

Available at www.ElsevierMathematics.com

Mathematics

Applied Mathematics Letters 17 (2004) 281-285

www.elsevier.com/locate/aml

Applied

The Ramsey Numbers $R(T_n, W_6)$ for $\Delta(T_n) \ge n-3$

YAOJUN CHEN*, YUNQING ZHANG AND KEMIN ZHANG Department of Mathematics, Nanjing University Nanjing 210093, P.R. China

(Received November 2002; revised and accepted June 2003)

Abstract—Let T_n denote a tree of order n and W_m a wheel of order m+1. In a previous paper, we evaluated the Ramsey number $R(T_n, W_m)$ in the cases where T_n is the star of order n and m = 6 or m is odd and $n \ge m-1 \ge 2$. In this paper, we determine $R(T_n, W_6)$ in the case where the maximum degree of T_n is at least n-3. Our results show that a recent conjecture of Baskoro *et al.* is false. © 2004 Elsevier Ltd. All rights reserved.

Keywords-Ramsey number, Tree, Wheel.

1. INTRODUCTION

All graphs considered in this paper are finite simple graphs without loops. For two given graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest positive integer n such that for any graph G of order n, either G contains G_1 or \overline{G} contains G_2 , where \overline{G} is the complement of G. Let G be a graph. We use V(G) and E(G) to denote its vertex set and edge set, respectively. The neighborhood N(v) of a vertex v is the set of vertices adjacent to v in G. The minimum and maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a vertex $v \in V(G)$ and a subgraph H of G, $N_H(v)$ is the set of neighbors of v contained in H, i.e., $N_H(v) = N(v) \cap V(H)$. We let $d_H(v) = |N_H(v)|$. For $S \subseteq V(G)$, G[S] denotes the subgraph induced by S in G. Let U, V be two disjoint vertex sets. We use E(U, V) to denote the set of edges between U and V. Let m be a positive integer. We use mG to denote m vertex disjoint copies of G. A path and a cycle of order n are denoted by P_n and C_n , respectively. A star S_n $(n \ge 3)$ is a bipartite graph $K_{1,n-1}$. We use $K_{3,3,\dots,3}$ to denote a balanced complete n/3-partite graph of order $n \equiv 0 \pmod{3}$. A wheel $W_n = \{x\} + C_n$ is a graph of n+1 vertices, that is, a vertex x, called the hub of the wheel, adjacent to all vertices of C_n . $S_n(l,m)$ is a tree of order n obtained from $S_{n-l\times m}$ by subdividing each of l chosen edges m times. $S_n(l)$ is a tree of order n obtained from an S_l and an S_{n-l} by adding an edge joining the centers of them. A graph on n vertices is *pancyclic* if it contains cycles of every length $l, 3 \leq l \leq n$.

Many thanks to the anonymous referees for their many helpful comments and suggestions, especially the simple proof of Theorem 1, which have considerably improved the presentation of the paper.

This project was supported by NSFC.

^{*}This project was supported by Nanjing University Talent Development Foundation.

Many Ramsey numbers concerning wheel or star have been established, see for instance [1–4]. Recently, the following Ramsey numbers were obtained.

THEOREM A. (See [5].) $R(S_n, W_4) = 2n - 1$ for $n \ge 3$ and odd; $R(S_n, W_4) = 2n + 1$ for $n \ge 4$ and even; $R(S_n, W_5) = 3n - 2$ for $n \ge 4$.

THEOREM B. (See [6].) $R(S_n, W_6) = 2n + 1$ for $n \ge 3$.

THEOREM C. (See [6].) $R(S_n, W_m) = 3n - 2$ for m odd and $n \ge m - 1 \ge 2$.

THEOREM D. (See [7].) $R(P_n, W_m) = 3n-2$ for m odd and $n \ge m-1 \ge 2$; $R(P_n, W_m) = 2n-1$ for m even and $n \ge m-1 \ge 3$.

THEOREM E. (See [8].) Let T_n be a tree of order n other than S_n . Then $R(T_n, W_4) = 2n - 1$ for $n \ge 3$; $R(T_n, W_5) = 3n - 2$ for $n \ge 4$.

Motivated by Theorem E, Baskoro et al. furthermore posed in [8] the following.

CONJECTURE 1. Let T_n be a tree other than S_n and $n \ge m-1$. Then $R(T_n, W_m) = 2n-1$ for $m \ge 6$ even; $R(T_n, W_m) = 3n-2$ for $m \ge 7$ and odd.

In this paper, we consider the Ramsey numbers $R(T_n, W_6)$ for $\Delta(T_n) \ge n-3$. If $\Delta(T_n) \ge n-3$ and $T_n \ne S_n$, then T_n is isomorphic to one of the trees $S_n(1,1)$, $S_n(1,2)$, $S_n(2,1)$, or $S_n(3)$. The main results of this paper are the following.

THEOREM 1. $R(S_n(1,1), W_6) = 2n$ for $n \ge 4$.

THEOREM 2. $R(S_n(1,2), W_6) = 2n$ for $n \ge 6$ and $n \equiv 0 \pmod{3}$.

THEOREM 3. $R(S_n(3), W_6) = R(S_n(2, 1), W_6) = 2n - 1$ for $n \ge 6$; $R(S_n(1, 2), W_6) = 2n - 1$ for $n \ge 6$ and $n \ne 0 \pmod{3}$.

REMARK. By Theorems 1 and 2, we can see that Conjecture 1 is not true when m = 6. In fact, if m is even, then $R(S_n(1,1), W_m)$ is a function related to both n and m as can be seen by the following examples.

Let $m \ge 6$ be an even integer, n = km/2 + 3, where $k \ge 2$ is an integer, and $G = H \cup K_{n-1}$, where $\overline{H} = (k+1)K_{m/2}$. Obviously, G is a graph of order 2n + m/2 - 4. Since $\Delta(H) = km/2 = n-3$ and $\Delta(S_n(1,1)) = n-2$, we can see that G contains no $S_n(1,1)$. On the other hand, it is not difficult to check that \overline{G} contains no W_m . Thus, we have $R(S_n(1,1), W_m) \ge 2n + m/2 - 3$ if n = km/2 + 3 for some integer $k \ge 2$.

In general, by modifying the examples above, we can show for even m, $R(T_n, W_m)$ is a function related to both n and m if $\Delta(T_n)$ is large enough. By Theorem D, we believe $R(T_n, W_m) = 2n-1$ for m even and $n \ge m-1$ if $\Delta(T_n)$ is small.

PROBLEM 1. Characterize trees T_n with $R(T_n, W_m) = 2n - 1$ for m even and $n \ge m - 1$.

2. SOME LEMMAS

In order to prove our results, we need the following lemmas.

LEMMA 1. (See [9].) Let G be a graph of order n. If $\delta(G) \ge n/2$, then either G is pancyclic or n is even and $G = K_{n/2,n/2}$.

LEMMA 2. Let G be a graph of order $2n-1 \ge 7$ and (U,V) a partition of V(G) with $|U| \ge 3$ and $|V| \ge 4$. Suppose $u_i \in U$ and $N_V(u_i) = \emptyset$, where $1 \le i \le 3$. If \overline{G} contains no W_6 , then $\delta(G[V]) \ge |V| - 3$.

PROOF. If there is some vertex $v \in V$ such that $d_V(v) \leq |V| - 4$, say $v_1, v_2, v_3 \in V$ and $v_1, v_2, v_3 \notin N_V(v)$, then $\overline{G}[v, v_1, v_2, v_3, u_1, u_2, u_3]$ contains a W_6 with the hub v, a contradiction.

LEMMA 3. Let G be a graph of order $n \ge 6$ with $\delta(G) \ge n-3$. Then G contains $S_n(3)$ and $S_n(2,1)$. Furthermore, if $G \ne K_{3,3,\ldots,3}$, then G contains $S_n(1,2)$.

PROOF. We first show G contains an $S_n(3)$. Since $\delta(G) \ge n-3$, G contains a tree $T = S_{n-2}$ with the center v_0 . Set $V(G) - V(T) = U = \{u_1, u_2\}$. If $N(u_1) \cap N(u_2) \cap N_T(v_0) \ne \emptyset$, then G contains an $S_n(3)$. Hence, we may assume $N(u_1) \cap N(u_2) \cap N_T(v_0) = \emptyset$. Thus, if $u_1, u_2 \notin N(v_0)$ or $u_1u_2 \notin E(G)$, then since $\delta(G) \ge n-3$, we have $2(n-3) \le d(u_1) + d(u_2) \le n-3+2$ which implies $n \le 5$, a contradiction. Hence, we may assume $v_0u_1, u_1u_2 \in E(G)$. Noting that $\delta(G) \ge n-3$ and $n \ge 6$, we have $d(u_1) \ge 3$ which implies $N(u_1) \cap N_T(v_0) \ne \emptyset$, and hence G contains an $S_n(3)$.

Next, we show G contains an $S_n(2,1)$. Let T be an $S_n(3)$ in G with $V(T) = \{v_0, v_1, \ldots, v_{n-3}, u_1, u_2\}$ and $E(T) = \{v_0v_i \mid 1 \le i \le n-3\} \cup \{v_1u_1, v_1u_2\}$. If $N(u_i) \cap (N_T(v_0) - \{v_1\}) \ne \emptyset$ for some $i \in \{1, 2\}$, then G contains an $S_n(2, 1)$. Hence, we may assume $N(u_i) \cap (N_T(v_0) - \{v_1\}) = \emptyset$ for i = 1, 2 which implies $u_2v_0 \in E(G)$ since $d(u_2) \ge 3$. Noting that $d(v_2) \ge 3$, there is some vertex $v \in \{v_3, v_4, \ldots, v_{n-3}\}$ such that $vv_2 \in E(G)$ which implies G contains an $S_n(2, 1)$.

Finally, we show G contains an $S_n(1,2)$ if $G \neq K_{3,3,\ldots,3}$. If $\Delta(G) \geq n-2$, then G contains a star S_{n-1} . Let T be a star S_{n-1} with the center v and $V(G)-V(T) = \{u\}$. Since $d(u) \geq 3$, we have $|N(u) \cap N_T(v)| \geq 2$, and hence G contains an $S_n(1,2)$. Thus, we may assume $\Delta(G) = \delta(G) = n-3$. Let v be any vertex in V(G) and $V(G)-N[v] = \{u_1, u_2\}$. If $u_1u_2 \in E(G)$, then since $d(u_1) \geq 3$, we have $N(u_1) \cap N(v) \neq \emptyset$, and hence, G contains an $S_n(1,2)$. Thus, V(G)-N(v) is an independent set for any $v \in V(G)$ which implies $G = K_{3,3,\ldots,3}$.

3. PROOFS OF THEOREMS

PROOF OF THEOREM 1. The example $G = \overline{H} \cup K_{n-1}$ shows that $R(S_n(1,1), W_6) \geq 2n$, where $H = C_n$ if $n \neq 6$ and $H = 2C_3$ if n = 6. We first consider the case $n \geq 5$. Assume that G is a graph of order 2n such that $S_n(1,1) \not\subset G$ and $W_6 \not\subset \overline{G}$. Let u be a vertex of degree $\Delta(G)$ and $N_G(u) = U$. Set $W = V(G) - (\{u\} \cup U)$. If $\Delta(G) = n - 1$, then $S_n(1,1) \not\subset G$ implies U is an independent set and $E(U,W) = \emptyset$. But then we may take four vertices from U and three from W and find a W_6 in \overline{G} , a contradiction. By Theorem B, we are left to consider the case in which $\Delta(G) = n - 2$. As in the preceding case, $E(U,W) = \emptyset$. Consider $\overline{G}[W]$. If some vertex therein has degree at least three, then this vertex as the hub together with three appropriate vertices from W and three arbitrary vertices from U give a W_6 in \overline{G} , a contradiction. Hence, G[W] is regular of degree n - 2. To see this is impossible, pick two nonadjacent vertices in G[W], say v and w. Since 2(n-1) > n, their neighborhoods have a nonempty intersection, thus producing $S_n(1,1) \subset G$, a contradiction. As for the case n = 4, we leave it to the reader.

PROOF OF THEOREM 2. Let G be a graph of order 2n. Suppose \bar{G} contains no W_6 . By Theorem 1, G contains an $S_n(1,1)$. Let T be an $S_n(1,1)$ with $V(T) = \{v_0, v_1, \ldots, v_{n-1}\}$ and $E(T) = \{v_0v_i \mid 1 \leq i \leq n-2\} \cup \{v_1v_{n-1}\}$. Set U = V(G) - V(T). Obviously, |U| = n. If G contains no $S_n(1,2)$, then $N(v_{n-1}) \subseteq \{v_0,v_1\}$. If $\Delta(G[U]) \leq 1$, then since $n \geq 6$, we have $\delta(\bar{G}[U]) \geq n-2 > n/2$ which implies $\bar{G}[U]$ contains a C_6 by Lemma 1, and hence, \bar{G} contains a W_6 with the hub v_{n-1} , a contradiction. Thus, we have $\Delta(G[U]) \geq 2$, which implies G[U] contains a P_3 . Let $P = u_1u_2u_3$ be a P_3 in G[U]. Since G contains no $S_n(1,2)$, we have $u_iv_j \notin E(G)$ for $1 \leq i \leq 3$ and $2 \leq j \leq 4$. Thus, noting that $N(v_{n-1}) \subseteq \{v_0,v_1\}$, we can see $\bar{G}[v_{n-1}, u_1, u_2, u_3, v_2, v_3, v_4]$ contains a W_6 with hub v_{n-1} , a contradiction. Thus, we have $R(S_n(1,2), W_6) \leq 2n$. On the other hand, since $n \equiv 0 \pmod{3}$, the graph $K_{n-1} \cup K_{3,3,\ldots,3}$ shows $R(S_n(1,2), W_6) \geq 2n$, and hence, we have $R(S_n(1,2), W_6) = 2n$.

PROOF OF THEOREM 3. Obviously, $2K_{n-1}$ contains no tree of order n and its complement contains no wheels, and hence, we have $R(S_n(3), W_6) \ge 2n - 1$, $R(S_n(2, 1), W_6) \ge 2n - 1$, and $R(S_n(1, 2), W_6) \ge 2n - 1$.

Let G be a graph of order 2n-1. Suppose \overline{G} contains no W_6 . By Theorem B, G contains a star S_{n-1} . Let T be an S_{n-1} with the center v_0 and $N_T(v_0) = V = \{v_1, \ldots, v_{n-2}\}$. Set U = V(G) - V(T). Obviously, |U| = n. If $\delta(G[U]) \ge n-3$, then by Lemma 3, G contains $S_n(3)$, $S_n(2,1)$ and if $n \not\equiv 0 \pmod{3}$, then $G \neq K_{3,3,\ldots,3}$ which implies G contains $S_n(1,2)$. Thus, we may assume

$$\delta(G[U]) \le n - 4. \tag{1}$$

By Lemma 2 and (1), we have $E(U, V) \neq \emptyset$. Assume without loss of generality that $N_U(v_1) \neq \emptyset$, say $u_1 \in N_U(v_1)$.

We first show $R(S_n(3), W_6) \leq 2n-1$. If G contains no $S_n(3)$, then we have $N_V(v_1) = \emptyset$ and $d_U(v_i) \leq 1$ for any $v_i \in V$. Thus, since $n \geq 6$, there are three vertices $u_2, u_3, u_4 \in U - \{u_1\}$ such that $d_V(u_i) \leq 1$ for $2 \leq i \leq 4$ which implies $\overline{G}[v_1, v_2, v_3, v_4, u_2, u_3, u_4]$ contains a W_6 with the hub v_1 , a contradiction. Thus, we have $R(S_n(3), W_6) \leq 2n-1$, and hence, $R(S_n(3), W_6) = 2n-1$.

Next, we show $R(S_n(2,1), W_6) \leq 2n-1$. Suppose to the contrary G contains no $S_n(2,1)$. If $d_U(v_1) \geq 2$, then $N_U(v_i) = \emptyset$ for $2 \leq i \leq n-2$ since otherwise G contains an $S_n(2,1)$. By Lemma 2, we have $\delta(G[U]) \geq n-3$ which contradicts (1), and hence, we have $N_U(v_1) = \{u_1\}$. In this case, we have $N_U(v_i) \subseteq \{u_1\}$ for $2 \leq i \leq n-2$, and hence, $\delta(G[V]) \geq (n-2)-3 \geq 1$ by Lemma 2. If $G[V - \{v_1\}]$ contains an edge, then G contains an $S_n(2,1)$, and hence, $V - \{v_1\}$ is an independent set. Thus, since $\delta(G[V]) \geq 1$, we have $v_1v_i \in E(G)$ for $2 \leq i \leq n-2$ which implies $N_U(v_i) = \emptyset$ for $2 \leq i \leq n-2$ since otherwise G contains an $S_n(2,1)$. Noting that $n \geq 6$, we have $|V - \{v_1\}| \geq 3$. By Lemma 2, we have $\delta(G[U]) \geq n-3$ which contradicts (1). Thus, we have $R(S_n(2,1), W_6) \leq 2n-1$, and hence, $R(S_n(2,1), W_6) = 2n-1$.

Finally, we show $R(S_n(1,2), W_6) \leq 2n-1$ for $n \not\equiv 0 \pmod{3}$. If G contains no $S_n(1,2)$, then we have

$$N_U(v_i) \cap N_U(v_j) = \emptyset, \quad \text{for all } v_i, v_j \in V \quad \text{and} \quad i \neq j,$$

$$(2)$$

$$N_V(v_i) = \emptyset, \quad \text{if } N_U(v_i) \neq \emptyset, \quad \text{for each } v_i \in V,$$
(3)

and

$$N_U(u) = \emptyset, \quad \text{if } u \in N_U(v_i), \text{ for some } v_i \in V.$$
 (4)

CLAIM 1. $d_U(v) \leq 2$ for each $v \in V$.

PROOF. Suppose that $d_U(v) \geq 3$ for some $v \in V$ and let $W = \{w_1, w_2, w_3\} \subseteq N_U(v)$. By (4), W is an independent set. Let $Z = \{z_1, z_2, z_3\} \subseteq V - \{v\}$. Then $E(Z, W) = \emptyset$ by (2). If $N_U(z_i) = \emptyset$ for i = 1, 2, 3, then by Lemma 2, we have $\delta(G[U]) \geq n - 3$ which contradicts (1). Thus, without loss of generality, we may assume that $N_U(z_1) \neq \emptyset$. Thus, by (3) we must have $N_V(z_1) = N_V(v) \neq \emptyset$. We then see that $\overline{G}[z_1, z_2, z_3, v, w_1, w_2, w_3]$ contains a wheel W_6 with hub z_1 , a contradiction.

Since $n \ge 6$, by Claim 1, we can choose three vertices, say $u_2, u_3, u_4 \in U - \{u_1\}$ such that $|N(v_i) \cap \{u_2, u_3, u_4\}| \le 1$ for i = 2, 3, 4. Thus, by (2) and (4), we can see $\tilde{G}[v_2, v_3, v_4, u_1, u_2, u_3, u_4]$ contains a W_6 with the hub u_1 , a contradiction. This implies $R(S_n(1, 2), W_6) \le 2n-1$, and hence, $R(S_n(1, 2), W_6) = 2n - 1$ for $n \ne 0 \pmod{3}$.

REFERENCES

- 1. G.T. Chen, A result on C₄-star Ramsey number, Discrete Math. 163, 243-246, (1997).
- V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small off diagonal numbers, *Pacific J. Math.* 41, 335-345, (1972).
- 3. G.R.T. Henry, The Ramsey numbers $R(K_2 + \hat{K}_3, K_4)$ and $R(K_1 + C_4, K_4)$, Utilitas Mathematica 41, 181–203, (1992).
- S.P. Radziszowski and J. Xia, Paths, cycles and wheels without antitriangles, Australasian J. Combin. 9, 221-232, (1994).
- Surahmat and E.T. Baskoro, On the Ramsey number of path or star versus W₄ or W₅, In Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17, pp. 174-179, (2001).
- 6. Y.J. Chen, Y.Q. Zhang and K.M. Zhang, The Ramsey numbers of stars versus wheels, European Journal of Combinatorics (to appear).

- 7. Y.J. Chen, Y.Q. Zhang and K.M. Zhang, The Ramsey numbers of paths versus wheels, *Discrete Mathematics*, (submitted).
- E.T. Baskoro, Surahmat, S.M. Nababan and M. Miller, On Ramsey numbers for trees versus wheels of five or six vertices, *Graphs and Combin.* 18, 717–721, (2002).
- 9. J.A. Bondy, Pancyclic graphs, J. Combin. Theory, Ser. B 11, 80-84, (1971).