

Available online at www.sciencedirect.com

Discrete Mathematics 290 (2005) 85-87

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

The Ramsey numbers of paths versus wheels $\stackrel{\leftrightarrow}{\sim}$

Yaojun Chen¹, Yunqing Zhang, Kemin Zhang

Department of Mathematics, Nanjing University, Nanjing 210093, China

Received 2 January 2003; received in revised form 20 April 2004; accepted 13 October 2004 Available online 15 December 2004

Abstract

For two given graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer *n* such that for any graph *G* of order *n*, either *G* contains G_1 or the complement of *G* contains G_2 . Let P_n denote a path of order *n* and W_m a wheel of order m + 1. In this paper, we show that $R(P_n, W_m) = 2n - 1$ for *m* even and $n \ge m - 1 \ge 3$ and $R(P_n, W_m) = 3n - 2$ for *m* odd and $n \ge m - 1 \ge 2$. © 2004 Elsevier B.V. All rights reserved.

Keywords: Ramsey number; Path; Wheel

All graphs considered in this paper are finite simple graph without loops. For two given graphs G_1 and G_2 , the *Ramsey number* $R(G_1, G_2)$ is the smallest integer *n* such that for any graph *G* of order *n*, either *G* contains G_1 or \overline{G} contains G_2 , where \overline{G} is the complement of *G*. The *neighborhood* N(v) of a vertex *v* is the set of vertices adjacent to *v* in *G* and $N[v] = N(v) \cup \{v\}$. The *minimum degree* of *G* is denoted by $\delta(G)$. C_n and P_n denote a cycle and a path of order *n*, respectively. A *Wheel* $W_n = \{x\} + C_n$ is a graph of n + 1 vertices, namely, a vertex *x*, called the *hub* of the wheel, adjacent to all vertices of $C_n \cdot mK_n$ denotes the union of *m* vertex disjoint K_n . The lengths of the longest cycle and path of *G* are denoted by c(G) and p(G), respectively.

Some results on Ramsey numbers concerning paths or wheels are obtained. See for instance [3,5]. For a survey, see [4]. In [2], Faudree et al. considered the Ramsey numbers for all path-cycle pairs and obtained the following.

 $[\]stackrel{\text{tr}}{\sim}$ This project was supported by NSFC under grant number 10201012.

¹ This project was partially supported by Nanjing University Talent Development Foundation. *E-mail address:* yaojunc@nju.edu.cn (Y. Chen).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2004.10.017

Theorem 1 (*Faudree et al.* [2]). (1) $R(P_n, C_m) = 2n - 1$ for *m* odd and $n \ge m - 1 \ge 2$; (2) $R(P_n, C_m) = n + m/2 - 1$ for *m* even and $n \ge m - 1 \ge 3$.

In [6], Surahmat et al. obtained the Ramsey numbers of a path versus W_4 or W_5 .

Theorem 2 (Surahmat et al. [6]). (1) $R(P_n, W_5) = 3n - 2$ for $n \ge 4$; (2) $R(P_n, W_4) = 2n - 1$ for $n \ge 3$.

In this paper, we evaluate the Ramsey numbers of paths versus wheels in a more general situation. The main result of this paper is the following.

Theorem 3. (1) $R(P_n, W_m) = 3n - 2$ for *m* odd and $n \ge m - 1 \ge 2$; (2) $R(P_n, W_m) = 2n - 1$ for *m* even and $n \ge m - 1 \ge 3$.

For the case $n \le m - 2$, Zhang et al. have determined all the values of $R(P_n, W_m)$ for $n \ge \lceil m/2 \rceil$ and established a best possible upper bound for $R(P_n, W_m)$ with $n \le \lceil m/2 \rceil - 1$. The values of $R(P_n, W_m)$ for $n \le \lceil m/2 \rceil - 1$ are still not known. It may be difficult to determine the values of $R(P_n, W_m)$ for $n \le \lceil m/2 \rceil - 1$.

In order to prove Theorem 3, we need the following lemmas.

Lemma 1 (*Dirac* [1]). Let G be a connected graph of order $n \ge 3$ with $\delta(G) = \delta$. Then $p(G) \ge \min\{2\delta, n-1\}$.

Lemma 2. Let G be a graph with $|G| \ge R(P_n, C_m) + 1$. If there is a vertex $v \in V(G)$ such that $|N[v]| \le |G| - R(P_n, C_m)$ and G contains no P_n , then \overline{G} contains a W_m .

Proof. Let G' = G - N[v], then $|G'| \ge R(P_n, C_m)$. Since *G* contains no P_n , we can see *G'* contains no P_n which implies $\overline{G'}$ contains a C_m and hence \overline{G} contains a W_m with the hub v. \Box

Proof of Theorem 3. Let *G* be a graph with $|G| \ge R(P_n, C_m) + 1$ and *H* a maximum component of *G*. Suppose to the contrary neither *G* contains a P_n nor \overline{G} contains a W_m . By Lemma 2, we may assume $|N[v]| \ge |G| - R(P_n, C_m) + 1$ for any vertex $v \in V(G)$ and hence

$$\delta(G) \ge |G| - R(P_n, C_m). \tag{(*)}$$

(1) If |G| = 3n - 2, *m* is odd and $n \ge m - 1 \ge 2$, then by Theorem 1(1) and (*), we have $\delta(G) \ge n - 1$ which implies $|H| \ge n$. Thus, since $n \ge 3$, we have $p(G) \ge p(H) \ge \min\{2(n - 1), |H| - 1\} \ge n - 1$ by Lemma 1 and hence *G* contains a P_n , a contradiction. Thus $R(P_n, W_m) \le 3n - 2$. Noting that $G = 3K_{n-1}$ contains no P_n and \overline{G} contains no W_m for *m* is odd, we have $R(P_n, W_m) \ge 3n - 2$ and hence $R(P_n, W_m) = 3n - 2$.

(2) If |G| = 2n - 1, *m* is even and $n \ge m - 1 \ge 3$, then by Theorem 1(2) and (*), we have $\delta(G) \ge n - m/2$. If $|H| \ge n$, then since $n \ge m - 1$, we have $p(G) \ge p(H) \ge \min\{2(n - m/2), |H| - 1\} \ge n - 1$ by Lemma 1 and hence *G* contains a P_n . Thus we may assume $|H| \le n - 1$ which implies *G* contains at least three components since |G| = 2n - 1. For any

component H' of G, since $\delta(G) \ge n - m/2$ and $n \ge m - 1$, we have $|H'| \ge m/2$. Thus we can see \overline{G} contains a W_m and hence $R(P_n, W_m) \le 2n - 1$. Since $G = 2K_{n-1}$ contains no P_n and \overline{G} contains no wheels, we have $R(P_n, W_m) \ge 2n - 1$ and hence $R(P_n, W_m) = 2n - 1$.

The proof of Theorem 3 is completed. $\hfill\square$

We thank the anonymous referees for their many helpful comments.

References

- [1] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
- [2] R.J. Faudree, S.L. Lawrence, T.D. Parsons, R.H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974) 269–277.
- [3] H. Harborth, I. Mengersen, All Ramsey number for five vertices and seven or eight edges, Discrete Math. 73 (1988/1989) 91–98.
- [4] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2004) DS1.10.
- [5] S.P. Radziszowski, J. Xia, Paths, cycles and wheels without antitriangles, Austral. J. Combin. 9 (1994) 221–232.
- [6] Surahmat, E.T. Baskoro, On the Ramsey number of path or star versus W₄ or W₅, Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, 14–17 July 2001, pp. 174–179.