The Ramsey numbers of stars versus wheels

Yaojun Chen, Yunqing Zhang, Kemin Zhang

Department of Mathematics, Nanjing University, Nanjing 210093, China

Received 5 October 2002; accepted 11 December 2003
Available online 15 January 2004

Abstract

For two given graphs G_1 and G_2, the Ramsey number $R(G_1, G_2)$ is the smallest positive integer n such that for any graph G of order n, either G contains G_1 or the complement of G contains G_2. Let S_n denote a star of order n and W_m a wheel of order $m+1$. This paper shows that $R(S_n, W_6) = 2n + 1$ for $n \geq 3$ and $R(S_n, W_m) = 3n - 2$ for m odd and $n \geq m - 1 \geq 2$.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: Ramsey number; Star; Wheel

1. Introduction

All graphs considered in this paper are finite simple graph without loops. For two given graphs G_1 and G_2, the Ramsey number $R(G_1, G_2)$ is the smallest positive integer n such that for any graph G of order n, either G contains G_1 or the complement of G contains G_2, where \overline{G} is the complement of G. Let $G = (V(G), E(G))$ be a graph. The neighborhood of vertex v is denoted by $N(v)$ and $N[v] = N(v) \cup \{v\}$. For a vertex $v \in V(G)$ and a subgraph H of G, $N_H(v) = N(v) \cap V(H)$. Let $d_H(v) = |N_H(v)|$. For two vertex disjoint sets S and T, we define $d_T(S) = \sum_{s \in S} d_T(s)$. The connectivity, independence number, maximum degree and minimum degree of G are denoted by $\kappa(G)$, $\alpha(G)$, $\Delta(G)$ and $\delta(G)$, respectively. For $S \subseteq V(G)$, $G[S]$ denotes the subgraph induced by S in G. A complete graph of order n is denoted by K_n. A complete bipartite graph of order $m + n$ is denoted by $K_{m,n}$ and a Star S_n is $K_{1,n-1}$. A path and a cycle of order n are denoted by P_n and C_n, respectively. Let m be a positive integer and G a graph, we use mG to denote m vertex disjoint copies of G. A Wheel $W_n = \{x\} + C_n$ is a graph of $n + 1$ vertices, x called the hub of the wheel. The length of a shortest and longest cycle of G are denoted by $g(G)$ and $c(G)$, respectively.
A graph on \(n \) vertices is \textit{pancyclic} if it contains cycles of every length \(l, 3 \leq l \leq n \) and \textit{weakly pancyclic} if it contains cycles of every length \(l, g(G) \leq l \leq c(G) \).

Ramsey theory studies conditions when a combinatorial object contains necessarily some smaller given objects. The role of Ramsey number is to quantify some of the general existential theorems in Ramsey theory. The classical Ramsey number is \(R(k, l) \) for complete graphs. Since it is very difficult to determine \(R(k, l) \), people turn to consider Ramsey numbers concerning general graph results, such as Ramsey numbers of path versus cycle, cycle versus star, tree versus wheel and so on, see for instance [1, 4–6, 8]. Recently, the following results are obtained.

Theorem A (Surahmat and Baskoro [9]). \(R(S_n, W_4) = 2n - 1 \) for \(n \geq 3 \) and \(n \equiv 1 \) (mod 2) and \(R(S_n, W_4) = 2n + 1 \) for \(n \geq 4 \) and \(n \equiv 0 \) (mod 2).

Theorem B (Surahmat and Baskoro [9]). \(R(S_n, W_5) = 3n - 2 \) for \(n \geq 4 \).

Theorem C (Baskoro et al. [1]). Let \(T_n \) be a tree other than \(S_n \), then \(R(T_n, W_4) = 2n - 1 \) for \(n \geq 3 \) and \(R(T_n, W_5) = 3n - 2 \) for \(n \geq 4 \).

Furthermore, motivated by **Theorem C**, Baskoro et al. [1] posed the following.

Conjecture 1. Let \(T_n \) be a tree other than \(S_n \) and \(n \geq m - 1 \). Then \(R(T_n, W_m) = 2n - 1 \) for \(m \geq 6 \) and even, and \(R(T_n, W_m) = 3n - 2 \) for \(m \geq 7 \) and odd.

In this paper, we consider the Ramsey numbers of star versus wheel in a more general situation. The main results of this paper are the following.

Theorem 1. \(R(S_n, W_6) = 2n + 1 \) for \(n \geq 3 \).

Theorem 2. \(R(S_n, W_m) = 3n - 2 \) for \(m \) odd and \(n \geq m - 1 \geq 2 \).

Remark. By **Theorem 2**, we can see that \(R(S_n, W_m) \) is a function of \(n \) if \(m \) is odd. However, it is not the case when \(m \) is even. In fact, if \(m \) is even, then \(R(S_n, W_m) \) is a function related to both \(n \) and \(m \) as can be seen by the following examples.

Let \(m \geq 6 \) be an even integer, \(n = km/2 + 2 \), where \(k \geq 2 \) is an integer, and \(G = H \cup K_{n-1} \), where \(H = (k + 1)K_{m/2} \). Obviously, \(G \) is a graph of order \(2n + m/2 - 3 \) and \(\Delta(G) = n - 2 \) and hence \(G \) contains no \(S_n \). It is not difficult to see \(G \) contains no \(W_m \). Thus we have \(R(S_n, W_m) \geq 2n + m/2 - 2 \) if \(n = km/2 + 2 \) for some integer \(k \geq 2 \).

Problem 1. Determine \(R(S_n, W_m) \) for \(m \) even and \(n \geq m - 1 \geq 7 \).

2. Some lemmas

In order to prove our results, we need the following lemmas.

Lemma 1 (Bondy [2]). Let \(G \) be a graph of order \(n \). If \(\delta(G) \geq n/2 \), then either \(G \) is pancyclic or \(n \) is even and \(G = K_{n/2,n/2} \).

Lemma 2 (Dirac [7]). Let \(G \) be a 2-connected graph of order \(n \geq 3 \) with \(\delta(G) = \delta \). Then \(c(G) \geq \min(2\delta, n) \).
Lemma 3 (Brandt [3]). Every non-bipartite graph G of order n with $\delta(G) \geq (n + 2)/3$ is weakly pancyclic.

Lemma 4. Let G be a 2-connected graph of order 8 with $\delta(G) = 3$. Then G contains a C_6.

Proof. Let $V(G) = \{v_i \mid 1 \leq i \leq 8\}$ and $C = v_1v_2\cdots v_k$ a longest cycle of G. By Lemma 2, $k \geq 6$. If $k = 6$, we are done. If $k = 7$, then by the maximality of C, v_9 has no two consecutive neighbors on C. Since $\delta(G) = 3$, we may assume $N(v_9) = \{v_1, v_3, v_5\}$. Thus $v_1v_2v_3v_4v_5v_6v_1$ is a C_6. If $k = 8$, we assume $d(v_1) = 3$ and hence C has a chord v_1v_7. If $i \in \{4, 6\}$, then G contains a C_6. Hence $i \in \{3, 5, 7\}$. By symmetry, we may assume $i \in \{3, 5\}$. Since $\delta(G) = 3$, C has a chord v_5v_7. By an analogous argument as above, we have $j \in \{1, 3, 7\}$. If $i = 3$, then $j \neq 1$ and hence $j \in \{3, 7\}$ which implies G contains a C_6. Hence we have $i = 5$. In this case, $v_5v_7 \notin E(G)$ for otherwise $v_1v_2v_3v_7v_8v_1$ is a C_6. If $\{v_2, v_4\} \cap N(v_7) \neq \emptyset$, then G contains a C_6. Hence we may assume $v_2v_7, v_4v_7 \notin E(G)$. Thus noting that $d(v_1) = 3$ and $\delta(G) = 3$, we have $v_7v_5 \in E(G)$. By symmetry, we have $v_3v_5 \in E(G)$ which implies $v_1v_2v_3v_5v_7v_8v_1$ is a C_6. \[\Box\]

Lemma 5. Let G be a 2-connected graph of order 9 with $\delta(G) = 4$. Then G contains a C_6.

Proof. Let $V(G) = \{v_i \mid 1 \leq i \leq 9\}$ and $C = v_1v_2\cdots v_k$ a longest cycle of G. By Lemma 2, $k \geq 8$. If $k = 8$, then by the maximality of C, v_9 has no two consecutive neighbors on C. Since $\delta(G) = 4$, we may assume $N(v_9) = \{v_1, v_3, v_5, v_7\}$. Thus $g(G) \leq 4$. If G is non-bipartite, then G contains a C_6 by Lemma 3. If G is bipartite, then since $\delta(G) = 4$, it is not difficult to see that $G = K_{4,5}$ and hence G contains a C_6. If $k = 9$, then G is non-bipartite. Since $\delta(G) = 4$, C has a chord which implies $g(G) \leq 5$. Thus G contains a C_6 by Lemma 3. \[\Box\]

3. **Proof of Theorem 1**

Proof of Theorem 1. Let $n \geq 3$ be an integer and $G = H \cup K_{n-1}$, where $\overline{H} = C_{n+1}$ if $n \neq 5$ and $\overline{H} = 2C_3$ if $n = 5$. Obviously, $|G| = 2n$. It is not difficult to see neither G contains a star S_n nor \overline{G} contains a W_6 and hence $R(S_n, W_6) \geq 2n + 1$.

In order to show $R(S_n, W_6) \geq 2n + 1$, we use induction on n. Let G be a graph of order $2n + 1$. As the basis of induction, we first show $R(S_n, W_6) = 2n + 1$ for $3 \leq n \leq 6$.

Suppose G contains no S_n. Then $\Delta(G) \leq n - 2$ which implies $\delta(\overline{G}) \geq n + 2$. Let $v \in V(G)$ be a vertex such that $d_{\overline{G}}(v) = d = \Delta(\overline{G}) = n + 2 + k$, where $k \geq 0$. Set $N_{\overline{G}}(v) = V_0$, $U = V(G) - V_0 \cup \{v\}$ and $F = \overline{G}[V_0]$. It is not difficult to see that $\delta(F) \geq 3 + k$. If $v_1 \in V_0$ and $d_F(v_1) = 3 + k$, then we must have

$$U \subseteq N_{\overline{G}}(v_1). \hspace{1cm} (1)$$

If $n = 3$, then we can see \overline{G} contains a W_6. If $n = 4$, then $\delta(F) \geq 3 + k \geq (6 + k)/2 = |V_0|/2$ which implies F contains a C_6 by Lemma 1. If $n = 5$, then $\delta(\overline{G}) \geq 7$. We have $d \geq 8$ since the number of vertices of odd degree is even, which implies $k \geq 1$ and hence
we have $\delta(F) \geq 3 + k \geq (7 + k)/2 = |V_0|/2$ which implies F contains a C_6 by Lemma 1. Thus G contains a W_6 with the hub v when $n = 4, 5$ and hence we may assume $n = 6$.

If $k \geq 2$, then $\delta(F) \geq 3 + k \geq (8 + k)/2 = |V_0|/2$ which implies F contains a C_6 by Lemma 1 and hence G contains a W_6. Thus we may assume $k \leq 1$.

If $k = 0$, then $d = 8$. If $\delta(F) \geq 4$, then by Lemma 1, F contains a C_6 and hence G contains a W_6. Thus we have $\delta(F) = 3$. If F is not connected, then since $\delta(F) = 3$, we can see $F = 2K_4$. By (1), $U \subseteq \mathcal{N}_G(v_i)$ for any $v_i \in V_0$ and hence G contains a W_6 with the hub v_i for any $v_i \in V_0$. If $\kappa(F) = 1$, we let w be a cut-vertex and H_1 a component of $F - w$ such that $|H_1|$ is as small as possible. Then $|H_1| = 3$, $V(H_1) \cup \{w\}$ is a 4-clique and $d_F(h) = 3$ for any $h \in V(H_1)$. Let $V(H_1) = \{h_1, h_2, h_3\}$. If $|\mathcal{N}_G(w) \cap U| \leq 1$, then $\mathcal{G}[U]$ contains at least two edges since $\delta(G) \geq 8$. Let $U = \{u_1, u_2, u_3, u_4\}$. If $\mathcal{G}[U]$ contains a P_3, say $F = u_1u_2u_3$, then by (1), $h_2u_1h_3u_2\bar{h}h_2$ is a C_6 and hence G contains a W_6 with the hub h_1. If $\mathcal{G}[U]$ contains no P_3, then $\mathcal{G}[U] = 2K_2$. Assume $E(\mathcal{G}[U]) = \{u_1u_2, u_3u_4\}$. Then by (1), $h_2u_1h_3u_2h_1h_2$ is a C_6 and hence G contains a W_6 with the hub h_1. Thus we may assume $|N_G(w) \cap U| \geq 2$. Let $u_1, u_2 \in N_G(w)$, then $h_2u_1u_2h_3u_2h_2$ is a C_6 and hence G contains a W_6 with the hub v. Thus, we have $R(S_n, W_6) = 2n + 1$ for $3 \leq n \leq 6$.

Now, assume $n \geq 7$ and Theorem 1 holds for smaller values of n.

If \mathcal{G} contains no W_6, then we have $\alpha(G) \leq 6$. If $\alpha(G) \leq 2$, then $\Delta(G) \geq n$ which implies G contains a star S_n. Hence we may assume $3 \leq \alpha(G) \leq 6$ and consider the following three cases separately.

Case 1. $\alpha(G) = 3$.

We consider the following two subcases separately.

Subcase 1.1. G contains an induced subgraph $G_0 = 3K_2$.

Let $V(G_0) = V_0 = \{a_i | 1 \leq i \leq 6\}$ and $E(G_0) = \{a_1a_2, a_3a_4, a_5a_6\}$. Since $n \geq 7$, we have $n - 3 \geq 4$. By induction hypothesis, $G - V_0$ contains a star S_{n-3} with center v_1. Since $\alpha(G) = 3$ and both $\{a_1, a_3, a_5\}$ and $\{a_2, a_4, a_6\}$ are independent sets, we have $|N_{V_0}(v_1)| \geq 2$. If $d_{V_1}(v_1) \geq 3$, then G contains a star S_n with center v_1. Hence we may assume $|N_{V_0}(v_1)| = 2$. Assume without loss of generality that $a_1 \in N(v_1)$. Then $a_2 \in N(v_1)$ for otherwise we can obtain an independent set of order 4. Thus we have $N_{V_0}(v_1) = \{a_1, a_2\}$.

Let $V_1 = V_0 \cup \{v_1\}$. Obviously, $G[V_1] = 2K_2 \cup K_3$. Since $n \geq 7$, we have $n - 4 \geq 3$. By induction hypothesis, $G - V_1$ contains a star S_{n-4} with center v_2. For the same reason as above, we have $d_{V_1}(v_2) = 2$ or 3 and if $d_{V_1}(v_2) = 2$, then $N_{V_1}(v_2) = \{a_3, a_4\}$ or $\{a_5, a_6\}$. Assume $N_{V_1}(v_2) = \{a_3, a_4\}$, then it is no difficult to see that $\mathcal{G}[V_1 - \{a_6\} \cup \{v_2\}]$ contains
a W_6 with the hub a_5, a contradiction. Hence we have $d_{V_1}(v_2) = 3$. Let $U = \{a_1, a_2, v_1\}$. If $d_{U}(v_2) = 0$, we may assume that $N_{V_1}(v_2) = \{a_3, a_4, a_5\}$. If $d_{U}(v_2) = 1$, then since $\alpha(G) = 3$, we may assume $a_3, a_4 \in N_{V_1}(v_2)$. Thus we can see $\overrightarrow{G}[V_1 \cup \{v_2\} - \{a_5\}]$ contains a W_6 with the hub a_6 if $d_{U}(v_2) \leq 1$, a contradiction. If $d_{U}(v_2) = 2$, we may assume $N_{V_1}(v_2) = \{a_1, a_2, a_3\}$. Thus, $\{v_1, v_2, a_3, a_5\}$ is an independent set which contradicts $\alpha(G) = 3$. Hence we have $d_{U}(v_2) = 3$.

Let $V_2 = V_1 \cup \{v_2\}$. Clearly, $G[V_2] = 2K_2 \cup K_4$. Since $n \geq 7$, we have $n - 4 \geq 3$. By induction hypothesis, $G - V_2$ contains a star S_{n-4} with center v. For the same reason as above, we have $d_{V_2}(v) = 3$. Let $U_1 = U \cup \{v_2\}$. If $d_{U_1}(v) = 0$, then we may assume $N_{V_2}(v) = \{a_3, a_4, a_5\}$. If $d_{U_1}(v) = 1$, say $a_1 \in N(v)$, then since $\alpha(G) = 3$, we may assume $a_3, a_4 \in N_{V_2}(v)$. Thus we see $\overrightarrow{G}[V_2 \cup \{v\} - \{a_1, a_3\}]$ contains a W_6 with the hub a_6 if $d_{U_1}(v) \leq 1$, a contradiction. If $d_{U_1}(v) = 2$, we may assume that $N_{V_2}(v) = \{a_1, a_2, a_3\}$. Thus, $\{v_1, a_4, a_5, v\}$ is an independent set which contradicts $\alpha(G) = 3$. If $d_{U_1}(v) = 3$, say $N_{V_2}(v) = \{v_1, v_2, a_1\}$, then $\{a_2, a_3, a_5, v\}$ is an independent set which contradicts $\alpha(G) = 3$.

Subcase 1.2.

G does not contain an induced subgraph $3K_2$.

Let $A = \{a_1, a_2, a_3\}$ be a maximum independent set of G. Since $n \geq 7$, we have $n - 2 \geq 5$. By induction hypothesis, $G - A$ contains a star S_{n-2} with center v_1. If $d_A(v_1) \geq 2$, then G contains a star S_n. Hence $d_A(v_1) \leq 1$. Assume $N_A(v_1) = \{a_1\}$ and $A_1 = A \cup \{v_1\}$. Since $n \geq 7$, we have $n - 2 \geq 5$. By induction hypothesis, $G - A_1$ contains a star S_{n-2} with center v_2. For the same reason as above, we have $d_{A_1}(v_2) = 1$. If $N_{A_1}(v_2) \cap \{a_2, a_3\} = \emptyset$, then $A \cup \{v_2\}$ or $\{a_2, a_3, v_1, v_2\}$ is an independent set which contradicts $\alpha(G) = 3$. Thus we may assume $N_{A_1}(v_2) = \{a_2\}$.

Let $X = \{a_1, a_2, v_1, v_2\}$ and $Y = V(G) - N[a_3] \cup X$. Since \overrightarrow{G} contains no W_6, we have the following claims.

Claim 1. For any vertex $y \in Y$, $d_{X}(y) \geq 2$ and if $d_{X}(y) = 2$, then $N_X(y) = \{a_1, v_1\}$ or $\{a_2, v_2\}$.

Proof. If $d_{X}(y) \leq 1$, say $N_X(y) \cap (X - \{a_1\}) = \emptyset$, then $\{v_1, v_2, a_3, y\}$ is an independent set which contradicts $\alpha(G) = 3$. As for the latter part, the proof is similar. □

Claim 2. For any vertex $y \in Y$, there is some vertex $y' \in Y$ such that $yy' \notin E(G)$.

Proof. Since G contains no S_n, we have $|N[a_3]| \leq n - 1$. Noting that $|X| = 4$, we have $|Y| \geq n - 2$. If there is some vertex $y \in Y$ such that $Y - \{y\} \subseteq N(y)$, then by Claim 1, we have $d(y) \geq n - 1$ which implies G contains a star S_n, a contradiction. □

Claim 3. For any two vertices $y_1, y_2 \in Y$ with $y_1 y_2 \notin E(G)$, $d_{X}(y_1) + d_{X}(y_2) \geq 6$.

Proof. Assume $d_{X}(y_1) \leq d_{X}(y_2)$. If $d_{X}(y_1) + d_{X}(y_2) \leq 5$, then $d_{X}(y_1) \leq 2$. Thus by Claim 1 we may assume $N_X(y_1) = \{a_1, v_1\}$. Since $\alpha(G) = 3$ and $y_1 y_2 \notin E(G)$, $\{a_3, y_1, y_2\}$ is a maximum independent set of G which implies $\{a_2, v_2\} \subseteq N_X(y_2)$. Since $d_{X}(y_1) + d_{X}(y_2) \leq 5$, we have $\{a_1, v_1\} \not\subseteq N_X(y_2)$. Assume $a_1 \notin N_X(y_2)$, then
\[y_1 y_2 a_1 a_2 v_1 v_2 y_3\] is a \(C_6\) in \(G\). Noting that \(X \cup \{y_1, y_2\} \subseteq V(G) - N[a_3],\) \(\overline{G}\) contains a \(W_6\) with the hub \(a_3\), a contradiction. \(\square\)

Let \(Y_0 = \{y \mid y \in Y \text{ and } d_X(y) = 2\}\).

Claim 4. For any two vertices \(y_1, y_2 \in Y_0\), \(N_X(y_1) = N_X(y_2)\).

Proof. Otherwise we may assume \(N_X(y_i) = \{a_i, v_i\}\) by Claim 1, where \(i = 1, 2\). In this case, it is not difficult to see that \(\overline{G}\) contains a \(W_6\) with \(V(W_6) = X \cup \{a_3, y_1, y_2\}\) and the hub \(a_3\), a contradiction. \(\square\)

Claim 5. \(d_Y(X) \leq 3|Y| - 3\).

Proof. Let \(N(a_3) = B\). Since \(G\) does not contain an induced subgraph \(3K_2\), we have \(d_X(b) \geq 1\) for any \(b \in B\). Thus we have \(d_B(X) \geq |B|\).

If \(d_Y(X) \geq 3|Y| - 2\), then since \(d_B(X) \geq |B|\), we have \(d_Y(X) + d_B(X) \geq 3|Y| + |B| - 2\). Noting that \(|X| = 4\), we have \(d_Y(X) + d_B(X) \geq 3|Y| + |B| - 2 = 3(2n - 4 - |B|) + |B| - 2 = 6n - 14 - 2|B|\). Since \(G\) contains no star \(S_n\), we have \(|B| \leq n - 2\). Thus we have \(d_Y(X) + d_B(X) \geq 6n - 14 - 2(n - 2) = 4n - 10\) which implies there is some vertex \(x \in X\) such that \(d_Y(x) + d_B(x) \geq n - 2\). Since \(d_X(x) = 1\), we have \(d(x) \geq n - 1\) which implies \(G\) contains a star \(S_n\), a contradiction. \(\square\)

If \(|Y_0| \leq 2\), then by Claim 1, we have \(d_Y(X) \geq 3|Y| - 2\) which contradicts Claim 5. Hence \(|Y_0| \geq 3\). If \(\overline{G}[Y]\) contains a matching \(M\) which satursates \(Y_0\), then by Claim 3, we have \(d_Y(X) \geq \sum_{y \in V(M)} d_X(y) + \sum_{y \in Y - V(M)} d_X(y) \geq 3|Y|\) which contradicts Claim 5.

Hence \(\overline{G}[Y]\) contains no matching \(M\) which satursates \(Y_0\). Thus by Claim 2, there are two vertices \(y_1, y_2 \in Y_0\) and a vertex \(y_0 \in Y\) such that \(y_0 y_1, y_0 y_2 \notin E(G)\). By Claim 4, we may assume \(N_X(y) = \{a_1, v_1\}\) for any vertex \(y \in Y_0\). Since \(|Y_0| \geq 3\), we can choose a vertex \(y_3 \in Y_0 - \{y_1, y_2\}\). It is not difficult to see that \(y_0 y_1 a_2 v_2 y_2 y_3\) is a \(C_6\) in \(\overline{G}[X \cup Y]\). Thus, noting that \(X \cup Y = V(G) - N[a_3]\), we can see that \(G\) contains a \(W_6\) with the hub \(a_3\), a contradiction.

Case 2. \(\alpha(G) = 4\).

In this case, we first show the following claim.

Claim 6. \(G\) has at least one of the following graphs as an induced subgraph: \(3K_1 \cup K_3, 2K_1 \cup P_4\) and \(2K_1 \cup 2K_2\).

Proof. Let \(A = \{a_1, a_2, a_3, a_4\}\) be a maximum independent set of \(G\). Then \(d_A(v) \geq 1\) for any vertex \(v \in V(G) - A\). If there is at most one vertex, say \(v \in V(G) - A\) such that \(d_A(v) = 1\), then \(d(A) \geq 2(2n - 3) - 1 = 4n - 7\) which implies there is at least one vertex \(a \in A\) such that \(d(a) \geq n - 1\) and hence \(G\) contains a star \(S_n\), a contradiction. Thus there are at least two vertices in \(V(G) - A\), say \(v_1, v_2\), such that \(d_A(v_1) = d_A(v_2) = 1\). If \(N_A(v_1) = N_A(v_2)\), then \(G\) contains \(3K_1 \cup K_3\) as an induced subgraph. If \(N_A(v_1) \neq N_A(v_2)\) and \(v_1 v_2 \in E(G)\), then \(G\) contains \(2K_1 \cup P_4\) as an induced subgraph. If \(N_A(v_1) \neq N_A(v_2)\) and \(v_1 v_2 \notin E(G)\), then \(G\) contains \(2K_1 \cup 2K_2\) as an induced subgraph. \(\square\)

By Claim 6, we need to consider the following three cases separately.
Subcase 2.1. G contains an induced subgraph $G_0 = 3K_1 \cup K_3$.

Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3\}$. Assume that $V(G_0) = V_0 = A \cup B$ and $E(G_0) = \{a_1a_2, a_2a_3, a_3a_1\}$. Since $n \geq 7$, we have $n - 3 \geq 4$. By induction hypothesis, $G - V_0$ contains a star S_{n-3} with center v. It is easy to see that $1 \leq d_{V_0}(v) \leq 2$.

If $d_{V_0}(v) = 1$, then since $\alpha(G) = 4$, we have $N_{V_0}(v) \cap A = \emptyset$ and hence we may assume $N_{V_0}(v) = \{b_1\}$. If $d_{V_0}(v) = 2$, then since $\alpha(G) = 4$, we have $d_A(v) \leq 1$. If $d_A(v) = 1$, we may assume $N_{V_0}(v) = \{a_1, b_1\}$. If $d_A(v) = 0$, we may assume $N_{V_0}(v) = \{b_1, b_2\}$. Thus $\overline{G}[V_0 \cup \{v\}]$ contains a W_6 with the hub b_2 in any case, a contradiction.

Subcase 2.2. G contains an induced subgraph $G_0 = 2K_1 \cup P_4$.

Let $A = \{a_1, a_2, a_3, a_4\}$ and $B = \{b_1, b_2\}$. Assume $V(G_0) = V_0 = A \cup B$ and $E(G_0) = \{a_1a_2, a_2a_3, a_3a_4\}$. Since $n \geq 7$, we have $n - 3 \geq 4$. By induction hypothesis, $G - V_0$ contains a star S_{n-3} with center v_1. It is easy to see that $1 \leq d_{V_0}(v_1) \leq 2$.

If $d_{V_0}(v_1) = 1$, then since $\alpha(G) = 4$, we have $N_{V_0}(v_1) \cap A = \emptyset$ and hence we may assume $N_{V_0}(v_1) = \{b_1\}$. Thus $\overline{G}[V_0 \cup \{v_1\}]$ contains a W_6 with the hub b_2, a contradiction. Hence we may assume $d_{V_0}(v_1) = 2$. If $d_B(v_1) = 0$, then since $\alpha(G) = 4$, $A - N_{V_0}(v_1)$ must be a clique. Thus by symmetry we may assume $N_{V_0}(v_1) = \{a_1, a_2\}$ or $\{a_1, a_4\}$. If $d_B(v_1) = 1$, then by symmetry we may assume $N_{V_0}(v_1) = \{a_1, b_1\}$ or $\{a_2, b_1\}$. Thus, it is not difficult to see $\overline{G}[V_0 \cup \{v_1\}]$ contains a W_6 with the hub b_2 if $d_B(v_1) \leq 1$, a contradiction. Hence we may assume $d_B(v_1) = 2$.

Let $V_1 = V_0 \cup \{v_1\}$, then $G[V_1] = P_3 \cup P_4$. Since $n \geq 7$, we have $n - 4 \geq 3$. By induction hypothesis, $G - V_1$ contains a star S_{n-4} with center v_2. Obviously, $1 \leq d_{V_1}(v_2) \leq 3$. If $d_{V_1}(v_2) = 1$, then since $\alpha(G) = 4$, we have $N_{V_1}(v_2) \subseteq B$. Assume $N_{V_1}(v_2) = \{b_1\}$, then $\overline{G}[V_0 \cup \{v_2\}]$ contains a W_6 with the hub b_2, a contradiction. Hence we may assume $d_{V_1}(v_2) \geq 2$. Now, let $d_{V_1}(v_2) = 2$. If $d_A(v_2) = 2$, then since $\alpha(G) = 4$, we may assume $N_{V_1}(v_2) = \{a_1, a_2\}$ or $\{a_1, a_4\}$. If $d_A(v_2) = 1$, then since $\alpha(G) = 4$, we have $N_{V_1}(v_2) \cap B \neq \emptyset$. By symmetry we may assume $N_{V_1}(v_2) = \{a_1, b_1\}$ or $\{a_2, b_1\}$. Thus, it is not difficult to see $\overline{G}[V_0 \cup \{v_2\}]$ contains a W_6 with the hub b_2 if $d_A(v_2) \geq 1$, a contradiction. If $d_A(v_2) = 0$, then by symmetry we may assume $N_{V_1}(v_2) = \{b_1, v_1\}$ or $\{b_1, b_2\}$. Thus, $\overline{G}[V_0 \cup \{v_2\}]$ contains a W_6 with the hub b_2 in the former case and $\overline{G}[V_1 \cup \{v_2\} - \{a_2\}]$ contains a W_6 with the hub a_1 in the latter case, a contradiction. Therefore we have $d_{V_1}(v_2) = 3$.

If $d_A(v_2) = 3$, then we may assume $N_{V_1}(v_2) = \{a_1, a_3, a_4\}$ or $\{a_1, a_2, a_4\}$. Thus, $\overline{G}[V_1 \cup \{v_2\} - \{a_2\}]$ contains a W_6 with the hub a_4 in the former case and $\overline{G}[V_0 \cup \{v_2\}]$ contains a W_6 with the hub b_2 in the latter case, a contradiction.

If $d_A(v_2) = 2$ and $v_1 \in N_{V_1}(v_2)$, then since $\alpha(G) = 4$, $A - N(v_2)$ must be a clique. Thus, we may assume by symmetry that $N_{V_1}(v_2) = \{a_1, a_2, v_1\}$ or $\{a_1, a_4, v_1\}$. If $d_A(v_2) = 2$ and $v_1 \notin N_{V_1}(v_2)$, then by symmetry we may assume $N_{V_1}(v_2) = \{a_1, a_2, b_1\}$ or $\{a_1, a_3, b_1\}$ or $\{a_1, a_4, b_1\}$ or $\{a_2, a_3, b_1\}$. Thus, $\overline{G}[V_0 \cup \{v_2\}]$ contains a W_6 with the hub b_2 in all the cases above, a contradiction.

If $d_A(v_2) = 1$, then by symmetry we may assume $N_{V_1}(v_2) = \{a_1, b_1, v_1\}$ or $\{a_2, b_1, v_1\}$ or $\{a_1, b_1, b_2\}$ or $\{a_2, b_1, b_2\}$. It is not difficult to check that $\overline{G}[V_1 \cup \{v_2\} - \{a_3\}]$ contains a W_6 with the hub a_4 in all the cases above, a contradiction.
4. Proof of Theorem 2

Proof of Theorem 2. Let G be a graph of order $3n - 2$. If G contains no S_n, then $\Delta(G) \leq n - 2$ which implies $\delta(\overline{G}) \geq (3n - 3) - (n - 2) = 2n - 1$. Let v be any vertex of $V(G)$ and $d_{\overline{G}}(v) = (2n - 1) + k$, where $k \geq 0$. Assume $F = \overline{G}[N_{\overline{G}}(v)]$. We now show F is pancyclic. Since $|F| = (2n - 1) + k$ and $\delta(\overline{G}) \geq 2n - 1$, we have $\delta(F) \geq 2n - 1 - [(3n - 2) - (2n - 1 + k)] = n + k$. Noting that $k \geq 0$, we have $\delta(F) \geq n + k > (2n - 1 + k)/2 = |F|/2$ which implies F is pancyclic by Lemma 1, that is, F contains C_i for $3 \leq i \leq 2n - 1$. Since $m \leq n + 1$, we can see \overline{G} contains a W_m with the hub v and hence $R(S_n, W_m) \leq 3n - 2$. On the other hand, it is not difficult to see neither $3K_{n-1}$ contains S_n nor its complement contains W_m for odd m. Thus we have $R(S_n, W_m) \geq 3n - 2$ and hence $R(S_n, W_m) = 3n - 2$. □

Acknowledgements

Many thanks to the anonymous referee for his/her many helpful comments and suggestions. This project was supported by NSFC. The first author was supported by Nanjing University Talent Development Foundation.
References