}, b_{2}\right\}$. In this case, we let $V_{2}=V_{1} \cup\left\{v_{2}\right\}$. Since $n \geq 7$, we have $n-4 \geq 3$. By induction hypothesis, $G-V_{2}$ contains a star S_{n-4} with center v. Obviously, $1 \leq d_{V_{1}}(v) \leq 3$. By the analogous argument as before, we can obtain $N_{V_{2}}(v)=\left\{b_{1}, v_{1}, b_{2}\right\}$ which implies $v_{2} v \notin E(G)$, otherwise G contains a star S_{n}. Thus, $\bar{G}\left[V_{2} \cup\{v\}-\left\{a_{2}, v_{1}\right\}\right]$ contains a W_{6} with the hub a_{1}, a contradiction.

Subcase 2.3. G contains an induced subgraph $G_{0}=2 K_{1} \cup 2 K_{2}$.
Using an analogous argument as Subcase 2.2, we can see \bar{G} contains a W_{6}, a contradiction.

Case 3. $\alpha(G)=5$ or 6 .
Let $A=\left\{a_{i} \mid 1 \leq i \leq k\right\}$ be a maximum independent set of G. Since $n \geq 7$, we have $n-3 \geq 4$. By induction hypothesis, $G-A$ contains a star S_{n-3} with the center u. Obviously $d_{A}(u)=1$ or 2 .

If $k=5$, we let $A_{1}=A \cup\{u\}$. If $d_{A}(u)=1$, we assume $a_{1} u \in E(G)$. If $d_{A}(u)=2$, we assume $a_{1} u, a_{2} u \in E(G)$. By induction hypothesis, $G-A_{1}$ contains a star S_{n-3} with the center v. Since $d_{A_{1}}(v)=1$ or 2 , it is not difficult to check that $\bar{G}\left[A_{1} \cup\{v\}\right]$ contains a W_{6} in any case, a contradiction.

If $k=6$, then since $d_{A}(u)=1$ or 2 , we can see $\bar{G}[A \cup\{u\}]$ contains a W_{6}, again a contradiction.

Up to now, we have $R\left(S_{n}, W_{6}\right) \leq 2 n+1$ and hence $R\left(S_{n}, W_{6}\right)=2 n+1$.
The proof of Theorem 1 is completed.

4. Proof of Theorem 2

Proof of Theorem 2. Let G be a graph of order $3 n-2$. If G contains no S_{n}, then $\Delta(G) \leq n-2$ which implies $\delta(\bar{G}) \geq(3 n-3)-(n-2)=2 n-1$. Let v be any vertex of $V(G)$ and $d_{\bar{G}}(v)=(2 n-1)+k$, where $k \geq 0$. Assume $F=\bar{G}\left[N_{\bar{G}}(v)\right]$. We now show F is pancyclic. Since $|F|=(2 n-1)+k$ and $\delta(\bar{G}) \geq 2 n-1$, we have $\delta(F) \geq 2 n-1-[(3 n-2)-(2 n-1+k)]=n+k$. Noting that $k \geq 0$, we have $\delta(F) \geq n+k>(2 n-1+k) / 2=|F| / 2$ which implies F is pancyclic by Lemma 1, that is, F contains C_{i} for $3 \leq i \leq 2 n-1$. Since $m \leq n+1$, we can see \bar{G} contains a W_{m} with the hub v and hence $R\left(S_{n}, W_{m}\right) \leq 3 n-2$. On the other hand, it is not difficult to see neither $3 K_{n-1}$ contains S_{n} nor its complement contains W_{m} for odd m. Thus we have $R\left(S_{n}, W_{m}\right) \geq 3 n-2$ and hence $R\left(S_{n}, W_{m}\right)=3 n-2$.

Acknowledgements

Many thanks to the anonymous referee for his/her many helpful comments and suggestions. This project was supported by NSFC. The first author was supported by Nanjing University Talent Development Foundation.

References

[1] E.T. Baskoro, Surahmat, S.M. Nababan, M. Miller, On Ramsey numbers for trees versus wheels of five or six vertices, Graphs Combin. 18 (2002) 717-721.
[2] J.A. Bondy, Pancyclic graphs, J. Combin. Theor. Ser. B 11 (1971) 80-84.
[3] S. Brandt, Sufficient conditions for graphs to contain all subgraphs of given types, Ph.D. Thesis, Freie Universitat, Berlin, 1994.
[4] S.A. Burr, P. Erdös, Generalization of a Ramsey-theoretic result of Chvátal, J. Graph Theory 7 (1983) 39-51.
[5] G.T. Chen, A result on C_{4}-star Ramsey number, Discrete Math. 163 (1997) 243-246.
[6] V. Chvátal, F. Harary, Generalized Ramsey theory for graphs, III. Small off diagonal numbers, Pacific J. Math. 41 (1972) 335-345.
[7] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[8] S.P. Radziszowski, J. Xia, Paths, cycles and wheels without antitriangles, Australasian J. Combin. 9 (1994) 221-232.
[9] Surahmat, E.T. Baskoro, On the Ramsey number of path or star versus W_{4} or W_{5}, in: Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17, 2001, pp. 174-179.

[^0]: E-mail address: yaojunc@nju.edu.cn (Y. Chen).

