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Abstract—Let T), denote a tree of order n and W,, a wheel of order m + 1. In a previous paper,
we evaluated the Ramsey number R(T,, Wy,) in the cases where T}, is the star of order n and m = 6
or m is odd and n > m — 1 > 2. In this paper, we determine R(Ty,Ws) in the case where the
maximum degree of T}, is at least n — 3. Our results show that a recent conjecture of Baskoro et al.
is false. © 2004 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

All graphs considered in this paper are finite simple graphs without loops. For two given
graphs G and Gy, the Ramsey number R(G1,G2) is the smallest positive integer n such that for
any graph G of order n, either G contains Gy or G contains G, where G is the complement of G.
Let G be a graph. We use V(G) and E(G) to denote its vertex set and edge set, respectively.
The neighborhood N(v) of a vertex v is the set of vertices adjacent to v in G. The minimum and
mazimum degree of G are denoted by 6(G) and A(G), respectively. For a vertex v € V(G) and a
subgraph H of G, Ny (v) is the set of neighbors of v contained in H, i.e.,, Ny(v) = N@w)NV(H).
We let dg(v) = |Ng(v)|. For § C V(G), G|S] denotes the subgraph induced by S'in G. Let U, V
be two disjoint vertex sets. We use E(U, V) to denote the set of edges between U and V. Let m
be a positive integer. We use mG to denote m vertex disjoint copies of G. A path and a cycle of
order n are denoted by P, and C,,, respectively. A star S,, (n > 3) is a bipartite graph Kin_1.
We use K33, 3 to denote a balanced complete n/3-partite graph of order n = 0 (mod3). A
wheel Wy, = {z} + C,, is a graph of n+1 vertices, that is, a vertex z, called the hub of the wheel,
adjacent to all vertices of C,,. S,(I,m) is a tree of order n obtained from S, _;xn, by subdividing
each of [ chosen edges m times. S,(l) is a tree of order n obtained from an S; and an S,_; by
adding an edge joining the centers of them. A graph on n vertices is pancyclic if it contains cycles
of every length [, 3 <1 < n.
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Many Ramsey numbers concerning wheel or star have been established, see for instance [1-4].
Recently, the following Ramsey numbers were obtained.

THEOREM A. (See [5].) R(Sp,Wy) =2n ~1 for n > 3 and odd; R(S,, W4) =2n+1forn>4
and even; R(S,, W5) =3n—2 forn > 4.

THEOREM B. (See [6].) R(Sn,Ws) =2n+1 for n > 3.
THEOREM C. (See [6].) R(S,,Wp,)=3n—2formoddandn>m-12>2.

THEOREM D. (See [7].) R(P,,Wy,) =3n—2formoddandn >m—12>2; R(P,,W,,) =2n—1
form evenandn>m—12> 3.

THEOREM E. (See [8].) Let T,, be a tree of order n other than S,,. Then R(T,,W,) =2n—1
forn > 3; R(1,,,W5) =3n~—2 for n > 4.

Motivated by Theorem E, Baskoro et al. furthermore posed in [§] the following.

CoNJECTURE 1. Let T,, be a tree other than S,, and n > m — 1. Then R(T,,W,,) =2n —1 for
m > 6 even; R(T,,W,,) = 3n — 2 for m > 7 and odd.

In this paper, we consider the Ramsey numbers R(T,,, W) for A(T,,) 2 n—3. fA(T,) > n—3
and T}, # Sy, then T}, is isomorphic to one of the trees S,(1,1), Sn(1,2), Sn(2,1), or S,(3). The
main results of this paper are the following.

THEOREM 1. R(S,(1,1),Ws) =2n forn > 4.
THEOREM 2. R(S,(1,2),Ws) = 2n for n > 6 and n =0 (mod 3).

THEOREM 3. R(S,(3),Ws) = R(Sn(2,1),Ws) = 2n — 1 for n > 6; R(S,(1,2),Ws) = 2n — 1 for
n > 6 and n # 0 (mod 3).

REMARK. By Theorems 1 and 2, we can see that Conjecture 1 is not true when m = 6. In fact,
if m is even, then R(Sn(1,1), W;,) is a function related to both n and m as can be seen by the
following examples.

Let m > 6 be an even integer, n = km/2 + 3, where k > 2 is an integer, and G = H U K,_3,
where H = (k + 1)K,,/2. Obviously, G is a graph of order 2n +m/2 — 4. Since A(H)=km/2 =
n —3 and A(Sn(1,1)) = n — 2, we can see that G contains no S,(1,1). On the other hand, it is
not difficult to check that G contains no W,,,. Thus, we have R(S,(1,1),W,,) > 2n+m/2 -3 if
n = km/2 + 3 for some integer k > 2.

In general, by modifying the examples above, we can show for even m, R(T,, W,,) is a function
related to both n and m if A(T},) is large enough. By Theorem D, we believe R(T},, Wp,) = 2n—1
for m even and n > m — 1 if A(T,) is small.

PROBLEM 1. Characterize trees T,, with R(T,,, W,,) = 2n — 1 for m even and n > m — 1.

2. SOME LEMMAS

In order to prove our results, we need the following lemmas.

LEMMA 1. (See [9].) Let G be a graph of order n. If §(G) > n/2, then either G is pancyclic or n
is even and G = Kp /o n/2-

LEMMA 2. Let G be a graph of order 2n —1 > 7 and (U, V) a partition of V(G) with |U} > 3
and |V| > 4. Suppose u; € U and Ny (u;) = 0, where 1 < i < 3. If G contains no Ws, then
S(G[V]) = |V] - 3.

PROOF. If there is some vertex v € V such that dy(v) < [V]|— 4, say vi,v2,u3 € V and
v1,v2,vs € Ny (v), then Gv, v1,ve, s, u1, ug, ug] contains a We with the hub v, a contradiction. 1
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LeEMMA 3. Let G be a graph of order n > 6 with 6(G) > n — 3. Then G contains S,(3) and
Sn(2,1). Furthermore, if G # K33, 3, then G contains Sp(1,2).

ProOOF. We first show G contains an S,(3). Since §(G) > n—3, G contains a tree T' = S,,_5 with
the center vg. Set V(G) -V (T) =U = {uq,uz}. If N(up) VN (ug) N Np(vg) # 0, then G contains
an S,(3). Hence, we may assume N(uj) N N(uz) N Np(vog) = @. Thus, if uy,us € N(vg) or
uyug ¢ E(G), then since §(G) > n—3, we have 2(n—3) < d(uq) +d(ug) < n—3+2 which implies
n < 5, a contradiction. Hence, we may assume vouy, uius € E(G). Noting that §(G) > n—3 and
n > 6, we have d(u;) > 3 which implies N(uy) N Np(vo) # 0, and hence G contains an Sy, (3).

Next, we show G contains an S,(2,1). Let T be an S,(3) in G with V(T') = {vo,v1,...,Vn-3,
ur,ug} and E(T) = {vov; | 1 €1 < n—3}U{viug,viua}. I N(u) NV (Nr(ve) — {v1}) # @ for some
i € {1,2}, then G contains an S,(2,1). Hence, we may assume N{(u;) N (Np(vg) ~ {v1}) = @ for
i = 1,2 which implies ugvo € E(G) since d(uy) > 3. Noting that d(vg) > 3, there is some vertex
v € {v3,v4,...,Vn—3} such that vvy € E(G) which implies G contains an S,(2,1).

Finally, we show G contains an S,(1,2) if G # K33 . 3. If A(G) > n ~2, then G contains a
star Sp—1. Let T be astar S,_; with the center v and V(G)—V (T) = {u}. Since d(u) > 3, we have
|N(uw)NN7(v)| > 2, and hence G contains an S, (1,2). Thus, we may assume A(G) = §(G) = n—3.
Let v be any vertex in V(G) and V(G)—Nv] = {u1,us}. If ujus € E(G), then since d(u;) > 3, we
have N(u1) N N(v) # 0, and hence, G contains an S,,(1,2). Thus, V(G)— N(v) is an independent
set for any v € V(G) which implies G = K33 . 3. (]

3. PROOFS OF THEOREMS

ProOF OF THEOREM 1. The example G = H U K,,_; shows that R(S,(1,1), Ws) > 2n, where
H=C,ifn#6and H=2C5 if n = 6. We first consider the case n > 5. Assume that G is a
graph of order 2n such that S,(1,1) ¢ G and Ws ¢ G. Let u be a vertex of degree A(G) and
Ng(u) =U. Set W = V(G) — ({u} UU). If A(G) =n —1, then S,(1,1) ¢ G implies U is an
independent set and E(U, W) = (. But then we may take four vertices from U and three from W
and find a Ws in G, a contradiction. By Theorem B, we are left to consider the case in which
A(G) =n —2. As in the preceding case, E(U, W) = §. Consider G[W]. If some vertex therein
has degree at least three, then this vertex as the hub together with three appropriate vertices
from W and three arbitrary vertices from U give a Ws in G, a contradiction. Hence, GW] is
regular of degree n — 2. To see this is impossible, pick two nonadjacent vertices in G[W], say v
and w. Since 2(n — 1) > n, their neighborhoods have a nonempty intersection, thus producing
Sn(1,1) C G, a contradiction. As for the case n = 4, we leave it to the reader. 1

PROOF OF THEOREM 2. Let G be a graph of order 2n. Suppose G contains no Wg. By The-
orem 1, G contains an Sp(1,1). Let T be an S,(1,1) with V(T) = {vo,v1,...,vn-1} and
E(T) = {vov; | 1 < i <n—2}U{vivn_1}. Set U = V(G) = V(T). Obviously, |U| = n.
If G contains no S,(1,2), then N(vn_1) C {vo,v1}. If A(G[U]) < 1, then since n > 6, we
have §(G[U]) > n — 2 > n/2 which implies G[U] contains a Cg by Lemma 1, and hence, G
contains a W with the hub v,_;, a contradiction. Thus, we have A(G[U]) > 2, which implies
G[U] contains a Ps;. Let P = ujuous be a P3 in G[U]. Since G contains no S,.(1,2), we have
uv; ¢ E(G) for 1 < i <3 and 2 < j < 4. Thus, noting that N(v,_1) C {vg,v1}, we can
see G[’l}n_l,Uj[,UQ,U3,’IJ2,’L)3,U4] contains a Wg with hub v,_1, a contradiction. Thus, we have
R(Sn(1,2),Ws) < 2n. On the other hand, since n = 0 (mod 3), the graph K,,_; UKj33 . 3 shows
R(Sn(1,2),Ws) > 2n, and hence, we have R(S,(1,2), Ws) = 2n. 1
ProOOF OF THEOREM 3. Obviously, 2K,_1 contains no tree of order n and its complement
contains no wheels, and hence, we have R(S,(3),Ws) > 2n — 1, R(S,(2,1),Ws) > 2n — 1, and
R(S,(1,2),Ws) > 2n — 1.

Let G be a graph of order 2n — 1. Suppose G contains no Wy. By Theorem B, G contains
a star S,_1. Let T be an S,_; with the center vy and Nr(w) =V = {v1,...,vn—2}. Set
U =V(G) - V(T). Obviously, |[U| =n.
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If 6(G[U]) 2 n — 3, then by Lemma 3, G contains S,(3), Sn(2,1) and if n % 0 (mod 3), then
G # K3 .. 3 which implies G contains S.(1,2). Thus, we may assume

S(GU])<n—4 (1)

By Lemma 2 and (1), we have E(U, V) # §. Assume without loss of generality that Ny(vy) #£9,
say w1 € Ny (vy). : ,

We first show R(S.(3), Ws) < 2n — 1. If G contains no S,(3), then we have Ny (v;) = and
dy(vi) < 1 for any v; € V. Thus, since n > 6, there are three vertices ug, us, uq € U — {u1} such
that dy (ug) < 1 for 2 < ¢ < 4 which implies (?[vl,vg,vg,v4v, Ug, Uz, Ug) contains a We with the
hub vy, a contradiction. Thus, we have R(Sy(3), Ws) < 2n—1, and hence, R(S,(3), We) = 2n—1.

Next, we show R(S,(2,1),Ws) < 2n — 1. Suppose to the contrary G contains no S5.(2,1).
If dy(v1) 2 2, then Ny(v;) = @ for 2 < ¢ < n — 2 since otherwise G contains an S,(2,1). By
Lemma. 2, we have §(G[U]) > n — 3 which contradicts (1), and hence, we have Ny (v1) = {u;}.
In this case, we have Ny (v;) C {u;} for 2 < i < n —2, and hence, §(G[V]) > (n ~2) -3 > 1
by Lemma 2. If G[V — {v1}] contains an edge, then G contains an S,(2,1), and hence, V — {v;}
is an independent set. Thus, since §(G[V]) > 1, we have v1v; € E(G) for 2 < i < n— 2 which
implies Ny (v;) = 0 for 2 < i < n — 2 since otherwise G contains an 5,,(2,1). Noting that n > 6,
we have |V — {v1}| > 3. By Lemma 2, we have §(G[U]) > n — 3 which contradicts (1). Thus, we
have R(S,(2,1), Ws) < 2n — 1, and hence, R(S,(2,1),Ws) = 2n — 1.

Finally, we show R(S,(1,2), Ws) < 2n — 1 for n % 0 (mod 3). If G contains no S,(1,2), then
we have

Ny (v;) N Ny(vj) = 0, for all v;,v; €V and i #j, (2)
Ny (vi) =0, if Ny(v;) #0, for eachv; €V, (3)

and
Ny(u) =0, if u € Ny(v;), forsome v; € V. (4)

CLAIM 1. dy(v) <2 foreachv e V.

ProoF. Suppose that dy(v) > 3 for some v € V and let W = {w;,ws, w3} C Ny(v). By (4),
W is an independent set. Let Z = {z1,29,23} C V — {v}. Then E(Z, W) = 0 by (2). I
Ny(z;) = 0 for ¢+ = 1,2,3, then by Lemma 2, we have §(G[U]) > n — 3 which contradicts (1).
Thus, without loss of generality, we may assume that Ny(z1) # 0. Thus, by (3) we must have
Nyv(z1) = Ny(v) # 0. We then see that G[zy, 23, 23,v, w1, wa, ws] contains a wheel W with
hub z;, a contradiction. 1

Since n > 6, by Claim 1, we can choose three vertices, say ug,us,uq € U ~ {u1} such that
[N (vi)N{uz,us,ua}| < 1fori=2,3,4. Thus, by (2) and (4), we can see G[va, v3,v4, U1, Uz, Us, U4
contains a Wg with the hub u;, a contradiction. This implies R(Sn(1,2), Ws) < 2n—1, and hence,
R(5,(1,2),Wg) = 2n — 1 for n £ 0 (mod 3). [ ]
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