DISCRETE
MATHEMATICS

Note

The Ramsey numbers of paths versus wheels ${ }^{\text {is }}$

Yaojun Chen ${ }^{1}$, Yunqing Zhang, Kemin Zhang
Department of Mathematics, Nanjing University, Nanjing 210093, China

Received 2 January 2003; received in revised form 20 April 2004; accepted 13 October 2004
Available online 15 December 2004

Abstract

For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer n such that for any graph G of order n, either G contains G_{1} or the complement of G contains G_{2}. Let P_{n} denote a path of order n and W_{m} a wheel of order $m+1$. In this paper, we show that $R\left(P_{n}, W_{m}\right)=2 n-1$ for m even and $n \geqslant m-1 \geqslant 3$ and $R\left(P_{n}, W_{m}\right)=3 n-2$ for m odd and $n \geqslant m-1 \geqslant 2$. © 2004 Elsevier B.V. All rights reserved.

Keywords: Ramsey number; Path; Wheel

All graphs considered in this paper are finite simple graph without loops. For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer n such that for any graph G of order n, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. The neighborhood $N(v)$ of a vertex v is the set of vertices adjacent to v in G and $N[v]=N(v) \cup\{v\}$. The minimum degree of G is denoted by $\delta(G) . C_{n}$ and P_{n} denote a cycle and a path of order n, respectively. A Wheel $W_{n}=\{x\}+C_{n}$ is a graph of $n+1$ vertices, namely, a vertex x, called the $h u b$ of the wheel, adjacent to all vertices of $C_{n} . m K_{n}$ denotes the union of m vertex disjoint K_{n}. The lengths of the longest cycle and path of G are denoted by $c(G)$ and $p(G)$, respectively.

Some results on Ramsey numbers concerning paths or wheels are obtained. See for instance [3,5]. For a survey, see [4]. In [2], Faudree et al. considered the Ramsey numbers for all path-cycle pairs and obtained the following.

[^0]Theorem 1 (Faudree et al. [2]). (1) $R\left(P_{n}, C_{m}\right)=2 n-1$ for m odd and $n \geqslant m-1 \geqslant 2$; (2) $R\left(P_{n}, C_{m}\right)=n+m / 2-1$ for m even and $n \geqslant m-1 \geqslant 3$.

In [6], Surahmat et al. obtained the Ramsey numbers of a path versus W_{4} or W_{5}.
Theorem 2 (Surahmat et al. [6]). (1) $R\left(P_{n}, W_{5}\right)=3 n-2$ for $n \geqslant 4$; (2) $R\left(P_{n}, W_{4}\right)=2 n-1$ for $n \geqslant 3$.

In this paper, we evaluate the Ramsey numbers of paths versus wheels in a more general situation. The main result of this paper is the following.

Theorem 3. (1) $R\left(P_{n}, W_{m}\right)=3 n-2$ for m odd and $n \geqslant m-1 \geqslant 2$; (2) $R\left(P_{n}, W_{m}\right)=2 n-1$ for m even and $n \geqslant m-1 \geqslant 3$.

For the case $n \leqslant m-2$, Zhang et al. have determined all the values of $R\left(P_{n}, W_{m}\right)$ for $n \geqslant\lceil m / 2\rceil$ and established a best possible upper bound for $R\left(P_{n}, W_{m}\right)$ with $n \leqslant\lceil m / 2\rceil-1$. The values of $R\left(P_{n}, W_{m}\right)$ for $n \leqslant\lceil m / 2\rceil-1$ are still not known. It may be difficult to determine the values of $R\left(P_{n}, W_{m}\right)$ for $n \leqslant\lceil m / 2\rceil-1$.

In order to prove Theorem 3, we need the following lemmas.
Lemma 1 (Dirac [1]). Let G be a connected graph of order $n \geqslant 3$ with $\delta(G)=\delta$. Then $p(G) \geqslant \min \{2 \delta, n-1\}$.

Lemma 2. Let G be a graph with $|G| \geqslant R\left(P_{n}, C_{m}\right)+1$. If there is a vertex $v \in V(G)$ such that $|N[v]| \leqslant|G|-R\left(P_{n}, C_{m}\right)$ and G contains no P_{n}, then \bar{G} contains a W_{m}.

Proof. Let $G^{\prime}=G-N[v]$, then $\left|G^{\prime}\right| \geqslant R\left(P_{n}, C_{m}\right)$. Since G contains no P_{n}, we can see G^{\prime} contains no P_{n} which implies $\overline{G^{\prime}}$ contains a C_{m} and hence \bar{G} contains a W_{m} with the hub v.

Proof of Theorem 3. Let G be a graph with $|G| \geqslant R\left(P_{n}, C_{m}\right)+1$ and H a maximum component of G. Suppose to the contrary neither G contains a P_{n} nor \bar{G} contains a W_{m}. By Lemma 2, we may assume $|N[v]| \geqslant|G|-R\left(P_{n}, C_{m}\right)+1$ for any vertex $v \in V(G)$ and hence

$$
\begin{equation*}
\delta(G) \geqslant|G|-R\left(P_{n}, C_{m}\right) . \tag{*}
\end{equation*}
$$

(1) If $|G|=3 n-2, m$ is odd and $n \geqslant m-1 \geqslant 2$, then by Theorem 1(1) and (*), we have $\delta(G) \geqslant n-1$ which implies $|H| \geqslant n$. Thus, since $n \geqslant 3$, we have $p(G) \geqslant p(H) \geqslant \min \{2(n-$ 1), $|H|-1\} \geqslant n-1$ by Lemma 1 and hence G contains a P_{n}, a contradiction. Thus $R\left(P_{n}, W_{m}\right) \leqslant 3 n-2$. Noting that $G=3 K_{n-1}$ contains no P_{n} and \bar{G} contains no W_{m} for m is odd, we have $R\left(P_{n}, W_{m}\right) \geqslant 3 n-2$ and hence $R\left(P_{n}, W_{m}\right)=3 n-2$.
(2) If $|G|=2 n-1, m$ is even and $n \geqslant m-1 \geqslant 3$, then by Theorem 1(2) and (*), we have $\delta(G) \geqslant n-m / 2$. If $|H| \geqslant n$, then since $n \geqslant m-1$, we have $p(G) \geqslant p(H) \geqslant \min \{2(n-$ $m / 2),|H|-1\} \geqslant n-1$ by Lemma 1 and hence G contains a P_{n}. Thus we may assume $|H| \leqslant n-1$ which implies G contains at least three components since $|G|=2 n-1$. For any
component H^{\prime} of G, since $\delta(G) \geqslant n-m / 2$ and $n \geqslant m-1$, we have $\left|H^{\prime}\right| \geqslant m / 2$. Thus we can see \bar{G} contains a W_{m} and hence $R\left(P_{n}, W_{m}\right) \leqslant 2 n-1$. Since $G=2 K_{n-1}$ contains no P_{n} and \bar{G} contains no wheels, we have $R\left(P_{n}, W_{m}\right) \geqslant 2 n-1$ and hence $R\left(P_{n}, W_{m}\right)=2 n-1$. The proof of Theorem 3 is completed.

We thank the anonymous referees for their many helpful comments.

References

[1] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[2] R.J. Faudree, S.L. Lawrence, T.D. Parsons, R.H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974) 269-277.
[3] H. Harborth, I. Mengersen, All Ramsey number for five vertices and seven or eight edges, Discrete Math. 73 (1988/1989) 91-98.
[4] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2004) DS1.10.
[5] S.P. Radziszowski, J. Xia, Paths, cycles and wheels without antitriangles, Austral. J. Combin. 9 (1994) 221-232.
[6] Surahmat, E.T. Baskoro, On the Ramsey number of path or star versus W_{4} or W_{5}, Proceedings of the 12 th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, 14-17 July 2001, pp. 174-179.

[^0]: ${ }^{2}$ This project was supported by NSFC under grant number 10201012.
 ${ }^{1}$ This project was partially supported by Nanjing University Talent Development Foundation.
 E-mail address: yaojunc@nju.edu.cn (Y. Chen).

