Available online at www.sciencedirect.com

SCIENCE@DIRECT® Europeanlournal
of Combinatorics

ELSEVIER European Journal of Combinatorics 25 (2004) 1067-1075
www.elsever.com/locate/ejc

The Ramsey numbers of stars versus wheels

Yaojun Chen, Yunging Zhang, Kemin Zhang
Department of Mathematics, Nanjing University, Nanjing 210093, China

Received 5 October 2002; accepted 11 December 2003
Available online 15 January 2004

Abstract

For two given graph&1 andG», the Ramsy numberR(G1, G») is the smallest positive integer
n such that for any grap® of ordern, either G containsG4 or the complement db containsG,. Let
S, denote a star of orderandWm, a wheel of ordemm-+1. This paper shows th&(S,, Wg) = 2n+1
forn> 3 andR($, Wm) =3n—-2formoddandn > m—1> 2.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

All graphs considered in this paper are finite simple graph without loops. For two given
graphsG; and G, theRamsey number R(G1, G») is the smallest positive integarsuch
that for any graptG of ordern, ether G containsG; or G containsG;, whereG is the
complement ofG. Let G = (V(G), E(G)) be a graph. Thaeighborhood of vertexv is
denoted byN(v) andN[v] = N(v) U {v}. For a vertexo € V(G) and a subgraph of
G, N4 (v) = N(v) N V(H). Letdy (v) = |NH (v)|. For two vetex disjoint setsS andT,
we definedt (S) = ) .50t (S). Theconnectivity, independence number, maximum degree
andminimum degree of G are denoted by (G), «(G), A(G) ands(G), respectively. For
SC V(G), G[S] denotes the subgraph induced®in G. A complete graph of ordern is
denoted byKn. A complete bipartite graph of orderm + n is denoted byKm , and aStar
S is K1,n—1. A path and acycle of ordern are denoted by, andC,, resgectively. Letm
be a positive integer an@ a grgph, we usanG to denotem vertex dsjoint copies ofG.
A Wheel W, = {x} + C,, is a graph ofn + 1 vertices,x called thehub of the wheel. The
length of a shortest and longest cycle®fare denoted bg(G) andc(G), resgectively.
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A graph onn vertices ispancyclic if it contains cycles of every length 3 < 1 < n and
weakly pancyclic if it contains cycles of every lengthg(G) < | < ¢(G).

Ramsey theory stlies conditions when a combinatorial object contains necessarily
some smaller giverbjects. The role of Ramsey number is to quantify some of the
general existential theorems in Ramsey theory. The classical Ramsey nuniyér lis
for complete graphs. Since itery difficultto determineR(k, |), people turn to consider
Ramseynumbers concerning general graph resslish as Ramgenumbers of path versus
cycle, cycle versus star, tree versus wheel and so on, see for insiade6,[8]. Recently,
the following resits are obained.

Theorem A (Surahmat and Baskor8]). R(S,,Ws) = 2n — 1 forn > 3and n =
1 (mod2 and R($,,Ws) =2n+1forn>4andn = 0 (mod?2.

Theorem B (Surahmat and Baskor8]). R(S,, Ws) = 3n —2for n > 4.

Theorem C (Baskoro et al.1]). Let T, beatreeother than S, then R(T,,, Ws) =2n—1
for n > 3and R(Tp, W5) = 3n — 2 for n > 4.

Furthemore, motvated byTheorem G Baskoroet al. [1] posed the following.

Conjecturel. Let T, beatreeother than §, andn > m — 1. Then R(Tp, W) =2n—1
for m > 6 and even, and R(T,,, Win) = 3n — 2 for m > 7 and odd.

In this paper, we consider the Ramsey numbers of star versus wheel in a more general
situation. The main results of this paper are the following.

Theorem 1. R(S,, Ws) =2n+ 1forn > 3.
Theorem 2. R($,, W) =3n—2for moddandn>m—1> 2.

Remark. By Theorem 2 we can see thaR(S,, W) is a function ofn if m is odd.
However, it is not the case when is even. In fact, ifm is even, thenR(S,, W) is a
function related to both andm as can be seen by the following examples.

Let m > 6 be an even integen = km/2 + 2, wherek > 2 is an integer, and
G = H UKp_1, whereH = (k + 1)Kpy,2. Obviously,G is a graptof order 21+ m/2 — 3
andA(G) = n— 2 andhenceG contains n,. It is not difficult to seeG contains NONm.
Thus we haveR(S,, W) > 2n+m/2 — 2 if n = km/2 + 2 for someintegerk > 2.

Problem 1. DetermineR(S,, Wm) formevenandn > m—-1> 7.

2. Somelemmas

In order to prove our results, we need the following lemmas.

Lemmal (Bondy [2]). Let G be a graph of order n. If §(G) > n/2, then either G is
pancyclicor nisevenand G = Kp/2,n/2.

Lemma 2 (Dirac [7]). Let G bea 2-connected graph of order n > 3 with §(G) = 4. Then
¢(G) > min{26, n}.
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Lemma 3 (Brandt [3]). Every non-bipartite graph G of order n with §(G) > (n + 2)/3
isweakly pancyclic.

Lemma4. Let G be a 2-connected graph of order 8 with §(G) = 3. Then G contains
aCeg.

Proof. LetV(G) = {vi | 1 <i < 8} andC = viv2--- vk a longest cycle ofc. By
Lemma 2k > 6. If k = 6, we are done. Ik = 7, then by the maximality o€, vg has no
two consecutive neighbors dD. Sinced(G) = 3, we may assumBl(vg) = {v1, v3, vs}.
Thuswvivovivgausvgry is aCg. If k = 8, we &ssumed(v1) = 3 andhenceC has a chord
v1i. If i € {4, 6}, thenG contains &g. Hercei € {3, 5, 7}. By synmetry, we may assume
i € {3,5}. Sinces(G) = 3, C has a chordsvj. By an analogous argument as above, we
havej € {1,3,7}. If i = 3, thenj # 1 andhencej € {3, 7} which impliesG contains a
Cs. Herce we havé = 5. In this caseyzv7 ¢ E(G) for otherwisevivovzvrvgusvy is aCs.

If {v2, va} N N(v7) # ¥, thenG contains &g. Herce we may assumeuz, vqvy ¢ E(G).
Thus noting thatl(v1) = 3 and§(G) = 3, we havevyus € E(G). By synmetry, we have
v3vs € E(G) which impliesvivovzvsvzvgry is aCe. [

Lemmab5. Let G be a 2-connected graph of order 9 with §(G) = 4. Then G contains
aCeg.

Proof. LetV(G) = {vi | 1 <i < 9} andC = viv2--- vk a longest cycle ofG. By
Lemma2 k > 8. If k = 8, then by the maximality ofC, vg has no two consecutive
neighborsirC. Sinces (G) = 4, we may assumi (vg) = {v1, v3, vs, v7}. Thusg(G) < 4.

If G is non-bipartite, therG contains aCg by Lemma 3 If G is bipartite, then since
3(G) = 4, itis not difficult to see thaG = K45 and henceés contains &Ce. If k = 9,
thenG is non-bipartite. Sincé&(G) = 4, C has a chord which implieg(G) < 5. ThusG
contains &g by Lemma 3 [

3. Proof of Theorem 1

Proof of Thgorem 1. Letn > 3 be an integer an® = H U K,_1, whereH = Cp 1 if
n # 5andH = 2Cz if n = 5. Obviously,|G| = 2n. It is not difficult to see neitheG
contains a sta$, nor G contains alVg and henceR(S,, Ws) > 2n + 1.

In order to showR(S,, Ws) < 2n+ 1, we use induction on. Let G be a graph of order
2n + 1. As the basis of induction, we first shaw(S,, Wg) =2n+ 1for3 <n < 6.

SupposeG contains noS,. Then A(G) < n — 2 which inplies §(G) > n + 2. Let
v € V(G) be a vertex such thalz(v) = d = A(G) = n+ 2+ k, wherek > 0.
SetNg(v) = Vo, U = V(G) — Vo U {v} andF = G[Vo]. It is not difficult to see that
8(F) > 3+ k. If vj € Vo anddg (vi) = 3+ k, then we nust have

U S Ng(i). 1)

If n = 3, then we can se® contains aNs. If n = 4, thens(F) > 3+k=> (6+k)/2=
[Vol/2 which inplies F contains a&Cg by Lemma 1 If n = 5, thend(G) > 7. We have
d > 8 sincethenumber of vertices of odd degree is even, which impkies 1 andhence
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we haves(F) > 3+k > (74 k)/2 = |Vo|/2 which implies F contains &Cg by Lemma 1
ThusG contains alg with the hubv whenn = 4, 5 andhence we may assunme= 6.

If K> 2, thens(F) > 3+ k > (8+ k)/2 = |Vo|/2 which implies F contains &Cg by
Lemma land hencés contains alNg. Thus we may assume< 1.

If k = 0, thend = 8. If §(F) > 4, then byLemma 1 F contains aCg and henceG
contains aWs. Thus we havé (F) = 3. If F is not connected, then siné¢F) = 3, we
can seeék = 2K4. By (1), U € Ng(vi) for anyv € Vo and henceG contains alg with
thehubv; foranyv; € Vp. If «(F) = 1, we letw be a cut-vertex an#l; a component of
F —w suchthat|H1| is as small as possible. Théd;| = 3,V (Hy) U{w} is a 4-clique and
dr (h) = 3foranyh e V(H1). LetV(H1) = {h1, hz, h3}. If [Ng(w)NU| < 1, thenG[U]
contains at least two edges sini@&) > 8. LetU = {uy, Uz, U3, Us}. If G[U] contains a
Ps, sayP = ujuaug, then by (), houzuzuzhsughs; is aCe and hencés contains aNg with
thehubhy. If G[U] contains ndPs, thenG[U] = 2K». AssumeE (G[U]) = {uquz, Uzua},
then by (), houguzhsuzugh; is aCe and henceés contains aNg with the hubh;. Thus we
may assumgNg(w) NU| > 2. Letu, uz € Ng(w), thenhzuywuzhzuzh; is aCg and
henceG contains a\g with the hubh;. If «(F) > 2, then byLemma 4 F contains &Cg
and hencé contains a\g with the hubw.

If k =1, thend = 9. By Lemma 1 we mayassumes(F) = 4. Sinces(F) = 4 and
d = 9, we havec(F) > 1. If «(F) = 1, then it is not diffcult to see thafF is two Ks's
with one vertex, say, in common. ObviouslyF — w = 2K4. Take aK4 in F — w and
let Vi = V(K4) = {v1, v2, v3, v4}. It is not difficult to seedr (vi) = 4 for anyv; € Vi.
Thus by (1), we can sedS[U U Vi] contains aWg with the hubuvs. If «(F) > 2, then
by Lemma 5 F contains &Cg and henceés contains alg with the hubv. Thus, we have
R(S,,Ws) =2n+1for3<n <6.

Now, assuma > 7 andTheorem lholds for smaller values of.

If G contains ndWs, then we haver(G) < 6. If «(G) < 2, thenA(G) > n which
implies G contains a stafs,. Herce we may assume 3 «(G) < 6 and onsiderthe
following three cases separately.

Casel. «a(G) =3.
We aonsiderthe following two subcases separately.
Subcase 1.1. G contains an induced subgra@iy = 3Ko.

LetV(Go) =Vo=1{a | 1 <i < 6}andE(Gg) = {a1ap, azay, asag}. Sincen > 7, we
haven — 3 > 4. By induction hypothesi<z — Vp contains a staf,_3 with centerv;.
Sincex(G) = 3 andboth {a1, a3, as} and {ap, a4, as} are independent sets, we have
INvo(v1)| = 2. If dy,(v1) > 3, thenG contains a sta&, with centerv;. Herce we
may assumgNy,(v1)| = 2. Assume without loss of generality that € N(vy). Then
a; € N(vp) for otherwise we can obtain an independent set of order 4. Thus we have
Ny, (v1) = {ay, az}.

LetVy = VoU{v1}. Obviously,G[V;1] = 2K2UK3. Sincen > 7, we haven—4 > 3. By
induction hypothesi<z — V; contains a staf,_4 with centerv,. For the sara reason as
above, we havely, (v2) = 2 or 3 and ifdy, (v2) = 2, thenNy, (v2) = {a3, as} or {as, ag}.
AssumeNy, (v2) = {ag3, a4}, then it is no difficult to see tha& [ (V1 — {as)) U{v2}] contains
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aWs with the hubas, a mntradiction. Hence we hawky, (v2) = 3. LetU = {ag, ap, v1}.

If dy (v2) = 0, we may assume th&dly, (v2) = {ag, as, as}. If dy(v2) = 1, then since
a(G) = 3, we may assumas, as € Ny, (v2). Thus we can se@[Vq1U{v2} —{as}] contains
a We with the hubag if dy(v2) < 1, a contradiction. Idy (v2) = 2, we may assume
Ny, (v2) = {a1, ap, az}. Thus, {vy1, v2, a4, as} is an ind@endent set which contradicts
a(G) = 3. Hence we havdy (v2) = 3.

Let Vo = Vi U {vz}. Clearly, G[V2] = 2Kz U Ky4. Sincen > 7, we haven — 4 > 3.
By induction hypothesiss — V» contains a staf,_4 with centerv. For the ame reason
as above, we havdy, (v) = 3. LetU; = U U {vp}. If dy,(v) = 0, then we may assume
Nv,(v) = {ag, as, as}. If dy,(v) = 1, sayay € N(v), then sincax(G) = 3, we may
assumenz, as € Ny, (v). Thus we se&[VoU {v} — {a1, as}] contains aNg with the hubag
if dy,(v) < 1, a contradiction. Itly, (v) = 2, we may assume thady, (v) = {ay, az, az}.
Thus,{v1, a4, as, v} is an ind@endent set which contradiati§G) = 3. If dy,(v) = 3,
say Ny, (v) = {v1, v2, a1}, then{ap, ag, as, v} is an ind@endent set which contradicts
a(G) = 3.

Subcase 1.2. G does not contain an induced subgrapp3

Let A = {a1, ap, ag} be a maximum independent set Gf Sincen > 7, we have
n — 2 > 5. By induction hypothesisz — A contains a stalS,_» with centerv;. If
da(v1) > 2, thenG contains a sta§,. Herce da(vy)) < 1. SinceA is a maximum
independent set @b, we haveda(v1) = 1. AssumeNa(vy) = {a1} andA; = AU {v1}.
Sincen > 7, we haven— 2 > 5. By induction hypothesi$; — A; contains a sta§,_» with
centervy. For the sara reason as above, we hadg, (v2) = 1. If Na, (v2) N {ag, ag} = 9,
then AU {vp} or {ap, ag, v1, vz} is an ind@endent set which contradiat§G) = 3. Thus
we may assuméla, (v2) = {ag}.

Let X = {ay, ap, v1, vo} andY = V(G) — N[az] U X. SinceG contains nd\s, we have
the following claims.

Claim 1. For any vertexy € Y, dx(y) > 2 and if dx(y) = 2, then Nx (y) = {a1, v1} or
{a2, v2}.

Proof. If dx(y) < 1, sayNx(y) N (X — {a1}) = @, then{vs, v2, az, y} is an ind@pendent
set whichcontradictsx(G) = 3. As for thelatter part, the proof is similar. (]

Claim 2. For any vertexy € Y, thereissomevertex y’ € Y such that yy’ ¢ E(G).

Proof. SinceG contains ndS,, we havelN[ag]| < n — 1. Noting that| X| = 4, we have
Y| > n— 2. If there is some vertex € Y suchthatY — {y} € N(y), then byClaim 1, we
haved(y) > n — 1 which implies G contains a sta,, a mntradiction. [

Claim 3. For any two vertices y1, y» € Y with y1y» ¢ E(G), dx(y1) + dx(y2) > 6.

Proof. Assumedx(y1) < dx(y2). If dx(y1) + dx(y2) < 5, thendx(y1) < 2. Thus
by Claim 1 we may assuméx(y1) = {a1,v1}. Sincea(G) = 3 andy1y> ¢ E(G),
{az, y1, Y2} is a maximum indpendent set ofc which implies {ap, v2} < Nx(y2).
Sincedx(y1) + dx(y2) < 5, we have{a, vi} ¢ Nx(y2). Assumea; ¢ Nx(y2), then



1072 Y. Chen et al. / European Journal of Combinatorics 25 (2004) 1067-1075

y1Y2a1a2v1v2Y1 iS aCg in G. Noting thatX U {y1, y2} € V(G) — N[ag], G contains aNg
with the hubag, a ontradiction. O

LetYo={y |y € Y anddx(y) = 2}.
Claim 4. For any two vertices yi, Y2 € Yo, Nx (Y1) = Nx(y2).

Proof. Otherwise we may assuméx (yi) = {a, vi} by Claim 1, wherei = 1, 2. Inthis
case, it is not difficult to see th& contains aNg with V(W) = X U {as, y1, Y2} and the
hubag, a ontradiction. [

Claim 5. dy(X) < 3|Y| — 3.

Proof. Let N(azg) = B. SinceG does not contain an induced subgrapgty3we have
dx(b) > 1 for anyb € B. Thus we havelg(X) > |B].

If dy(X) > 3|Y|—2, thensincag(X) > |B|, we havedy (X)+dg(X) > 3|Y|+|B|—2.
Noting that| X| = 4, we havealy (X)+dg(X) > 3|Y|+|B|—-2 = 3(2n—4—|B|)+|B|-2=
6n — 14 — 2|B|. Since G contains no stafs,, we have|B| < n — 2. Thus we have
dy(X) + dg(X) = 6n — 14— 2(n — 2) = 4n — 10 which imgies there is some vertex
X € X suchthatdy (x) + dg(x) > n — 2. Sincedx (x) = 1, we havad(x) > n — 1 which
implies G contains a sta§,, a @mntradiction. [

If |Yo| < 2, then byClaim 1, we havedy (X) > 3|Y| — 2 which contradictsClaim 5
Hence|Yp| > 3. If G[Y] contains a matchiniyl which saturate¥p, then byClaim 3 we
havedy (X) > > vy dx(Y) + 2-yey—vw) dx () = 3|Y| which contradictsClaim 5
HenceG[Y] contains no matchinlyl which saturate¥p. Thus byClaim 2 there are two
verticesy, Y2 € Yo and a verteXyp € Y suchthat ypyi, yoy2 ¢ E(G). By Claim 4, we
may assumeéNy (y) = {az, v1} for anyvertexy € Yp. Since|Yg| > 3, we can choose a
vertexys € Yo— {y1, y2}. Itis not difficult to see thaypyia2ysv2y2yo is aCg in G[X U Y].
Thus, noting thalX U'Y = V(G) — N[ag], we can see thaB contains a\g with the hub
ag, a ontradiction.

Case2. a(G) =4.
In this case, we first shothe following claim.

Claim 6. G hasat least one of the following graphs as an induced subgraph: 3K; U K3,
2K1 U Pg and 2K1 U 2Ko.

Proof. Let A = {a1, ap, a3, ag} be a maximum independent set®f Thenda(v) > 1 for
any vertexv € V(G) — A. If there is at mst one vertex, say in V(G) — A suchthat
da(v) = 1, thend(A) > 2(2n — 3) — 1 = 4n — 7 which inplies there is at least one
vertexa € Asuchthatd(a) > n — 1 andhenceG contains a sta%,, a @ntradiction. Thus
there are at least two vertices\M(G) — A, sayv1, vz, such hatda(vy) = da(v2) = 1. If
Na(v1) = Na(v2), thenG contains X1UK3z as aninduced subgraphNfa(v1) # Na(v2)
andvivz € E(G), thenG contains X1 U P4 as an induced subgraph.Nfa(v1) # Na(v2)
andvivz ¢ E(G), thenG contains X1 U 2K as an induced subgraph]

By Claim 6, we reed to consider the following three cases separately.
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Subcase 2.1. G contains an induced subgra@ = 3K1 U Ks.

Let A = {a1, az, azg} andB = {by, by, b3}. Assume tha¥ (Gg) = Vo = AU B and
E(Go) = {a1ap, apag, ajaz}. Sincen > 7, we haven — 3 > 4. By induction hypothesis,
G — Vg contains a staS,_3 with centerv. It is easy to see that k dy,(v) < 2.

If dv,(v) = 1, then sincex(G) = 4, we haveNy,(v) N A = ¢ and hence we may assume
Ny, (v) = {ba}. If dy,(v) = 2, then sincex(G) = 4, we havada(v) < 1. Ifda(v) = 1, we
may assumeNy, (v) = {ag, b1}. If da(v) = 0, we may assumsly,(v) = {b1, b2}. Thus

G[Vp U {v}] contains a\Ng with the hubbg in any case, a contradiction.

Subcase 2.2. G contains an induced subgra@y = 2K1 U P4.

Let A = {aj,ap, a3, a4} and B = {b1, by}. AssumeV(Gg) = Vo = AU B and
E(Go) = {a1ap, apag, azas}. Sincen > 7, we haven — 3 > 4. By induction hypothesis,
G — Vo contains a staf,—3 with centerv;. It is easy to see that X dy,(v1) < 2. If
dv,(v1) = 1, then sincer(G) = 4, we haveNy,(v1) N A = ¥ and hence we may assume
Ny, (v1) = {b1}. ThusG[Vo U {v1}] contains alNg with the hubb,, a @ntradiction. Hence
we may assumey,(vy) = 2. If dg(v1) = 0, then sincex(G) = 4, A — Ny, (v1) must be a
clique. Thus by symmetry we may assuikg, (v1) = {a1, ap} or {ag, as}. If dg(v1) = 1,
then by symmetry we may assurilg,(v1) = {az, b1} or {ap, b1}. Thus, it isnot difficult
to seeG[Vp U {v1}] contains alg with the hubby if dg(v1) < 1, a contradiction. Hence
we may assumdg(vy) = 2.

Let V1 = Vo U {v1}, thenG[V1] = P3 U P4. Sincen > 7, we haven — 4 > 3.
By induction hypothesiss — V; contains a stafs,_4 with centervy. Obviously, 1 <
dv,(v2) < 3. If dy,(v2) = 1, then sincex(G) = 4, we haveNy, (v2) < B. Assume
Ny, (v2) = {b1}, thenG[ Vo U {v2}] contains aVg with the hubb,, a mntradiction. Hence
we havedy, (v2) > 2. Now, letdy, (v2) = 2. If da(v2) = 2, then sincex(G) = 4, we
may assumeéNy, (v2) = {ay, ag} or {ay, a4}. If da(v2) = 1, then sincex(G) = 4, we
have Ny, (v2) N B # @. By synmetry we may assumiy, (v2) = {ag, b1} or {ap, by}.
Thus, it is not difficult to se&[Vo U {vo}] contains &g with the hubby if da(v2) > 1,
a ontradiction. Ifda(v2) = 0, then by symmetry we may assurig, (v2) = {by, vi}
or {by, by}. Thus, G[Vp U {v2}] contains aWs with the hubb, in the former case and
G[V1 U {v2} — {a2}] contains aWg with the hubay in the latter case, a contradiction.
Therefore we havdy, (v2) = 3.

If da(v2) = 3, then we may assumiy, (v2) = {ay, ag, ag} or {ay, a, as}. Thus,
G[V1 U {v2} — {az}] contains aWg with the hubas in the former case anG[Vo U {v2}]
contains a\g with the hubbs in the latter case, a contradiction.

If da(v2) = 2 andvy € Ny, (v2), then sincex(G) = 4, A — N(v2) must be a
clique. Thus, we may assume by symmetry tNgf(v2) = {ag, ap, v1} or {ay, aa, v1}. If
da(v2) = 2 andvy ¢ Ny, (v2), then by gmmetry we may assumsy, (v2) = {a1, ag, by}
or {ay, ag, b1} or {a1, a4, b1} or {ay, az, b1}. Thus,G[Vp U {v2}] contains aWe with the
hubbs in all the cases above, a contradiction.

If da(v2) = 1, then by symmetry we may assug, (v2) = {ay, by, v1} or {ap, by, v1}
or {ag, by, by} or {ay, by, by}. It is not difficult to check thaG[V1 U {v2} — {as}] contains
aWs with the hubas in all the cases above, a contradiction.
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If da(v2) = 0, thenNy, (v2) = {by, v, b2}. In this case, we leV, = V1 U {v2}. Since
n > 7, we haven — 4 > 3. By induction hypothesi<s — V, contains a staf,_4 with
centerv. Obviously, 1< dy, (v) < 3. By the analogous argument as before, we can obtain
Ny, (v) = {bg, v1, bo} which impliesvov ¢ E(G), otherwiseG contains a sta,. Thus,
G[ V2 U {v} — {ap, v1}] contains &N with the hubay, a mntradiction.

Subcase 2.3. G contains an induced subgra@iy = 2K1 U 2K».

Using an analogous argument aSubcase 2,2we can seeG contains aWs, a
contradiction.

Case3. a(G) =5o0r6.

Let A={a | 1 <i < k} be a maximum independent set @f Sincen > 7, we
haven — 3 > 4. By induction hypothesiss — A contains a staf,_3 with the centeu.
Obviouslyda(u) =1 or 2.

If k=5,weletA; = AU {u}. If da(u) = 1, we asumeasu € E(G). If da(u) = 2,
we assumeyu, apu € E(G). By induction hypothesi<z — A; contains a staf,_3 with
the centew. Sinceda, (v) = 1 or 2, it isnot difficult to check thaG[ A1 U {v}] contains a
Ws in any case, a contradiction.

If k = 6, then sinceda(u) = 1 or 2, wecan seeG[A U {u}] contains aWg, again a
contradiction.

Up to now, we haveR(S,, Ws) < 2n + 1 andhenceR(S,, We) = 2n + 1.

The proof ofTheorem lis completed. [

4. Proof of Theorem 2

Proof of Theorem 2. Let G be a graph of orderr8— 2. If G contains noS,, then
A(G) < n — 2 which inplies §(G) > 3n—3) — (n—2) = 2n — 1. Letv be any
vertex of V(G) anddg(v) = (2n — 1) 4+ k, wherek > 0. AssumeF = 6[[\%(11)].
We now $iow F is pancyclic. SincéF| = (2n — 1) + k ands(G) > 2n — 1, we have
S(F) >2n—1—-[(3Bn—-2) — (2n — 1+ k)] = n + k. Noting thatk > 0, we have
8(F) >n+k> (2n—1+Kk)/2 = |F|/2 which implies F is pancyclic byLemma 1 that
is, F containsC; for 3 <i < 2n — 1. Sincem < n + 1, we can se& contains aWn,
with the hubv and henceR(S,, W) < 3n — 2. On the other hand, it is not difficult to
see neither B_1 containsS, nor its complement containd, for oddm. Thus we have
R(Sh, Wm) > 3n — 2 andhenceR(S,, Wn) =3n—-2. O
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