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Abstract In this paper we prove that if T is a regular n-partite tournament with n ≥ 4, then each

arc of T lies on a cycle whose vertices are from exactly k partite sets for k = 4, 5, . . . , n. Our result, in

a sense, generalizes a theorem due to Alspach.
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1 Introduction

We use the terminology and notation of [1]. A digraph D = (V (D), A(D)) is determined by its
set of vertices V (D), and its set of arcs A(D). If xy is an arc of a digraph D, then we say that
x dominates y, denoted by x → y. More generally, if A and B are two disjoint subdigraphs of
D such that every vertex of A dominates every vertex of B, then we say that A dominates B,
denoted by A → B. For a vertex x ∈ V (D), the outset N+

D (x) (inset N−
D (x)) is the set of vertices

dominated by x (dominating x) in D. The numbers d+
D(x) = |N+

D (x)| and d−D(x) = |N−
D (x)| are

called outdegree and indegree of x, respectively. A regular digraph D is a digraph such that for
each vertex v, d+(v) = d−(v) = k. By a cycle (path, resp.), we mean a directed cycle (directed
path, resp.). A cycle of length k is called a k-cycle. A digraph D is pancyclic if it contains cycles
of lengths 3, 4, . . . , |V (D)|. A digraph D is vertex pancyclic (arc pancyclic) if for all v ∈ V (D)
(e ∈ A(D)) it contains cycles of lengths 3, 4, . . . , |V (D)|, which all include the vertex v (arc e).
The converse of D is a digraph D′, where V (D′) = V (D), xy ∈ A(D′) if and only if yx ∈ A(D).
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An n-partite or multipartite tournament is a digraph obtained from a complete n-partite
graph by giving each edge an orientation. Let T be a multipartite tournament and x ∈ V (T ),
we denote by V c(x) the partite set of T to which x belongs. A k-outpath of an arc xy in a
multipartite tournament is a path with length k starting at xy such that x does not dominate
the end vertex of the path.

The following two well-known theorems on tournaments are due to Moon and Alspach,
respectively.

Theorem A (Moon [2]) Every strong tournament is vertex pancyclic.

Theorem B (Alspach [3]) Every regular tournament is arc pancyclic.

Many interesting results are obtained on the extension of Moon’s theorem for multipartite
tournaments (see [4–8]). For a survey on this topic, we refer the reader to [9–10].

The arc pancyclicity problem for multipartite tournaments seems to be difficult in general.
There are relatively few papers on this topic.

Theorem C (Guo [6]) Let T be a regular n-partite tournament with n ≥ 3. Then every arc
of T has a (k − 1)-outpath for all 3 ≤ k ≤ n.

Theorem D (Zhou and Zhang [11]) Let T be a regular n-partite tournament with n ≥ 6.
Then each arc of T lies on a k-cycle for k = 4, 5, . . . , n.

Theorem E (Guo and Kwak, Theorem 2.16 in [10]) Let D be a regular n-partite tournament.
If the cardinality of each partite set is odd, then every arc of D is in a cycle that contains vertices
from exactly m partite sets for each m ∈ {3, 4, . . . , n}.

In this paper, no matter what is the parity of the cardinality of each partite set, we prove
the following result, which, in a sense, is also a generalization of Alspach’s theorem.

Main Theorem Let T be a regular n-partite tournament with n ≥ 4. Then every arc of T

lies on a cycle which contains vertices from exactly k partite sets for k = 4, 5, . . . , n.

2 Proof of Theorem

Lemma 1 Let T be a regular n-partite tournament with n ≥ 3. Then every arc xy of T lies
on one of the following three kinds of cycles:

(1) A 3-cycle ;

(2) A 4-cycle xyx′zx, where x and x′ are in the same partite set, y and z are in different
partite sets (a 4-cycle of this kind is called a 4-cycle of type I);

(3) A 4-cycle xyx′y′x, where x and x′ (y and y′) are in the same partite set (a 4-cycle of
this kind is called a 4-cycle of type II).

Proof The partite sets of T are denoted by V1, V2, . . . , Vn. By Lemma 2.10 in [10], |V1| = |V2| =
· · · = |Vn|. Assume e = (x, y) to be any arc in T . Without loss of generality, we may assume
that x ∈ V1, y ∈ V2. Denote A = N−(x) ∩ (V (T ) − V1 − V2), B = N+(y) ∩ (V (T ) − V1 − V2).
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Suppose e is not on any 3-cycle. Then A ∩ B = ∅, A ⊆ N−(y), B ⊆ N+(y). Moreover,
it is easy to see that A �= ∅, B �= ∅. If V1 → y, then V1 ⊆ N−(y), so N−(y) ⊇ A ∪ V1

and N−(x) ⊆ A ∪ (V2 − y). Hence |A| + |V2| − 1 ≥ |N−(x)| = |N−(y)| ≥ |A| + |V1|, i.e.,
|V2| > |V1|, which is impossible. Therefore, N+(y) ∩ V1 �= ∅. Assume x′ ∈ N+(y) ∩ V1. Then
x → y → x′, and y ∈ N+(x) ∩ N−(x′). Denote a = |N+(x) ∩ N−(x′)|, b = |N+(x) ∩ N+(x′)|,
c = |N−(x)∩N−(x′)|, d = |N−(x)∩N+(x′)|. Then d+(x) = a+b, d−(x) = c+d, d+(x′) = b+d,
d−(x′) = a + c. Since T is regular, it follows that a + b = c + d, b + d = a + c. So a = d, b = c,
and a ≥ 1. Thus N−(x)∩N+(x′) �= ∅. Assume that y′ ∈ N−(x)∩N+(x′). Then x′ → y′ → x.
If y′ ∈ V2, then xyx′y′x is a 4-cycle of type II. If y′ �∈ V2, then xyx′y′x is a 4-cycle of type I.

Here we remark that Zhou Guo-Fei has ever proved that if we let T be a regular n-partite
tournament with n ≥ 3, then every arc of T lies on a 3-cycle or a 4-cycle (private communica-
tion).

Lemma 2 Let T be a regular n-partite tournament with n ≥ 4. If the arc xy of T is not on
any 3-cycle and 4-cycle of type I, then the arc xy is on a cycle whose vertices are from 3 or 4
partite sets.

Proof The partite sets of T are denoted by V1, V2, . . . , Vn. By Lemma 2.10 in [9], |V1| =
|V2| = · · · = |Vn| = k. Assume e = (x, y) is an arc in T which is not on a 3-cycle and 4-
cycle of type I. Without loss of generality, we may assume that x ∈ V1 and y ∈ V2. Denote
A = N−(x)∩(V (T )−V1−V2), B = N+(x)∩(V (T )−V1−V2), C = N−(y)∩V1, D = N+(y)∩V1,
E = N+(x) ∩ V2, F = N−(x) ∩ V2.

Since e is not on any 3-cycle and T is regular, it is easy to see that A �= ∅, B �= ∅, D �= ∅,
F �= ∅, A ∩ B = ∅, and X → b.

If there is an arc x′ → a, where x′ ∈ D, a ∈ A, then e is on a 4-cycle of type I xyx′ax,
which is impossible. So A → D. Similarly, we have F → B ∩ N+(y).

Let x′ be an arbitrary vertex in D. Since |N+(x′)| = |N+(x)| and x → y → x′, there is a
vertex v such that x′ → v → x. By A → D and F → B ∩ N+(y), it is easy to see that v ∈ F .
So N+(x′) ∩ F �= ∅ for every x′ ∈ D. If there is an arc u → x′, where u ∈ B ∩ N+(y), x′ ∈ D,
then by N+(x′) ∩ F �= ∅ for every x′ ∈ D, there is y′ ∈ N+(x′) ∩ F , hence xyux′y′x is a cycle,
whose vertices are from 3-partite sets. So we may assume D → B ∩ N+(y). Similarly, we can
also assume that A → F , A → C → B ∩ N+(y), A → E → B ∩ N+(y). Therefore, we have
A → V1 ∪ V2 → B ∩ B+(y).

By Lemma 2.10 in [10], we have |N−(x)| = 1
2 (n−1)k, so 1

2 (n−1)k = |N−(x)| = |A|+ |F | ≤
|A| + (k − 1), |A| ≥ 1

2(n − 1)k − (k − 1) · · · (∗). If N(B ∩ N+(y)) ∩ A = ∅, then for any
u ∈ B ∩ N+(y), we have

|N−(u)| ≥ |V1 ∪ V2| + |N−(u) ∩ A|
≥ 2k + |A − V c(u)| = 2k + |A| − |V c(u)|
≥ 2k +

1
2
(n − 1)k − (k − 1) − k (by ∗)

=
1
2
(n − 1)k + 1,
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which is impossible, by the regularity of T . Therefore N+(B ∩N+(y)) ∩A �= ∅. Suppose uv is
an arc, u ∈ B ∩ N+(y), v ∈ A. It is easy to see that xyuvx is a cycle, whose vertices are from
4-partite sets.

Proof of the Main Theorem Let V1, V2, . . . , Vn be the partite sets of T . By Lemmas 1 and 2,
we may assume v1v2 is an arc of T and v1v2 lies on a cycle C = v1v2 · · · vmv1 whose vertices
are from k partite sets, where 3 ≤ k ≤ n − 1. It suffices to show that v1v2 is on a cycle whose
vertices are from k + 1 partite sets. Let

S = {x|x ∈ Vi, Vi ∩ V (C) = ∅},
A = {x|x ∈ S, x → V (C)},
B = {x|x ∈ S, V (C) → x},
X = S − A − B.

We consider the following two cases:

Case 1 A �= ∅ or B �= ∅.
Without loss of generality, we may assume that A �= ∅; for the case B �= ∅; we need to

consider only the converse of T .

Let m′ be the subscript such that v1v2 · · · vm′ contains vertices from exactly k − 1 partite
sets. We denote the path v1v2 · · · vm′ by P . Let x be a vertex of A. By Lemma 1, xvm′ lies on
a 3-cycle xvm′yx, a 4-cycle of type I xvm′x′zx, or a 4-cycle of type II xvm′x′v′x.

(1) xvm′ lies on a 3-cycle xvm′yx.

If V c(y) ∩ V (C) �= ∅, then v1v2 · · · vm′yxvm′+1 · · · vmv1 is a cycle whose vertices are from
exactly k + 1 partite sets.

If V c(y) ∩ V (C) = ∅, then v1v2 · · · vm′yxv1 is a cycle whose vertices are from exactly k + 1
partite sets.

(2) xvm′ lies on a 4-cycle of type I xvm′x′zx.

Clearly x′ �∈ V (C). By the definition of A, z �∈ V (C).

If V c(z) ∩ V (C) �= ∅, then v1v2 · · · vm′x′zxvm′+1 · · · vmv1 is a cycle whose vertices are from
exactly k + 1 partite sets.

If V c(z)∩V (C) = ∅, then v1v2 · · · vm′x′zxv1 is a cycle whose vertices are from exactly k +1
partite sets.

(3) xvm′ lies on a 4-cycle of type II xvm′x′v′x.

Clearly x′, v′ �∈ V (C). In this case the cycle v1v2 · · · vm′x′v′xvm′+1 · · · vmv1 contains vertices
from exactly k + 1 partite sets.

Case 2 A = ∅ and B = ∅.
In this case we have X �= ∅. Suppose there is a vertex x ∈ X such that v2 → x. By the

definition of X, there is a vertex vi ∈ V (C) such that x → vi. We can insert x into cycle C to
obtain a cycle which contains vertices v1, v2, . . ., vm, x with the arc v1v2. It is easy to see that
these vertices come from exactly k + 1 partite sets. So we may assume X → v2. Similarly we
assume v1 → X.
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If there is a vertex x ∈ X such that x → vm, then x → vi, i ≥ 2, otherwise we can get a
cycle containing vertices v1, v2, . . ., vm, x with the arc v1v2. It is easy to see that these vertices
come from exactly k + 1 partite sets. Because of X → v2 and the regularity of T , xv2 lies on a
3-cycle xv2yx. We can check that y �∈ V (C) ∪ X, the cycle v1v2yxv3 · · · vmv1 contains vertices
from exactly k + 1 partite sets. So we may assume that vm → X.

By considering the converse of T , we may also assume that X → v3.
If there is an arc yx ∈ A(T ) such that y ∈ N+(v2) − V (C) − V c(v1), x ∈ X, then clearly

y �∈ X, the cycle v1v2yxv3 · · · vmv1 contains vertices from exactly k + 1 partite sets. So we
may assume X → N+(v2) − V (C) − V c(v1). Similarly, v1 → N+(v2) − V (C) − V c(v1), since
otherwise there is a cycle v1v2 · · · vmxyv1 which contains vertices from exactly k+1 partite sets.

If v2 → vi, we may assume vi−1 �→ v1, since, otherwise, the cycle v1v2vi · · · vmx v3 · · · vi−1v1

contains vertices from exactly k + 1 partite sets, where x ∈ X. It follows that

|N+(v1) ∩ V (C)| ≥ |N+(v2) ∩ V (C)| − |V c(v1) ∩ V (C)| + 1.

Hence we have

|N+(v1)| ≥ |X| + |N+(v2) − V (C) − V c(v1)| + |N+(v1) ∩ V (C)|
≥ |X| + |N+(v2) − V (C) − V c(v1)| + |N+(v2) ∩ V (C)| − |V c(v1) ∩ V (C)| + 1

≥ |X| + |N+(v2) − V (C)| − |N+(v2) ∩ V c(v1) − V (C)| + |N+(v2) ∩ V (C)|
− |V c(v1) ∩ V (C)| + 1

≥ |X| + |N+(v2)| − |V c(v1)| + 1

≥ |N+(v2)| + 1.

This contradicts the regularity of T . This completes the proof of the main theorem.
From the main theorem, we can obtain the following corollary:

Corollary Let T be a regular n-partite tournament with n ≥ 3. Then every arc of T has an
outpath whose vertices come from exactly k partite sets, for all k = 3, 4, . . . , n.

Lastly we give the following two problems:

Problem 1 Which regular multipartite tournaments have the property that every arc lies on
a 3-cycle?

Problem 2 Which regular multipartite tournaments have the property that every arc lies on
a cycle whose vertices come from exactly 3 partite sets?
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