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A b s t r a c t - - L e t  T~ denote a tree of order n and Wm a wheel of order m + 1. In a previous paper, 
we evaluated the Ramsey number R(Tn, W,~) in the cases where Tn is the star of order n and m = 6 
o r  m is odd and n > m -  1 > 2. In this paper, we determine R(Tn, W6) in the case where t h e  

maximum degree of T~ is at least n - 3. Our results show that a recent conjecture of Baskoro et al. 
is false. (~) 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - R a m s e y  number, Tree, Wheel. 

1. I N T R O D U C T I O N  

All graphs considered in this paper are finite simple graphs without  loops. For two given 

graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest positive integer n such that  for 

any graph G of order n, either G contains G1 or G contains G2, where G is the complement of G. 

Let G be a graph. We use V(G) and E(G) to denote its vertex set and edge set, respectively. 

The neighborhood N(v) of a vertex v is the set of vertices adjacent to v in G. The minimum and 
maximum degree of G are denoted by 5(G) and A(G),  respectively. For a vertex v e V(G) and a 

subgraph H of G, NH(V) is the set of neighbors of v contained in H, i.e., NH(V) = N(v) N V(H). 
We let dH(v) = INH(v)]. For S C V(G), G[S] denotes the subgraph induced by S in G. Let U, V 

be two disjoint vertex sets. We use E(U, V) to denote the set of edges between U and V. Let m 

be a positive integer. We use mG to denote m vertex disjoint copies of G. A path  and a cycle of 

order n are denoted by Pn and C~, respectively. A star S,~ (n > 3) is a bipart i te  graph Kl ,n-1 .  

We use K3,3,...,3 to denote a balanced complete n /3-par t i t e  graph of order n = 0 (rood 3). A 

wheel Wn = {x} + C~ is a graph of n + 1 vertices, tha t  is, a vertex x, called the hub of the wheel, 

adjacent to all vertices of C~. S,(l, m) is a tree of order n obtained from S~-t×m by subdividing 

each of l chosen edges m times. Sn(1) is a tree of order n obtained from an St and an Sn- l  by 

adding an edge joining the centers of them. A graph on n vertices is pancycIic if it contains cycles 

of every length l, 3 < 1 < n. 
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Many Ramsey  numbers  concerning wheel or s tar  have been established,  see for instance [1-4]. 
Recently, the  following Ramsey  numbers  were obtained.  

THEOREM A. (See [5].) R(Sn ,  W4) = 2n - 1 for n > 3 and odd, R(Sn ,  W4) = 2n + 1 for n > 4 
and even; R(Sn ,  Wh) = 3n - 2 for n >_ 4. 

THEOREM B. (See [6].) R(Sn ,  W6) --  2n + 1 for n >_ 3. 

THEOREM C. (See [6].) R(Sn ,  W,~) = 3n - 2 for m odd and n >> m - 1 > 2. 

THEOREM D. (See [7].) R(Pn,  Wm) -- 3n - 2 for m odd and n > m -  1 > 2; R(Pn,  Win) = 2 n -  1 
for m e v e n  and n > m - 1 >__ 3. 

THEOREM E.  (See [8].) Let  Tn be a tree of  order n other than S,~. Then R(T~, W4) --  2n - 1 

for n >_ 3; R(T~, Wh) = 3n - 2 for n > 4. 

Motiva ted  by  Theorem E, Baskoro et al. fur thermore  posed in [8] the  following. 

CONJECTURE 1. Let  Tn be a tree other  than Sn and n > m - 1. Then R(Tn,  Win) = 2n - 1 for 

m > 6 even; R(Tn,  Win) = 3n - 2 for m >_ 7 and odd. 

In this  paper ,  we consider the  Ramsey  numbers R(Tn,  W6) for A(T~) > n - 3. If  A(Tn)  > n -  3 

and Tn # S~, then Tn is isomorphic  to  one of the  trees Sn(1, 1), S,~(1, 2), Sn(2, 1), or S~(3). The 

main  results  of this  paper  are the  following. 

THEOREM 1. R(Sn(1,  1), W6) = 2n for n > 4. 

THEOREM 2. R(Sn(1,  2), W6) --  2n for n > 6 and n =- 0 (mod 3). 

THEOREM 3. R(S~(3) ,  W6) = R(S~(2,  1), We) = 2n - 1 for n > 6; R(Sn(1,  2), We) = 2n - 1 t'or 

n > 6 and n ~ O (mod3) .  

REMARK. By Theorems 1 and 2, we can see tha t  Conjecture  1 is not  t rue  when m = 6. In fact, 

if m is even, then R(Sn(1,  1), W,~) is a function re la ted  to bo th  n and m as can be seen by the 

following examples.  

Let  m > 6 be an even integer, n = k m / 2  + 3, where k > 2 is an integer,  and G --- H U K, , -1 ,  

where [I  = (k + 1)K,~/2. Obviously, G is a graph of order 2n + m / 2  - 4. Since A ( H )  = k m / 2  = 

n - 3 and A(S~(1 ,  1)) = n - 2, we can see tha t  G contains no S~(1, 1). On the  other  hand, it  is 

not  difficult to  check t ha t  G contains no W,~. Thus, we have R(S~(1,  1), W,~) >> 2n + m / 2  - 3 if 

n = kin~2 + 3 for some integer k > 2. 

In  general,  by modifying the examples  above, we can show for even m, R(Tn,  Win) is a function 

re la ted  to bo th  n and m if A(T~) is large enough. By Theorem D, we believe R(Tn,  Wm) = 2 n -  1 

for m even and n > m - 1 if A(Tn) is small. 

PROBLEM 1. Characterize trees T~ with R(T~, Win) = 2n - 1 for m even and n >_ m - 1. 

2.  S O M E  L E M M A S  

In order  to  prove our results,  we need the following lemmas.  

LEMMA 1. (See [9].) Let  G be a graph of  order n. I f  6(G) >_ n/2 ,  then either G is pancycIic or n 

is even and G : Kn/2,n/2. 

LEMMA 2. Let  G be a graph of  order 2n - 1 > 7 and (U, V)  a partition of  V(G)  with IUI > 3 
and IV I >_ 4. Suppose u~ C U and Nv(u~) = ~, where 1 < i < 3. I f  G contains no W6, then 

_> IYl -  3 

PROOF. If  there  is some ver tex v E V such t ha t  d r ( v )  _< IV] - 4, say Vl,V2,V3 6 V and 
vl, v2, v3 ~ N v ( v ) ,  then G[v, vl ,  v2, v3, u l ,  u2, u3] contains a W6 with  the  hub v, a contradict ion.  | 
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LEMMA 3. Let G be ~ graph of order n _> 6 with 5(G) > n - 3. Then G contains Sn(3) and 
S,~(2, 1). Furthermore, K G #/(3,3,...,3, then G contains Sn(1, 2). 

P R o o f .  We first show G contains an S~(3). Since 5(G) > n - 3 ,  G contains a tree T = Sn-2 with 
the center v0. Set V(G) - V(T) = V = {Ul, u2}. If g(u l )  n Y(u2) n gT(vo) ¢ O, then G contains 
an S~(3). Hence, we may assume N(Ul) n N(u2) n NT(Vo) = 0. Thus, if Ul,Ue ~ g(vo) or 
UlU2 ~ E(G), then since 5(G) >_ n - 3 ,  we have 2 ( n - 3 )  < d(ul)+d(u2) < n - 3 + 2  which implies 
n < 5, a contradiction. Hence, we may assume you1, UlU2 E E(G). Noting tha t  5(G) > n -  3 and 
n > 6, we have d(ul) _> 3 which implies N(ut) n NT(Vo) ¢ O, and hence G contains an S~(3). 

Next, we show G contains an S~(2, 1). Let T be an S~(3) in G with V(T) = {vo,vx,... ,v~-3, 
ul ,  u2} and E(T) = {vovi I 1 < i < n -  3} U {VlUl, vlu2}. If g(u~) N (Nr(v0) - {Vl}) ¢ O for some 
i e {1, 2}, then G contains an Sn(2, 1). Hence, we may assume N(ui) ~ (NT(Vo) - {vl}) = 0 for 
i = 1, 2 which implies u2vo e E(G) since d(u~) ~ 3. Noting tha t  d(v2) > 3, there is some vertex 
v e {v3, v4 , . . . ,  v~-3} such that  vv2 ~ E(G) which implies G contains an S~(2, 1). 

Finally, we show G contains an S~(1,2) if G ¢/(3,3,...,3. If A(G) > n - 2, then G contains a 
star Sn-~. Let T be a star Sn-~ with the center v and V ( G ) - V ( T )  = {u}. Since d(u) > 3, we have 
]g(u)~NT(v)l > 2, and hence G contains an S~(1, 2). Thus, we may assume A(G) = 5(G) = n-3 .  
Let v be any vertex in V(G) and V(G)-N[v] = {u~, u2}. If ulu2 • E(G), then since d(u~) > 3, we 
have N(u l )~  N(v) ¢ O, and hence, G contains an Sn(1 , 2). Thus, V ( G ) -  N(v) is an independent 
set for any v • V(G) which implies G = K 3 , 3 , . . . ,  3. | 

3 .  P R O O F S  O F  T H E O R E M S  

PROOF OF THEOREM 1. The example G = / ~  U K ~ - I  shows that  -R(Sn(1, 1), W6) ~ 2n, where 
H = Cn if n # 6 and H = 2C3 if n = 6. We first consider the case n _> 5. Assume that  G is a 
graph of order 2n such that  Sn(1, 1) ¢ G and W6 ¢ G. Let u be a vertex of degree A(G) and 
No(u) = V. Set W = V(G) - ({u} U U). If  A(G) = n -  1, then S~(1,1) ¢ G implies U is an 
independent set and E(U, W) = 0. But then we may take four vertices from U and three from W 
and find a We in G, a contradiction. By Theorem B, we are left to  consider the case in which 
A(G) -- n - 2. As in the preceding case, E(U, W) = 0. Consider G[W]. If  some vertex therein 
has degree at least three, then this vertex as the hub together with three appropriate vertices 
from W and three arbitrary vertices from U give a W6 in G, a contradiction. Hence, G[W] is 
regular of degree n - 2. To see this is impossible, pick two nonadjacent vertices in G[W], say v 
and w. Since 2(n - 1) > n, their neighborhoods have a nonempty  intersection, thus producing 
Sn(1, 1) C G, a contradiction. As for the case n = 4, we leave it to the reader. | 

PROOF OF THEOREM 2. Let G be a graph of order 2n. Suppose G contains no We. By The- 
orem 1, G contains an S~(1,1). Let T be an S~(1,1) with V(T) = { v 0 , v l , . . . , v ~ - l }  and 

E(T) --- {vovi I 1 < i < n - 2} U {vlvn_l}. Set U = V(G) - V(T).  Obviously, IU] = n. 
If  G contains no S , (1 ,2) ,  then N ( v , - 1 )  c_ {v0,vl}. If  A(G[U]) < 1, then since n > 6, we 
have 5(G[U]) > n - 2 > n/2 which implies G[U] contains a C6 by Lemma 1, and hence, 
contains a W6 with the hub V~-l, a contradiction. Thus, we have A(G[U]) > 2, which implies 
G[U] contains a Pc. Let P = ulu2u3 be a P3 in G[U]. Since G contains no Sn(1,2), we have 
u~vj ~ E(G) for 1 < i < 3 and 2 < j < 4. Thus, noting that  N ( v , - l )  c {v0,vl}, we can 
see Give-l, Ul, uu, u3, v2,v3, v4] contains a W6 with hub vn-1,  a contradiction. Thus, we have 
R(Sn(1, 2), W6) _< 2n. On the other hand, since n ~ 0 (mod 3), the graph K~_I  U/(3,3,...,3 shows 
R(S~(1,2),  W6) _> 2n, and hence, we have R(S~(1, 2), We) = 2n. | 

PROOF OF THEOREM 3. Obviously, 2 K ~ - I  contains no tree of order n and its complement 
contains no wheels, and hence, we have R(S~(3), We) _> 2n - 1, R(Sn(2, 1), W6) _> 2n - 1, and 
R(s~(1,  2), we)  > 2~ - ~. 

Let G be a graph of order 2n - 1. Suppose Q contains no W6. By Theorem B, G contains 
a star Sn-1. Let T be an S.~-1 with the center v0 and NT(Vo) = V = { v l , . . . , v ~ - 2 } .  Set 
U = V(G) - V(T).  Obviously, IUI = n. 
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If  6(G[U]) > n - 3, then by Lemlna 3, G contains S~(3), S~(2, 1) and if n ~ 0 (mod 3), then 
G ~ K~,a ..... 3 which implies G contains Sn(1,2). Thus, we mR3} assume 

6(G[U]) < n - 4. ( I )  

By Lemma 2 and (1), we have E(U, V) # ~. Assume without loss of generality tha t  Nu(vl) ~ ~, 
say u 1 E NU(Vl). 

We first show R(S~(3), W6) _< 2n - 1. If  G contains no S~(3), then we have Nv(vl) = ~ and 
du(vi) _< 1 for any v~ E V. Thus, since n > 6, there are three vertices u2,u3,u4 e U - {Ul} such 
tha t  dv(u~) < 1 for 2 < i < 4 which implies G[vl,v2,v3,v4,u2, ua,u4J contains a W6 with the 
hub vz, a contradiction. Thus, we have R(S~(3), W~) < 2 n - 1 ,  and hence, R(Sn(3), W6) = 2 n - 1 .  

Next, we show R(S~,(2, 1), W6) <__ 2n - 1. Suppose to the contrary G contains no Sn(2, 1). 
If  du(vl) _> 2, then Nu(vi) = ~ for 2 < i < n - 2 since otherwise G contains an Sn(2, 1). By 
Lemma 2, we have 6(G[U]) > n - 3 which contradicts (1), and hence, we have Nu(vl) = {Ul}. 
In this case, we have Nu(v~) C {ul} for 2 < i < n - 2, and hence, 6(G[V]) > (n - 2) - 3 > 1 
by Lemma 2. If  G[V - {vl}] contains an edge, then G contains an Sn(2, 1), and hence, V - {vl} 
is an independent set. Thus, since 6(G[V]) > 1, we have vlv~ ~ E(G) for 2 < i < n - 2 which 
implies Nu(v~) = 0 for 2 < i < n - 2 since otherwise G contains an Sn(2, 1). Noting that  n > 6, 
we have IV - {Vl}l ~ 3. By Lemma 2, we have 5(G[U]) > n - 3 which contradicts (1). Thus, we 
have R(S~(2, 1), W6) _< 2n - 1, and hence, R(S,~(2, 1), 14/6) = 2n - 1. 

Finally, we show R(S~(1,2),W6) < 2n - 1 for n ~ 0 (rood3). If G contains no S~(1,2), then 
we have 

and 

Nu(v~)ANu(vj)=O, f o r a l l v { , v j E Y  and i # j ,  (2) 

Nv(vi) = ~, if Nu(vi) ¢ ~, for each vi E V, (3) 

Nu(u) = ~, if u C Nu(vi), for some vi E V. 

CLAIM 1. d u ( v )  < 2 for each v E V. 

(4) 

PROOF. Suppose tha t  du(v) ~ 3 for some v C V and let W = {wl,w2,w3} C_ Nor(v). By (4), 
W is an independent set. Let Z = {Zl,Z2, Z3} G V - {v}. Then E(Z,W)  = O by (2). If  
Nu(z~) = O for i = 1, 2, 3, then by Lemma 2, we have 6(G[U]) _> n - 3 which contradicts (1). 
Thus, without loss of generality, we may assume that  Nu(zl) # ¢}. Thus, by (3) we must have 
Nv(zl) = Nv(v) # O. We then see that  G[zl,z2,z3,v, wl,w2,w3] contains a wheel W6 with 
hub zl, a contradiction. | 

Since n ~ 6, by Claim 1, we can choose three vertices, say u2,ua,u4 E U - {Ul} such that  
IN(v~) N {u2, ua, u4}l <__ 1 for i - 2, 3, 4. Thus, by (2) and (4), we can see G[v2, v3, v4, Ul, u2, u3, u4] 
contains a W6 with the hub ul,  a contradiction. This implies R(S~(1,2),  W6) <_ 2 n - l ,  and hence, 
R(S~(1, 2), W6) = 2n - 1 for n ~ 0 (mod 3). | 
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