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Abstract

For two given graphsG1 andG2, the RamseynumberR(G1, G2) is the smallest positive integer
n such that for any graphG of ordern, eitherG containsG1 or the complement ofG containsG2. Let
Sn denote a star of ordern andWm a wheel of orderm+1. This paper shows thatR(Sn, W6) = 2n+1
for n ≥ 3 andR(Sn, Wm ) = 3n − 2 for m odd andn ≥ m − 1 ≥ 2.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Al l graphs considered in this paper are finite simple graph without loops. For two given
graphsG1 andG2, theRamsey number R(G1, G2) is the smallest positive integern such
that for any graphG of ordern, either G containsG1 or G containsG2, whereG is the
complement ofG. Let G = (V (G), E(G)) be a graph. Theneighborhood of vertexv is
denoted byN(v) and N[v] = N(v) ∪ {v}. For a vertexv ∈ V (G) and a subgraphH of
G, NH (v) = N(v) ∩ V (H ). Let dH (v) = |NH (v)|. For two vertex disjoint setsS andT ,
we definedT (S) = ∑

s∈S dT (s). Theconnectivity, independence number, maximum degree
andminimum degree of G are denoted byκ(G), α(G), ∆(G) andδ(G), respectively. For
S ⊆ V (G), G[S] denotes the subgraph induced byS in G. A complete graph of ordern is
denoted byKn . A complete bipartite graph of orderm + n is denoted byKm,n and aStar
Sn is K1,n−1. A path and acycle of ordern are denoted byPn andCn, respectively. Letm
be a positive integer andG a graph, we usemG to denotem vertex disjoint copies ofG.
A Wheel Wn = {x} + Cn is a graph of n + 1 vertices,x called thehub of the wheel. The
length of a shortest and longest cycle ofG are denoted byg(G) andc(G), respectively.
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A graph onn vertices ispancyclic if it contains cycles of every lengthl, 3 ≤ l ≤ n and
weakly pancyclic if it contains cycles of every lengthl, g(G) ≤ l ≤ c(G).

Ramsey theory studies conditions when a combinatorial object contains necessarily
some smaller givenobjects. The role of Ramsey number is to quantify some of the
general existential theorems in Ramsey theory. The classical Ramsey number isR(k, l)
for complete graphs. Since it isvery difficult to determineR(k, l), people turn to consider
Ramseynumbers concerning general graph results, such as Ramsey numbers of path versus
cycle, cycle versus star, tree versus wheel and so on, see for instance [1, 4–6, 8]. Recently,
the following results are obtained.

Theorem A (Surahmat and Baskoro [9]). R(Sn, W4) = 2n − 1 for n ≥ 3 and n ≡
1 (mod 2) and R(Sn, W4) = 2n + 1 for n ≥ 4 and n ≡ 0 (mod 2).

Theorem B (Surahmat and Baskoro [9]). R(Sn , W5) = 3n − 2 for n ≥ 4.

Theorem C (Baskoro et al. [1]). Let Tn be a tree other than Sn, then R(Tn, W4) = 2n −1
for n ≥ 3 and R(Tn, W5) = 3n − 2 for n ≥ 4.

Furthermore, motivated byTheorem C, Baskoroet al. [1] posed the following.

Conjecture 1. Let Tn be a tree other than Sn and n ≥ m − 1. Then R(Tn, Wm) = 2n − 1
for m ≥ 6 and even, and R(Tn, Wm) = 3n − 2 for m ≥ 7 and odd.

In this paper, we consider the Ramsey numbers of star versus wheel in a more general
situation. The main results of this paper are the following.

Theorem 1. R(Sn , W6) = 2n + 1 for n ≥ 3.

Theorem 2. R(Sn , Wm) = 3n − 2 for m odd and n ≥ m − 1 ≥ 2.

Remark. By Theorem 2, we can see thatR(Sn , Wm) is a function ofn if m is odd.
However, it is not the case whenm is even. In fact, ifm is even, thenR(Sn , Wm) is a
function related to bothn andm as can be seen by the following examples.

Let m ≥ 6 be an even integer,n = km/2 + 2, wherek ≥ 2 is an integer, and
G = H ∪ Kn−1, whereH = (k + 1)Km/2. Obviously,G is a graphof order 2n + m/2− 3
and∆(G) = n −2 andhenceG contains noSn . It is not difficult to seeG contains noWm .
Thus we haveR(Sn , Wm) ≥ 2n + m/2 − 2 if n = km/2 + 2 for someintegerk ≥ 2.

Problem 1. DetermineR(Sn , Wm) for m evenandn ≥ m − 1 ≥ 7.

2. Some lemmas

In order to prove our results, we need the following lemmas.

Lemma 1 (Bondy [2]). Let G be a graph of order n. If δ(G) ≥ n/2, then either G is
pancyclic or n is even and G = Kn/2,n/2.

Lemma 2 (Dirac [7]). Let G be a 2-connected graph of order n ≥ 3 with δ(G) = δ. Then
c(G) ≥ min{2δ, n}.
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Lemma 3 (Brandt [3]). Every non-bipartite graph G of order n with δ(G) ≥ (n + 2)/3
is weakly pancyclic.

Lemma 4. Let G be a 2-connected graph of order 8 with δ(G) = 3. Then G contains
a C6.

Proof. Let V (G) = {vi | 1 ≤ i ≤ 8} andC = v1v2 · · · vk a longest cycle ofG. By
Lemma 2, k ≥ 6. If k = 6, we are done. Ifk = 7, then by the maximality ofC, v8 has no
two consecutive neighbors onC. Sinceδ(G) = 3, we may assumeN(v8) = {v1, v3, v5}.
Thusv1v2v3v4v5v8v1 is a C6. If k = 8, we assumed(v1) = 3 andhenceC has a chord
v1vi . If i ∈ {4, 6}, thenG contains aC6. Hencei ∈ {3, 5, 7}. By symmetry, we may assume
i ∈ {3, 5}. Sinceδ(G) = 3, C has a chordv5v j . By an analogous argument as above, we
have j ∈ {1, 3, 7}. If i = 3, then j �= 1 andhencej ∈ {3, 7} which impliesG contains a
C6. Hence we havei = 5. In this case,v3v7 /∈ E(G) for otherwisev1v2v3v7v6v5v1 is aC6.
If {v2, v4} ∩ N(v7) �= ∅, thenG contains aC6. Hence we may assumev2v7, v4v7 /∈ E(G).
Thus noting thatd(v1) = 3 andδ(G) = 3, we havev7v5 ∈ E(G). By symmetry, we have
v3v5 ∈ E(G) which impliesv1v2v3v5v7v8v1 is aC6. �

Lemma 5. Let G be a 2-connected graph of order 9 with δ(G) = 4. Then G contains
a C6.

Proof. Let V (G) = {vi | 1 ≤ i ≤ 9} andC = v1v2 · · · vk a longest cycle ofG. By
Lemma 2, k ≥ 8. If k = 8, then by the maximality ofC, v9 has no two consecutive
neighbors inC. Sinceδ(G) = 4, we may assumeN(v9) = {v1, v3, v5, v7}. Thusg(G) ≤ 4.
If G is non-bipartite, thenG contains aC6 by Lemma 3. If G is bipartite, then since
δ(G) = 4, it is not difficult to see thatG = K4,5 and henceG contains aC6. If k = 9,
thenG is non-bipartite. Sinceδ(G) = 4, C has a chord which impliesg(G) ≤ 5. ThusG
contains aC6 by Lemma 3. �

3. Proof of Theorem 1

Proof of Theorem 1. Let n ≥ 3 be an integer andG = H ∪ Kn−1, whereH = Cn+1 if
n �= 5 andH = 2C3 if n = 5. Obviously,|G| = 2n. It is not difficult to see neitherG
contains a starSn nor G contains aW6 and henceR(Sn, W6) ≥ 2n + 1.

In order to showR(Sn, W6) ≤ 2n + 1, we use induction onn. Let G be a graph of order
2n + 1. As the basis of induction, we first showR(Sn, W6) = 2n + 1 for 3 ≤ n ≤ 6.

SupposeG contains noSn . Then∆(G) ≤ n − 2 which implies δ(G) ≥ n + 2. Let
v ∈ V (G) be a vertex such thatdG(v) = d = ∆(G) = n + 2 + k, wherek ≥ 0.
Set NG (v) = V0, U = V (G) − V0 ∪ {v} and F = G[V0]. It is not difficult to see that
δ(F) ≥ 3 + k. If vi ∈ V0 anddF (vi ) = 3 + k, then we must have

U ⊆ NG (vi ). (1)

If n = 3, then we can seeG contains aW6. If n = 4, thenδ(F) ≥ 3+ k ≥ (6+ k)/2 =
|V0|/2 which implies F contains aC6 by Lemma 1. If n = 5, thenδ(G) ≥ 7. We have
d ≥ 8 sincethenumber of vertices of odd degree is even, which impliesk ≥ 1 andhence
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we haveδ(F) ≥ 3+ k ≥ (7+ k)/2 = |V0|/2 which implies F contains aC6 by Lemma 1.
ThusG contains aW6 with the hubv whenn = 4, 5 andhence we may assumen = 6.

If k ≥ 2, thenδ(F) ≥ 3 + k ≥ (8 + k)/2 = |V0|/2 which implies F contains aC6 by
Lemma 1and henceG contains aW6. Thus we may assumek ≤ 1.

If k = 0, thend = 8. If δ(F) ≥ 4, then byLemma 1, F contains aC6 and henceG
contains aW6. Thus we haveδ(F) = 3. If F is not connected, then sinceδ(F) = 3, we
can seeF = 2K4. By (1), U ⊆ NG (vi ) for anyvi ∈ V0 and henceG contains aW6 with
thehubvi for anyvi ∈ V0. If κ(F) = 1, we letw be a cut-vertex andH1 a component of
F −w suchthat|H1| is as small as possible. Then|H1| = 3, V (H1)∪{w} is a 4-clique and
dF (h) = 3 for anyh ∈ V (H1). Let V (H1) = {h1, h2, h3}. If |NG (w)∩U | ≤ 1, thenG[U ]
contains at least two edges sinceδ(G) ≥ 8. LetU = {u1, u2, u3, u4}. If G[U ] contains a
P3, sayP = u1u2u3, then by (1), h2u1u2u3h3u4h2 is aC6 and henceG contains aW6 with
thehubh1. If G[U ] contains noP3, thenG[U ] = 2K2. AssumeE(G[U ]) = {u1u2, u3u4},
then by (1), h2u1u2h3u3u4h2 is aC6 and henceG contains aW6 with the hubh1. Thus we
may assume|NG (w) ∩ U | ≥ 2. Let u1, u2 ∈ NG (w), thenh2u1wu2h3u3h2 is a C6 and
henceG contains aW6 with the hubh1. If κ(F) ≥ 2, then byLemma 4, F contains aC6
and henceG contains aW6 with the hubv.

If k = 1, thend = 9. By Lemma 1, we mayassumeδ(F) = 4. Sinceδ(F) = 4 and
d = 9, we haveκ(F) ≥ 1. If κ(F) = 1, then it is not difficult to see thatF is two K5’s
with one vertex, sayw, in common. ObviouslyF − w = 2K4. Take aK4 in F − w and
let V1 = V (K4) = {v1, v2, v3, v4}. It is not difficult to seedF (vi ) = 4 for anyvi ∈ V1.
Thus by (1), we can seeG[U ∪ V1] contains aW6 with the hubv1. If κ(F) ≥ 2, then
by Lemma 5, F contains aC6 and henceG contains aW6 with the hubv. Thus, we have
R(Sn , W6) = 2n + 1 for 3 ≤ n ≤ 6.

Now, assumen ≥ 7 andTheorem 1holds for smaller values ofn.
If G contains noW6, then we haveα(G) ≤ 6. If α(G) ≤ 2, then∆(G) ≥ n which

implies G contains a starSn . Hence we may assume 3≤ α(G) ≤ 6 and considerthe
following three cases separately.

Case 1. α(G) = 3.

We considerthe following two subcases separately.

Subcase 1.1. G contains an induced subgraphG0 = 3K2.

Let V (G0) = V0 = {ai | 1 ≤ i ≤ 6} andE(G0) = {a1a2, a3a4, a5a6}. Sincen ≥ 7, we
haven − 3 ≥ 4. By induction hypothesis,G − V0 contains a starSn−3 with centerv1.
Sinceα(G) = 3 andboth {a1, a3, a5} and {a2, a4, a6} are independent sets, we have
|NV0(v1)| ≥ 2. If dV0(v1) ≥ 3, thenG contains a starSn with centerv1. Hence we
may assume|NV0(v1)| = 2. Assume without loss of generality thata1 ∈ N(v1). Then
a2 ∈ N(v1) for otherwise we can obtain an independent set of order 4. Thus we have
NV0(v1) = {a1, a2}.

Let V1 = V0∪{v1}. Obviously,G[V1] = 2K2∪ K3. Sincen ≥ 7, we haven−4 ≥ 3. By
induction hypothesis,G − V1 contains a starSn−4 with centerv2. For the same reason as
above, we havedV1(v2) = 2 or 3 and ifdV1(v2) = 2, thenNV1(v2) = {a3, a4} or {a5, a6}.
AssumeNV1(v2) = {a3, a4}, then it is no difficult to see thatG[(V1−{a6})∪{v2}] contains
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a W6 with the huba5, a contradiction. Hence we havedV1(v2) = 3. LetU = {a1, a2, v1}.
If dU (v2) = 0, we may assume thatNV1(v2) = {a3, a4, a5}. If dU (v2) = 1, then since
α(G) = 3, we may assumea3, a4 ∈ NV1(v2). Thus we can seeG[V1∪{v2}−{a5}] contains
a W6 with the huba6 if dU (v2) ≤ 1, a contradiction. IfdU (v2) = 2, we may assume
NV1(v2) = {a1, a2, a3}. Thus, {v1, v2, a4, a5} is an independent set which contradicts
α(G) = 3. Hence we havedU (v2) = 3.

Let V2 = V1 ∪ {v2}. Clearly,G[V2] = 2K2 ∪ K4. Sincen ≥ 7, we haven − 4 ≥ 3.
By induction hypothesis,G − V2 contains a starSn−4 with centerv. For the same reason
as above, we havedV2(v) = 3. Let U1 = U ∪ {v2}. If dU1(v) = 0, then we may assume
NV2(v) = {a3, a4, a5}. If dU1(v) = 1, saya1 ∈ N(v), then sinceα(G) = 3, we may
assumea3, a4 ∈ NV1(v). Thus we seeG[V2∪{v}−{a1, a5}] contains aW6 with the huba6
if dU1(v) ≤ 1, a contradiction. IfdU1(v) = 2, we may assume thatNV2(v) = {a1, a2, a3}.
Thus,{v1, a4, a5, v} is an independent set which contradictsα(G) = 3. If dU1(v) = 3,
say NV2(v) = {v1, v2, a1}, then {a2, a3, a5, v} is an independent set which contradicts
α(G) = 3.

Subcase 1.2. G does not contain an induced subgraph 3K2.

Let A = {a1, a2, a3} be a maximum independent set ofG. Sincen ≥ 7, we have
n − 2 ≥ 5. By induction hypothesis,G − A contains a starSn−2 with centerv1. If
dA(v1) ≥ 2, thenG contains a starSn . Hence dA(v1) ≤ 1. Since A is a maximum
independent set ofG, we havedA(v1) = 1. AssumeNA(v1) = {a1} and A1 = A ∪ {v1}.
Sincen ≥ 7, we haven−2 ≥ 5. By induction hypothesis,G− A1 contains a starSn−2 with
centerv2. For the same reason as above, we havedA1(v2) = 1. If NA1(v2) ∩ {a2, a3} = ∅,
then A ∪ {v2} or {a2, a3, v1, v2} is an independent set which contradictsα(G) = 3. Thus
we may assumeNA1(v2) = {a2}.

Let X = {a1, a2, v1, v2} andY = V (G)− N[a3]∪ X . SinceG contains noW6, we have
the following claims.

Claim 1. For any vertex y ∈ Y , dX (y) ≥ 2 and if dX (y) = 2, then NX (y) = {a1, v1} or
{a2, v2}.
Proof. If dX (y) ≤ 1, sayNX (y) ∩ (X − {a1}) = ∅, then{v1, v2, a3, y} is an independent
set whichcontradictsα(G) = 3. As for thelatter part, the proof is similar. �

Claim 2. For any vertex y ∈ Y , there is some vertex y ′ ∈ Y such that yy ′ /∈ E(G).

Proof. SinceG contains noSn , we have|N[a3]| ≤ n − 1. Noting that|X | = 4, we have
|Y | ≥ n − 2. If there is some vertexy ∈ Y suchthatY − {y} ⊆ N(y), then byClaim 1, we
haved(y) ≥ n − 1 which implies G contains a starSn , a contradiction. �

Claim 3. For any two vertices y1, y2 ∈ Y with y1y2 /∈ E(G), dX (y1) + dX (y2) ≥ 6.

Proof. AssumedX (y1) ≤ dX (y2). If dX (y1) + dX (y2) ≤ 5, thendX (y1) ≤ 2. Thus
by Claim 1 we may assumeNX (y1) = {a1, v1}. Sinceα(G) = 3 and y1y2 /∈ E(G),
{a3, y1, y2} is a maximum independent set ofG which implies {a2, v2} ⊆ NX (y2).
SincedX (y1) + dX (y2) ≤ 5, we have{a1, v1} � NX (y2). Assumea1 /∈ NX (y2), then
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y1y2a1a2v1v2y1 is aC6 in G. Noting thatX ∪ {y1, y2} ⊆ V (G) − N[a3], G contains aW6
with the huba3, a contradiction. �

Let Y0 = {y | y ∈ Y anddX (y) = 2}.
Claim 4. For any two vertices y1, y2 ∈ Y0, NX (y1) = NX (y2).

Proof. Otherwise we may assumeNX (yi ) = {ai , vi } by Claim 1, wherei = 1, 2. In this
case, it is not difficult to see thatG contains aW6 with V (W6) = X ∪ {a3, y1, y2} and the
huba3, a contradiction. �

Claim 5. dY (X) ≤ 3|Y | − 3.

Proof. Let N(a3) = B. SinceG does not contain an induced subgraph 3K2, we have
dX (b) ≥ 1 for anyb ∈ B. Thus we havedB(X) ≥ |B|.

If dY (X) ≥ 3|Y |−2, then sincedB(X) ≥ |B|, we havedY (X)+dB(X) ≥ 3|Y |+|B|−2.
Noting that|X | = 4, we havedY (X)+dB(X) ≥ 3|Y |+|B|−2 = 3(2n−4−|B|)+|B|−2=
6n − 14 − 2|B|. SinceG contains no starSn , we have|B| ≤ n − 2. Thus we have
dY (X) + dB(X) ≥ 6n − 14 − 2(n − 2) = 4n − 10 which implies there is some vertex
x ∈ X suchthatdY (x) + dB(x) ≥ n − 2. SincedX (x) = 1, we haved(x) ≥ n − 1 which
impliesG contains a starSn , a contradiction. �

If |Y0| ≤ 2, then byClaim 1, we havedY (X) ≥ 3|Y | − 2 whichcontradictsClaim 5.
Hence|Y0| ≥ 3. If G[Y ] contains a matchingM which saturatesY0, then byClaim 3, we
havedY (X) ≥ ∑

y∈V (M) dX (y) + ∑
y∈Y−V (M) dX (y) ≥ 3|Y | which contradictsClaim 5.

HenceG[Y ] contains no matchingM which saturatesY0. Thus byClaim 2, there are two
vertices y1, y2 ∈ Y0 and a vertexy0 ∈ Y suchthat y0y1, y0y2 /∈ E(G). By Claim 4, we
may assumeNX (y) = {a1, v1} for anyvertexy ∈ Y0. Since|Y0| ≥ 3, we can choose a
vertexy3 ∈ Y0−{y1, y2}. It is not difficult to see thaty0y1a2y3v2y2y0 is aC6 in G[X ∪Y ].
Thus, noting thatX ∪ Y = V (G) − N[a3], wecan see thatG contains aW6 with the hub
a3, a contradiction.

Case 2. α(G) = 4.

In this case, we first showthe following claim.

Claim 6. G has at least one of the following graphs as an induced subgraph: 3K1 ∪ K3,
2K1 ∪ P4 and 2K1 ∪ 2K2.

Proof. Let A = {a1, a2, a3, a4} be a maximum independent set ofG. ThendA(v) ≥ 1 for
any vertexv ∈ V (G) − A. If there is at most one vertex, sayv in V (G) − A suchthat
dA(v) = 1, thend(A) ≥ 2(2n − 3) − 1 = 4n − 7 which implies there is at least one
vertexa ∈ A suchthatd(a) ≥ n − 1 andhenceG contains a starSn , a contradiction. Thus
there are at least two vertices inV (G) − A, sayv1, v2, such thatdA(v1) = dA(v2) = 1. If
NA(v1) = NA(v2), thenG contains 3K1∪K3 as an induced subgraph. IfNA(v1) �= NA(v2)

andv1v2 ∈ E(G), thenG contains 2K1 ∪ P4 as an induced subgraph. IfNA(v1) �= NA(v2)

andv1v2 /∈ E(G), thenG contains 2K1 ∪ 2K2 as an induced subgraph.�

By Claim 6, we need to consider the following three cases separately.
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Subcase 2.1. G contains an induced subgraphG0 = 3K1 ∪ K3.

Let A = {a1, a2, a3} and B = {b1, b2, b3}. Assume thatV (G0) = V0 = A ∪ B and
E(G0) = {a1a2, a2a3, a1a3}. Sincen ≥ 7, we haven − 3 ≥ 4. By induction hypothesis,
G − V0 contains a starSn−3 with centerv. It is easy to see that 1≤ dV0(v) ≤ 2.
If dV0(v) = 1, then sinceα(G) = 4, we haveNV0(v) ∩ A = ∅ and hence we may assume
NV0(v) = {b1}. If dV0(v) = 2, then sinceα(G) = 4, we havedA(v) ≤ 1. If dA(v) = 1, we
may assumeNV0(v) = {a1, b1}. If dA(v) = 0, we may assumeNV0(v) = {b1, b2}. Thus
G[V0 ∪ {v}] contains aW6 with the hubb3 in any case, a contradiction.

Subcase 2.2. G contains an induced subgraphG0 = 2K1 ∪ P4.

Let A = {a1, a2, a3, a4} and B = {b1, b2}. AssumeV (G0) = V0 = A ∪ B and
E(G0) = {a1a2, a2a3, a3a4}. Sincen ≥ 7, we haven − 3 ≥ 4. By induction hypothesis,
G − V0 contains a starSn−3 with centerv1. It is easy to see that 1≤ dV0(v1) ≤ 2. If
dV0(v1) = 1, then sinceα(G) = 4, we haveNV0(v1) ∩ A = ∅ and hence we may assume
NV0(v1) = {b1}. ThusG[V0 ∪ {v1}] contains aW6 with the hubb2, a contradiction. Hence
we may assumedV0(v1) = 2. If dB(v1) = 0, then sinceα(G) = 4, A − NV0(v1) must be a
clique. Thus by symmetry we may assumeNV0(v1) = {a1, a2} or {a1, a4}. If dB(v1) = 1,
then by symmetry we may assumeNV0(v1) = {a1, b1} or {a2, b1}. Thus, it isnot difficult
to seeG[V0 ∪ {v1}] contains aW6 with the hubb2 if dB(v1) ≤ 1, a contradiction. Hence
we may assumedB(v1) = 2.

Let V1 = V0 ∪ {v1}, then G[V1] = P3 ∪ P4. Sincen ≥ 7, we haven − 4 ≥ 3.
By induction hypothesis,G − V1 contains a starSn−4 with centerv2. Obviously, 1 ≤
dV1(v2) ≤ 3. If dV1(v2) = 1, then sinceα(G) = 4, we haveNV1(v2) ⊆ B. Assume
NV1(v2) = {b1}, thenG[V0 ∪ {v2}] contains aW6 with the hubb2, a contradiction. Hence
we havedV1(v2) ≥ 2. Now, letdV1(v2) = 2. If dA(v2) = 2, then sinceα(G) = 4, we
may assumeNV1(v2) = {a1, a2} or {a1, a4}. If dA(v2) = 1, then sinceα(G) = 4, we
haveNV1(v2) ∩ B �= ∅. By symmetry we may assumeNV1(v2) = {a1, b1} or {a2, b1}.
Thus, it is not difficult to seeG[V0 ∪ {v2}] contains aW6 with the hubb2 if dA(v2) ≥ 1,
a contradiction. IfdA(v2) = 0, then by symmetry we may assumeNV1(v2) = {b1, v1}
or {b1, b2}. Thus, G[V0 ∪ {v2}] contains aW6 with the hubb2 in the former case and
G[V1 ∪ {v2} − {a2}] contains aW6 with the huba1 in the latter case, a contradiction.
Therefore we havedV1(v2) = 3.

If dA(v2) = 3, then we may assumeNV1(v2) = {a1, a2, a3} or {a1, a2, a4}. Thus,
G[V1 ∪ {v2} − {a3}] contains aW6 with the huba4 in the former case andG[V0 ∪ {v2}]
contains aW6 with the hubb2 in the latter case, a contradiction.

If dA(v2) = 2 and v1 ∈ NV1(v2), then sinceα(G) = 4, A − N(v2) must be a
clique. Thus, we may assume by symmetry thatNV1(v2) = {a1, a2, v1} or {a1, a4, v1}. If
dA(v2) = 2 andv1 /∈ NV1(v2), then by symmetry we may assumeNV1(v2) = {a1, a2, b1}
or {a1, a3, b1} or {a1, a4, b1} or {a2, a3, b1}. Thus,G[V0 ∪ {v2}] contains aW6 with the
hubb2 in all the cases above, a contradiction.

If dA(v2) = 1, then by symmetry we may assumeNV1(v2) = {a1, b1, v1} or {a2, b1, v1}
or {a1, b1, b2} or {a2, b1, b2}. It is not difficult to check thatG[V1 ∪ {v2} − {a3}] contains
a W6 with the huba4 in all the cases above, a contradiction.
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If dA(v2) = 0, thenNV1(v2) = {b1, v1, b2}. In this case, we letV2 = V1 ∪ {v2}. Since
n ≥ 7, we haven − 4 ≥ 3. By induction hypothesis,G − V2 contains a starSn−4 with
centerv. Obviously, 1≤ dV1(v) ≤ 3. By the analogous argument as before, we can obtain
NV2(v) = {b1, v1, b2} which impliesv2v /∈ E(G), otherwiseG contains a starSn . Thus,
G[V2 ∪ {v} − {a2, v1}] contains aW6 with the huba1, a contradiction.

Subcase 2.3. G contains an induced subgraphG0 = 2K1 ∪ 2K2.

Using an analogous argument asSubcase 2.2, we can seeG contains aW6, a
contradiction.

Case 3. α(G) = 5 or 6.

Let A = {ai | 1 ≤ i ≤ k} be a maximum independent set ofG. Sincen ≥ 7, we
haven − 3 ≥ 4. By induction hypothesis,G − A contains a starSn−3 with the centeru.
ObviouslydA(u) = 1 or 2.

If k = 5, we let A1 = A ∪ {u}. If dA(u) = 1, we assumea1u ∈ E(G). If dA(u) = 2,
we assumea1u, a2u ∈ E(G). By induction hypothesis,G − A1 contains a starSn−3 with
the centerv. SincedA1(v) = 1 or 2, it isnot difficult to check thatG[A1 ∪ {v}] contains a
W6 in any case, a contradiction.

If k = 6, then sincedA(u) = 1 or 2, wecan seeG[A ∪ {u}] contains aW6, again a
contradiction.

Up to now, we haveR(Sn, W6) ≤ 2n + 1 andhenceR(Sn , W6) = 2n + 1.

The proof ofTheorem 1is completed. �

4. Proof of Theorem 2

Proof of Theorem 2. Let G be a graph of order 3n − 2. If G contains noSn , then
∆(G) ≤ n − 2 which implies δ(G) ≥ (3n − 3) − (n − 2) = 2n − 1. Let v be any
vertex of V (G) and dG(v) = (2n − 1) + k, wherek ≥ 0. AssumeF = G[NG (v)].
We now show F is pancyclic. Since|F | = (2n − 1) + k andδ(G) ≥ 2n − 1, we have
δ(F) ≥ 2n − 1 − [(3n − 2) − (2n − 1 + k)] = n + k. Noting that k ≥ 0, we have
δ(F) ≥ n + k > (2n − 1 + k)/2 = |F |/2 which implies F is pancyclic byLemma 1, that
is, F containsCi for 3 ≤ i ≤ 2n − 1. Sincem ≤ n + 1, we can seeG contains aWm

with the hubv and henceR(Sn , Wm) ≤ 3n − 2. On the other hand, it is not difficult to
see neither 3Kn−1 containsSn nor its complement containsWm for oddm. Thus we have
R(Sn , Wm) ≥ 3n − 2 andhenceR(Sn, Wm) = 3n − 2. �
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