The Ramsey Numbers $R\left(T_{n}, W_{6}\right)$ for Small n^{*}

Yaojun CHEN \dagger Yunqing ZHANG and Kemin ZHANG
Department of Mathematics, Nanjing University,
Nanjing 210093, P.R. China

Abstract

Let T_{n} denote a tree of order n and W_{m} a wheel of order $m+1$. Baskoro et al. conjectured in [2] that if T_{n} is not a star, then $R\left(T_{n}, W_{m}\right)=2 n-1$ for $m \geq 6$ even and $n \geq m-1$. We disprove the Conjecture in [6]. In this paper, we determine $R\left(T_{n}, W_{6}\right)$ for $n \leq 8$ which is the first step for us to determine $R\left(T_{n}, W_{6}\right)$ for any tree T_{n}.

Key words: Ramsey number, Tree, Wheel

1. Introduction

All graphs considered in this paper are finite simple graph without loops. For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest positive integer n such that for any graph G of order n, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. Let G be a graph. The neighborhood $N(v)$ of a

[^0]Utilitas Mathematica 67(2005), pp. 269-284
vertex v is the set of vertices adjacent to v in G. The minimum and maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a vertex $v \in V(G)$ and a subgraph H of $G, N_{H}(v)$ is the set of neighbors of v contained in H, i.e., $N_{H}(v)=N(v) \cap V(H)$. We let $d_{H}(v)=\left|N_{H}(v)\right|$. For $S \subseteq V(G), G[S]$ denotes the subgraph induced by S in G. Let U, V be two disjoint vertex set. We use $E(U, V)$ to denote the set of edges between U and V. Let m be a positive integer, we use $m G$ to denote m vertex disjoint copies of G. A path and a cycle of order n are denoted by P_{n} and C_{n} respectively. A Star $S_{n}(n \geq 3)$ is a bipartite graph $K_{1, n-1}$. A Wheel $W_{n}=\{x\}+C_{n}$ is a graph of $n+1$ vertices, that is, a vertex x, called the hub of the wheel, adjacent to all vertices of $C_{n} . S_{n}(l, m)$ is a tree of order n obtained from $S_{n-l \times m}$ by subdividing each of its l edges m times. $S_{n}(l)$ is a tree of order n obtained from an S_{l} and an S_{n-l} by adding an edge joining the centers of them. $S_{n}[l]$ is a tree of order n obtained from an S_{l} and an S_{n-l} by adding an edge joining a vertex of degree one of S_{l} to the center of S_{n-l}. A graph on n vertices is pancyclic if it contains cycles of every length $l, 3 \leq l \leq n$.

Many Ramsey numbers concerning wheel or star have been established, see for instance [3, 7, 8, 9]. Recently, the following Ramsey numbers were obtained.

Theorem A (Surahmat et al. [10]). $R\left(S_{n}, W_{4}\right)=2 n-1$ for $n \geq 3$ and odd; $R\left(S_{n}, W_{4}\right)=2 n+1$ for $n \geq 4$ and even; $R\left(S_{n}, W_{5}\right)=3 n-2$ for $n \geq 4$.

Theorem B (Baskoro et al. [2]). Let T_{n} be a tree of order n other than S_{n}. Then $R\left(T_{n}, W_{4}\right)=2 n-1$ for $n \geq 3 ; R\left(T_{n}, W_{5}\right)=3 n-2$ for $n \geq 4$.

Motivated by Theorem B, Baskoro et al. [2] posed the following conjecture.

Conjecture 1. Let T_{n} be a tree other than S_{n} and $n \geq m-1$. Then
$R\left(T_{n}, W_{m}\right)=2 n-1$ for $m \geq 6$ even; $R\left(T_{n}, W_{m}\right)=3 n-2$ for $m \geq 7$ and odd.

In [6], we consider $R\left(T_{n}, W_{6}\right)$ for $T_{n} \neq S_{n}$ and $\Delta\left(T_{n}\right) \geq n-3$ and obtain the following.

Theorem C (Chen et al. [6]). $R\left(S_{n}(1,1), W_{6}\right)=2 n$ for $n \geq 4$.

Theorem D (Chen et al. [6]). $R\left(S_{n}(1,2), W_{6}\right)=2 n$ for $n \geq 6$ and $n \equiv 0(\bmod 3)$.

Theorem E (Chen et al. [6]). $R\left(S_{n}(3), W_{6}\right)=R\left(S_{n}(2,1), W_{6}\right)=$ $2 n-1$ for $n \geq 6 ; R\left(S_{n}(1,2), W_{6}\right)=2 n-1$ for $n \geq 6$ and $n \not \equiv 0(\bmod$ $3)$.

By Theorems C and D, we can see that Conjecture 1 is not true when m is even. However, we believe that for $n \geq 5$, if $T_{n} \neq S_{n}(1,1)$, $S_{n}(1,2)$, then $R\left(T_{n}, W_{6}\right)=2 n-1$. In order to determine $R\left(T_{n}, W_{6}\right)$ for general tree T_{n}, this paper consider $R\left(T_{n}, W_{6}\right)$ for $n \leq 8$ as the first step. The main result is the following.

Theorem 1. Let T_{n} be a tree of order n other than S_{n} and $5 \leq$ $n \leq 8$. If $T_{n} \neq S_{n}(1,1)$ and $T_{n} \neq S_{n}(1,2)$ for $n \equiv 0(\bmod 3)$, then $R\left(T_{n}, W_{6}\right)=2 n-1$.

2. Some Lemmas

In order to prove Theorem 1, we need the following lemmas.
Lemma 1 (Bondy [1]). Let G be a graph of order n. If $\delta(G) \geq n / 2$, then either G is pancyclic or n is even and $G=K_{n / 2, n / 2}$.

Lemma 2 (Chen et al. [4]). $R\left(P_{n}, W_{m}\right)=2 n-1$ for m even and $n \geq m-1 \geq 3$.

Lemma 3 (Chen et al. [5]). $R\left(S_{n}, W_{6}\right)=2 n+1$ for $n \geq 3$.
Lemma 4 (Chen et al. [6]). Let G be a graph of order $2 n-1 \geq 7$ and (U, W) a partition of $V(G)$ with $|U| \geq 3$ and $|W| \geq 4$. Suppose $u_{i} \in U$ and $N_{W}\left(u_{i}\right)=\emptyset$, where $1 \leq i \leq 3$. If \bar{G} contains no W_{6}, then $\delta(G[W]) \geq|W|-3$.

Lemma 5. Let G be a graph of order 7 and $\delta(G) \geq 4$. Then for any $v \in V(G), G$ contains a tree $T=S_{7}(3,1)$ such that $d_{T}(v)=3$.

Proof. Let $G^{\prime}=G-v$. Then $\delta\left(G^{\prime}\right) \geq 3$ and hence G^{\prime} contains a C_{6} by Lemma 1. Since $d(v) \geq 4$, after an easy check, we can see G contains a tree $T=S_{7}(3,1)$ such that $d_{T}(v)=3$.

Lemma 6. $R\left(S_{n}[4], W_{6}\right)=2 n-1$ for $n \geq 8$.
Proof. Let G be a graph of order $2 n-1$. If \bar{G} contains no W_{6}, then G contains an $S_{n}(3)$ by Theorem E. Let T be an $S_{n}(3)$ with $V(T)=V_{0} \cup W$, where $V_{0}=\left\{v_{0}, v_{1}, \ldots, v_{n-3}\right\}, W=\left\{w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq n-3\right\} \cup\left\{v_{1} w_{1}, v_{1} w_{2}\right\}$. Set $U=V(G)-V(T)$. If G contains no $S_{n}[4]$, then we have

$$
\begin{equation*}
v_{1} v_{i} \notin E(G) \text { for } 2 \leq i \leq n-3 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for } u \in U \text { with } d_{U}(u) \geq 2, N(u) \cap\left(V_{0}-\left\{v_{0}\right\}\right)=\emptyset \tag{2}
\end{equation*}
$$

Since $|U|=n-1 \geq 7$ and $\bar{G}[U]$ contains no W_{6}, by Lemma $3, G[U]$ contains an S_{3} which implies

$$
\begin{equation*}
\Delta(G[U]) \geq 2 \tag{3}
\end{equation*}
$$

Claim 1. $d_{U}\left(v_{1}\right) \leq n-8$.
Proof. If $d_{U}\left(v_{1}\right) \geq n-7$, then since G contains no $S_{n}[4]$, we have $\Delta\left(G\left[V_{0}-\left\{v_{0}, v_{1}\right\}\right]\right) \leq 1$. If there are two vertices $u_{1}, u_{2} \in U$ such that $d_{U}\left(u_{i}\right) \geq 2$ for $i=1,2$, then since $n \geq 8$ we can see $\bar{G}\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, u_{1}, u_{2}\right\}\right]$ contains a W_{6} with the hub v_{1} by (1)
and (2), a contradiction. Thus, by (3), we conclude that there is only one vertex $u \in U$ such that $d_{U}(u) \geq 2$ which implies $N_{U}(u)$ is an independent set. If $d_{U}(u) \geq n-4$, then $N\left(v_{i}\right) \cap N_{U}(u)=\emptyset$ for $i=1,2,3$ since otherwise G contains an $S_{n}[4]$. Thus, since $n \geq 8$, $\bar{G}\left[\left\{v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]$ contains a W_{6} with the hub u_{1} for any four vertices $u_{1}, u_{2}, u_{3}, u_{4} \in N_{U}(u)$, a contradiction. Hence we have $d_{U}(u) \leq n-5$. Let $U^{\prime}=U-N(u)$, then $\left|U^{\prime}\right| \geq 3$. If $G\left[U^{\prime}\right]$ contains an edge, say $u_{1} u_{2} \in E\left(G\left[U^{\prime}\right]\right)$, then $\left|N\left(u_{i}\right) \cap\left(V_{0}-\left\{v_{0}\right\}\right)\right| \leq 1$ for $i=1,2$ since otherwise $G\left[V_{0} \cup\left\{u_{1}, u_{2}\right\}\right]$ contains an $S_{n}[4]$. Thus, noting that $n \geq 8$ and $\Delta\left(G\left[V_{0}-\left\{v_{0}, v_{1}\right\}\right]\right) \leq 1, \bar{G}\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, u_{1}, u\right\}\right]$ contains a W_{6} with the hub u by (1) and (2). Hence we may assume U^{\prime} is an independent set which implies $U-\{u\}$ is an independent set. If $n \geq 9$, then $\bar{G}[U-\{u\}]=K_{n-2}$ and hence $\bar{G}[U]$ contains a W_{6}, a contradiction. If $n=8$, then $|U|=7$ and $d_{U}(u) \leq 3$. It is easy to see $\bar{G}[U]$ contains a W_{6} in this case, again a contradiction.

Let $U^{\prime}=U-N\left(v_{1}\right)$. By Claim 1, we have $\left|U^{\prime}\right| \geq 7$. If $\Delta\left(G\left[U^{\prime}\right]\right) \leq 2$, then by Lemma $1, \bar{G}\left[U^{\prime}\right]$ contains a C_{6} and hence \bar{G} contains a W_{6} with the hub v_{1}, a contradiction. Thus there is some vertex $u \in U^{\prime}$ such that $d_{U^{\prime}}(u) \geq 3$. Assume $\left\{u_{1}, u_{2}, u_{3}\right\} \subseteq N_{U^{\prime}}(u)$. If there is some u_{i} with $1 \leq i \leq 3$ such that $d_{V_{0}}\left(u_{i}\right) \geq 2$, then $G\left[V_{0} \cup\left\{u, u_{i}\right\}\right]$ contains an $S_{n}[4]$. Hence we have $d_{V_{0}}\left(u_{i}\right) \leq 1$. If there is some vertex v_{i} with $2 \leq i \leq n-3$ such that $\left|N\left(v_{i}\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}\right| \geq 2$, then we have $\left|N\left(v_{j}\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}\right| \leq 1$ for any j with $2 \leq j \leq$ $n-3$ and $j \neq i$. Thus, since $n-3 \geq 6$ we can always choose three vertices, say v_{2}, v_{3}, v_{4} such that $\left|N\left(v_{i}\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}\right| \leq 1$ for $2 \leq i \leq 4$. Noting that $d_{V_{0}}\left(u_{i}\right) \leq 1$ for $1 \leq i \leq 3$, we can see that $\bar{G}\left[\left\{u_{1}, u_{2}, u_{3}, v_{2}, v_{3}, v_{4}\right\}\right]$ contains a C_{6} and hence \bar{G} contains a W_{6} with the hub v_{1} by (1), a contradiction. Thus we have $R\left(S_{n}[4], W_{6}\right) \leq 2 n-1$. On the other hand, the graph $G=2 K_{n-1}$ shows $R\left(S_{n}[4], W_{6}\right) \geq 2 n-1$ and hence we have $R\left(S_{n}[4], W_{6}\right)=$ $2 n-1$.

Lemma 7. $R\left(S_{n}(1,3), W_{6}\right)=2 n-1$ for $n \geq 8$.

Proof. Let G be a graph of order $2 n-1$. If \bar{G} contains no W_{6}, then G contains an $S_{n}[4]$ by Lemma 6 . Let T be an $S_{n}[4]$ with $V(T)=V_{0} \cup W$, where $V_{0}=\left\{v_{0}, v_{1}, \ldots, v_{n-4}\right\}, W=\left\{w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq n-4\right\} \cup\left\{v_{1} w_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Let $U=V(G)-V(T)$. If G contains no $S_{n}(1,3)$, then we have

$$
\begin{equation*}
N\left(w_{i}\right) \cap\left(V_{0} \cup U-\left\{v_{0}\right\}\right)=\emptyset \text { for } i=2,3 \tag{4}
\end{equation*}
$$

and if $u \in U$ and $d_{U}(u) \geq 2$, then

$$
\begin{equation*}
N\left(u_{i}\right) \cap\left(V_{0}-\left\{v_{0}\right\}\right)=\emptyset \text { for any } u_{i} \in N_{U}(u) \tag{5}
\end{equation*}
$$

If $\Delta(G[U]) \leq 2$, then since $|U|=n-1 \geq 7, \bar{G}[U]$ contains a C_{6} by Lemma 1 and hence \bar{G} contains a W_{6} with the hub w_{2} by (4), a contradiction. Thus there is some vertex $u \in U$ such that $d_{U}(u) \geq 3$. Assume $\left\{u_{1}, u_{2}, u_{3}\right\} \subseteq N_{U}(u)$. By (4) and (5), we can see $\bar{G}\left[\left\{w_{2}, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub w_{2}, again a contradiction. Thus we have $R\left(S_{n}(1,3), W_{6}\right) \leq 2 n-1$. On the other hand, the graph $G=2 K_{n-1}$ shows $R\left(S_{n}(1,3), W_{6}\right) \geq 2 n-1$ and hence we have $R\left(S_{n}(1,3), W_{6}\right)=2 n-1$.

Lemma 8. $R\left(S_{n}(3,1), W_{6}\right)=2 n-1$ for $n \geq 8$.
Proof. Let G be a graph of order $2 n-1$. If \bar{G} contains no W_{6}, then by Theorem E, G contains an $S_{n}(2,1)$. Let $T=S_{n}(2,1)$ with $V(T)=V_{0}=\left\{v_{0}, \ldots, v_{n-3}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq\right.$ $n-3\} \cup\left\{v_{1} w_{1}, v_{2} w_{2}\right\}$. Set $U=V(G)-V_{0}$. Obviously, $|U|=n-1 \geq 7$.

If G contains no $S_{n}(3,1)$, then $N_{U}\left(v_{i}\right)=\emptyset$ for $3 \leq i \leq n-3$ and $\left\{v_{3}, \ldots, v_{n-3}\right\}$ is an independent set. If $n \geq 9$, then $\bar{G}\left[\left\{v_{3}, v_{4}, v_{5}, v_{6}\right.\right.$, $\left.\left.u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub v_{3} for any three vertices $u_{1}, u_{2}, u_{3} \in U$, a contradiction. Hence we have $n=8$. By Lemma 4, we have $\delta(G[U]) \geq 4$. By Lemma 5 , we have $N_{V_{0}}(u)=\emptyset$ for any $u \in U$ which implies $\delta\left(G\left[V_{0}\right]\right) \geq 5$ by Lemma 4 . Noting that $\left\{v_{3}, v_{4}, v_{5}\right\}$ is an independent set, we have $\left\{v_{1}, w_{1}\right\} \subseteq N\left(v_{3}\right) \cap N\left(v_{4}\right)$ which implies G contains an $S_{n}(3,1)$, a contradiction. Thus we have $R\left(S_{n}(3,1), W_{6}\right) \leq 2 n-1$. On the other hand, the graph $G=2 K_{n-1}$
shows $R\left(S_{n}(3,1), W_{6}\right) \geq 2 n-1$ and hence we have $R\left(S_{n}(3,1), W_{6}\right)=$ $2 n-1$.
3. The Ramsey Numbers $R\left(T_{n}, W_{6}\right)$ for $\Delta\left(T_{n}\right)=3$ and $n=7$

In this section, we determine $R\left(T_{n}, W_{6}\right)$ for $n=7$ and $\Delta\left(T_{n}\right)=3$.
Theorem 2. $R\left(T_{n}, W_{6}\right)=13$ for $n=7$ and $\Delta\left(T_{n}\right)=3$.
Proof. Let T be tree with order 7 and $\Delta(T)=3$, then it is not difficult to see T must be isomorphic to one of the five trees of order 7 below.

Thus we need only to show $R\left(T, W_{6}\right)=13$ for $T=T_{7 a}, T_{7 b}, T_{7 c}, T_{7 d}$ and $T_{7 e}$.

Let G be a graph of order 13. Suppose \bar{G} contains no W_{6}. Since $2 K_{6}$ contains no trees of order 7 and its complement contains no W_{6}, we have $R\left(T, W_{6}\right) \geq 13$ for each tree T with $|T|=7$. In the following proof, we need only to prove $R\left(T, W_{6}\right) \leq 13$ for each $T \in$ $\left\{T_{7 a}, T_{7 b}, T_{7 c}, T_{7 d}, T_{7 e}\right\}$.

We first show $R\left(T_{7 a}, W_{6}\right)=R\left(T_{7 c}, W_{6}\right)=13$. By Theorem E, G contains an $S_{7}(1,2)$. Let T be an $S_{7}(1,2)$ in G with $V(T)=V=$ $\left\{v_{0}, \ldots, v_{4}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 4\right\} \cup\left\{v_{1} w_{1}, w_{1} w_{2}\right\}$. Set $U=V(G)-V$. Obviously, $|U|=6$.

If G contains no $T_{7 a}$, then $N\left(w_{2}\right) \cap\left(U \cup\left\{v_{2}, v_{3}, v_{4}\right\}\right)=\emptyset$. If $d_{U}(u) \leq 2$ for each $u \in U$, then $\bar{G}[U]$ contains a C_{6} by Lemma 1 and hence \bar{G} contains a W_{6} with the hub w_{2}, a contradiction.

Thus there is some vertex $u \in U$ such that $d_{U}(u) \geq 3$. Assume $u_{1}, u_{2}, u_{3} \in N_{U}(u)$. Since G contains no $T_{7 a}$, we have $v_{i} u_{j} \notin E(G)$ for $2 \leq i \leq 4$ and $1 \leq j \leq 3$. Thus $\bar{G}\left[\left\{w_{2}, u_{1}, u_{2}, u_{3}, v_{2}, v_{3}, v_{4}\right\}\right]$ contains a W_{6} with the hub w_{2}, a contradiction. Thus we have $R\left(T_{7 a}, W_{6}\right) \leq 13$.

If G contains no $T_{7 c}$, then $N_{U}\left(v_{i}\right)=\emptyset$ for $2 \leq i \leq 4$ and $\left\{v_{2}, v_{3}, v_{4}\right\}$ is an independent set. Thus by Lemma 4, we have $\delta(G[U])$ ≥ 3 which implies $G[U]$ contains a C_{6}. In this case, we have $N_{V}(u)=$ \emptyset for any $u \in U$ since otherwise G contains a $T_{7 c}$. By Lemma 4 , we have $\delta(G[V]) \geq 4$ which implies $N_{V}\left(v_{i}\right)=\left\{v_{0}, v_{1}, w_{1}, w_{2}\right\}$ for $i=2,3,4$ and hence $G[V]$ contains a $T_{7 c}$, a contradiction. Thus we have $R\left(T_{7 c}, W_{6}\right) \leq 13$.

Next, we show $R\left(T_{7 b}, W_{6}\right)=R\left(T_{7 d}, W_{6}\right)=13$. By Theorem E , G contains an $S_{7}(3)$. Let $T=S_{7}(3), V(T)=\left\{v_{0}, \ldots, v_{4}, w_{1}, w_{2}\right\}$, $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 4\right\} \cup\left\{v_{1} w_{1}, v_{1} w_{2}\right\}$. Set $U=V(G)-V(T)$. Obviously, $|U|=6$.

If G contains no $T_{7 b}$, we have $v_{1} v_{i} \notin E(G)$ for $2 \leq i \leq 4$. For any $u \in U$, if $u \in N\left(v_{i}\right)$ for some i with $1 \leq i \leq 4$, then $d_{U}(u) \leq 1$. Thus, if there are three vertices $u_{1}, u_{2}, u_{3} \in U$ such that $d_{U}\left(u_{i}\right) \geq 2$ for $1 \leq i \leq 3$, then $\bar{G}\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub v_{1}, a contradiction. If there is some v_{i} with $2 \leq i \leq 4$ such that $d_{U}\left(v_{i}\right) \geq 2$, then G contains a $T_{7 b}$ and hence we have $d_{U}\left(v_{i}\right) \leq 1$ for $2 \leq i \leq 4$. If $G\left[\left\{v_{2}, v_{3}, v_{4}\right\}\right]$ contains two edges, then G contains a $T_{7 b}$ and hence we may assume $v_{2} v_{3}, v_{2} v_{4} \notin E(G)$. Let $U=\left\{u_{i} \mid 1 \leq\right.$ $i \leq 6\}$. Assume $N_{U}\left(v_{2}\right) \subseteq\left\{u_{1}\right\}$ and $N_{U}\left(v_{3}\right) \cup N_{U}\left(v_{4}\right) \subseteq\left\{u_{1}, u_{2}, u_{3}\right\}$. If $u_{2} \notin N_{U}\left(v_{3}\right) \cup N_{U}\left(v_{4}\right)$, then since U contains at most two vertices with degree not less than 2 , we can see $\bar{G}\left[\left\{u_{2}, u_{4}, u_{5}, u_{6}\right\}\right]$ contains a P_{3}, say $u_{2} u_{4} u_{5}$ is a P_{3}. Then $v_{3} u_{2} u_{4} u_{5} v_{4} u_{6} v_{3}$ is a C_{6} in \bar{G} and hence \bar{G} contains a W_{6} with the hub v_{2}. If $u_{2} \in N_{U}\left(v_{3}\right) \cup N_{U}\left(v_{4}\right)$, then since $d_{U}\left(u_{2}\right) \leq 1$, we may assume $u_{2} u_{4}, u_{2} u_{5} \notin E(G)$ which implies $v_{3} u_{4} u_{2} u_{5} v_{4} u_{6} v_{3}$ is a C_{6} in \bar{G} and hence \bar{G} contains a W_{6} with the hub v_{2}, again a contradiction. Thus we have $R\left(T_{7 b}, W_{6}\right) \leq 13$.

If G contains no $T_{7 d}$, then $N_{U}\left(w_{1}\right)=N_{U}\left(v_{i}\right)=\emptyset$ for $2 \leq i \leq$ 4 and $N\left(w_{1}\right) \cap\left\{v_{2}, v_{3}, v_{4}\right\}=\emptyset$. Thus $\bar{G}\left[\left\{w_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub w_{1} for any three vertices $u_{1}, u_{2}, u_{3} \in U$, a contradiction. Thus we have $R\left(T_{7 d}, W_{6}\right) \leq 13$.

Finally, we show $R\left(T_{7 e}, W_{6}\right)=13$. By Theorem E, G contains an $S_{7}(2,1)$. Let $T=S_{7}(2,1), V(T)=V=\left\{v_{0}, \ldots, v_{4}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 4\right\} \cup\left\{v_{1} w_{1}, v_{2} w_{2}\right\}$. Set $U=V(G)-V$. Obviously, $|U|=6$.

If G contains no $T_{7 e}$, then $N_{U}\left(v_{i}\right)=\emptyset$ for $i=3,4$ and $v_{3} v_{4} \notin$ $E(G)$. If $d_{U}\left(v_{0}\right)=0$, then by Lemma 4 , we have $\delta(G[U]) \geq 3$ which implies $G[U]$ contains a C_{6} by Lemma 1 and hence $N_{V}(u)=\emptyset$ for any $u \in U$ since G contains no $T_{7 e}$. Thus by Lemma 4, we have $\delta(G[V]) \geq 4$. Noting that $v_{3} v_{4} \notin E(G)$, after an easy check, we can see $G[V]$ contains a $T_{7 e}$ and hence we may assume $d_{U}\left(v_{0}\right) \geq 1$.

For any $u \in U$, if $u v_{0} \in E(G)$, then $d_{U}(u)=0$ for otherwise G contains a $T_{7 e}$. If $d_{U}\left(v_{0}\right) \geq 2$, say $u_{1}, u_{2} \in N_{U}\left(v_{0}\right)$, then $\left\{v_{3}, v_{4}, u_{1}, u_{2}\right\}$ is an independent set and for any $u \in U-\left\{u_{1}, u_{2}\right\}$, $N(u) \cap\left\{v_{3}, v_{4}, u_{1}, u_{2}\right\}=\emptyset$. In this case, we can see $\bar{G}\left[\left\{v_{3}, v_{4}, u_{1}, u_{2}\right.\right.$, $\left.u_{3}, u_{4}, u_{5}\right\}$] contains a W_{6} with the hub v_{3} for any three vertices $u_{3}, u_{4}, u_{5} \in U-\left\{u_{1}, u_{2}\right\}$, a contradiction. Hence we may assume $d_{U}\left(v_{0}\right)=1$.

Let $N_{U}\left(v_{0}\right)=\left\{u_{1}\right\}$ and $U^{\prime}=U-\left\{u_{1}\right\}=\left\{u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$. If $G\left[U^{\prime}\right]$ contains a C_{5}, then for any $u \in U^{\prime}, N_{V}(u)=\emptyset$ for otherwise G contains a $T_{7 e}$. By Lemma 4 , we have $\delta(G[V]) \geq 4$. Noting that $v_{3} v_{4} \notin E(G)$, after an easy check, we can see $G[V]$ contains a $T_{7 e}$. Hence we may assume $G\left[U^{\prime}\right]$ contains no C_{5}. By Lemma 1, there is some vertex $u \in U^{\prime}$ such that $d_{U^{\prime}}(u) \leq 2$ which implies $\bar{G}\left[U^{\prime}\right]$ contains a P_{3}, say $u_{2} u_{3} u_{4}$ is a P_{3} in \bar{G}. Then $v_{4} u_{2} u_{3} u_{4} u_{1} u_{5} v_{4}$ is a C_{6} in \bar{G} and hence \bar{G} contains a W_{6} with the hub v_{3}, also a contradiction. Thus we have $R\left(T_{7 e}, W_{6}\right) \leq 13$.

The proof of Theorem 2 is completed.
4. The Ramsey Numbers $R\left(T_{n}, W_{6}\right)$ for $3 \leq \Delta\left(T_{n}\right) \leq 4$ and $n=8$

In this section, we determine $R\left(T_{n}, W_{6}\right)$ for $n=8$ and $3 \leq$ $\Delta\left(T_{n}\right) \leq 4$.

Theorem 3. $R\left(T_{n}, W_{6}\right)=15$ for $n=8$ and $3 \leq \Delta\left(T_{n}\right) \leq 4$.
Proof. Let T be a tree with order 8 and $3 \leq \Delta(T) \leq 4$. Since $2 K_{7}$ contains no trees of order 8 and its complement contains no W_{6}, we have $R\left(T, W_{6}\right) \geq 15$. Thus, in order to prove $R\left(T, W_{6}\right)=15$, we need only to show $R\left(T, W_{6}\right) \leq 15$.

If $T=S_{8}[4]$, then Theorem 3 holds by Lemma 6 . If $T=S_{8}(1,3)$, then Theorem 3 holds by Lemma 7. If $T \neq S_{8}[4], S_{8}(1,3)$, then we have the following.

Proposition 1. Let T be a tree of order 8 with $3 \leq \Delta(T) \leq 4$. If $T \neq S_{8}[4], S_{8}(1,3)$, then T must be isomorphic to one of the fifteen trees of order 8 below.

Let G be a graph of order 15 . Suppose \bar{G} contains no W_{6}. By Proposition 1, we will complete the proof by showing the following theorems.

Theorem 4. $R\left(T, W_{6}\right)=15$ for $T=T_{8 a}, T_{8 b}, T_{8 d}$ or $T_{8 k}$.
Proof. By Theorem E, G contains an $S_{8}(3)$. Let T be an $S_{8}(3)$ with $V(T)=V=\left\{v_{0}, \ldots, v_{5}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq\right.$ $5\} \cup\left\{v_{1} w_{1}, v_{1} w_{2}\right\}$. Set $U=V(G)-V$. Obviously, $|U|=7$.

If G contains no $T_{8 a}$, then $w_{1} v_{i} \notin E(G)$ for $2 \leq i \leq 5$ and $N_{U}\left(w_{1}\right)=\emptyset$. If there is some vertex v_{i} with $2 \leq i \leq 5$ such that $d_{U}\left(v_{i}\right) \geq 2$, say $u_{1}, u_{2} \in N_{U}\left(v_{2}\right)$, then $v_{2} v_{i} \notin E(G)$ for $3 \leq i \leq 5$ and $v_{i} u_{j} \notin E(G)$ for $3 \leq i \leq 5$ and $j=1,2$ since otherwise G contains a $T_{8 a}$. Thus, $\bar{G}\left[\left\{w_{1}, v_{2}, u_{1}, u_{2}, v_{3}, v_{4}, v_{5}\right\}\right]$ contains a W_{6} with the hub w_{1}, a contradiction. Hence we may assume $d_{U}\left(v_{i}\right) \leq 1$ for $2 \leq i \leq 5$ which implies there are three vertices $u_{1}, u_{2}, u_{3} \in U$ such that $v_{i} u_{j} \notin$ $E(G)$ for $2 \leq i \leq 5$ and $1 \leq j \leq 3$. Thus $\bar{G}\left[\left\{w_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub w_{1}, again a contradiction. Hence we have $R\left(T_{8 a}, W_{6}\right) \leq 15$.

If G contains no $T_{8 b}$, then we have $N_{U}\left(v_{1}\right)=\emptyset, v_{1} v_{i} \notin E(G)$ for $2 \leq i \leq 5$ and $d_{U}\left(v_{i}\right) \leq 2$ for $2 \leq i \leq 5$. Thus, since $|U|=7$, we can choose three vertices $u_{1}, u_{2}, u_{3} \in U$ such that $d_{V}\left(u_{i}\right) \leq 1$ for $1 \leq i \leq 3$ and $N_{V}\left(u_{i}\right) \cap N_{V}\left(u_{j}\right)=\emptyset$ for $i, j \in\{1,2,3\}$ and $i \neq j$, and
hence $\bar{G}\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub v_{1}, a contradiction. Thus we have $R\left(T_{8 b}, W_{6}\right) \leq 15$.

If G contains no $T_{8 d}$, then $v_{2} v_{i} \notin E(G)$ for $3 \leq i \leq 5$ and $N_{U}\left(v_{i}\right)=\emptyset$ for $2 \leq i \leq 5$. Thus for any three vertices $u_{1}, u_{2}, u_{3} \in U$, $\bar{G}\left[\left\{v_{2}, v_{3}, v_{4}, v_{5}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub v_{2}, a contradiction. Hence we have $R\left(T_{8 d}, W_{6}\right) \leq 15$.

If G contains no $T_{8 k}$, then $d_{U}\left(v_{i}\right) \leq 1$ for $2 \leq i \leq 5$. Let $V^{\prime}=$ $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Since $|U|=7$, there are three vertices $u_{1}, u_{2}, u_{3} \in U$ such that $N_{V^{\prime}}\left(u_{i}\right)=\emptyset$ for $1 \leq i \leq 3$. If $\delta\left(G\left[V^{\prime}\right]\right)=0$, say $d_{V^{\prime}}\left(v_{2}\right)=0$, then $\bar{G}\left[\left\{v_{2}, v_{3}, v_{4}, v_{5}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub v_{2}, a contradiction. Hence we have $\delta\left(G\left[V^{\prime}\right]\right) \geq 1$. If $\Delta\left(G\left[V^{\prime}\right]\right) \geq 2$, then G contains a $T_{8 k}$. Thus we may assume $E\left(G\left[V^{\prime}\right]\right)=\left\{v_{2} v_{3}, v_{4} v_{5}\right\}$. In this case, we have $N_{U}\left(v_{i}\right)=\emptyset$ for $2 \leq i \leq 5$. By Lemmas 1 and 4 , $G[U]$ contains a C_{7}. If $N_{U}\left(w_{1}\right) \neq \emptyset$ or $\left\{v_{2}, v_{3}\right\} \subseteq N\left(w_{1}\right)$, then G contains a $T_{8 k}$. Hence we may assume $N_{U}\left(w_{1}\right)=\emptyset$ and $v_{2} \notin N\left(w_{1}\right)$. Thus, $\bar{G}\left[\left\{v_{2}, w_{1}, v_{4}, v_{5}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub v_{2} for any three vertices $u_{1}, u_{2}, u_{3} \in U$, a contradiction. Hence we have $R\left(T_{8 k}, W_{6}\right) \leq 15$.

Theorem 5. $R\left(T, W_{6}\right)=15$ for $T=T_{8 c}, T_{8 n}$.
Proof. By Theorem E, G contains an $S_{8}(1,2)$. Let $T=S_{8}(1,2)$ with $V(T)=V=\left\{v_{0}, \ldots, v_{5}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq\right.$ $5\} \cup\left\{v_{1} w_{1}, w_{1} w_{2}\right\}$. Set $V^{\prime}=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $U=V(G)-V$. Obviously, $|U|=7$.

If G contains no $T_{8 c}$, then $v_{2} v_{i} \notin E(G)$ for $3 \leq i \leq 5$ and $N_{U}\left(v_{i}\right)=\emptyset$ for $2 \leq i \leq 5$. Thus for any three vertices $u_{1}, u_{2}, u_{3} \in U$, $\bar{G}\left[\left\{v_{2}, v_{3}, v_{4}, v_{5}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub v_{2}, a contradiction. Hence we have $R\left(T_{8 c}, W_{6}\right) \leq 15$.

Since $|U|=7$ and $\bar{G}[U]$ contains no W_{6}, By Lemma 3, $G[U]$ contains an S_{3}. Assume $u_{1}, u_{2}, u_{3} \in U$ and $u_{1} u_{2}, u_{2} u_{3} \in E(G)$. If G contains no $T_{8 n}$, then $N_{V^{\prime}}\left(u_{i}\right)=\emptyset$ for $1 \leq i \leq 3$. If $\delta\left(G\left[V^{\prime}\right]\right)=$ 0 , say $d_{V^{\prime}}\left(v_{2}\right)=0$, then $\bar{G}\left[\left\{v_{2}, v_{3}, v_{4}, v_{5}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6}
with the hub v_{2}, a contradiction. Hence we have $\delta\left(G\left[V^{\prime}\right]\right) \geq 1$. If $\Delta\left(G\left[V^{\prime}\right]\right) \geq 2$, then G contains a $T_{8 n}$. Thus we may assume $E\left(G\left[V^{\prime}\right]\right)=\left\{v_{2} v_{3}, v_{4} v_{5}\right\}$. In this case, we have $N_{U}\left(v_{i}\right)=\emptyset$ for $2 \leq$ $i \leq 5$. By Lemmas 1 and $4, G[U]$ contains a C_{7} and hence $N_{V}(u)=\emptyset$ for any $u \in U$ since otherwise G contains a $T_{8 n}$. By Lemma 4, we have $\delta(G[V]) \geq 5$ which implies $v_{3} w_{1}, v_{5} w_{2} \in E(G)$ and hence G contains a $T_{8 n}$. Thus we have $R\left(T_{8 n}, W_{6}\right) \leq 15$.

Theorem 6. $R\left(T, W_{6}\right)=15$ for $T=T_{8 f}, T_{8 h}, T_{8 j}, T_{8 l}$.
Proof. By Lemma 7, G contains an $S_{8}(1,3)$. Let T be an $S_{8}(1,3)$ in G with $V(T)=\left\{v_{0}, \ldots, v_{4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq\right.$ $4\} \cup\left\{v_{1} w_{1}, w_{1} w_{2}, w_{2} w_{3}\right\}$. Set $U=V(G)-V$. Obviously, $|U|=7$.

If G contains no $T_{8 f}$, then $w_{3} v_{i} \notin E(G)$ for $2 \leq i \leq 4, N_{U}\left(w_{3}\right)=\emptyset$ and $d_{U}\left(v_{i}\right) \leq 1$ for $2 \leq i \leq 4$. Thus, since $|U|=7$, we can choose three vertices $u_{1}, u_{2}, u_{3} \in U$ such that $v_{i} u_{j} \notin E(G)$ for $2 \leq i \leq 4$ and $1 \leq j \leq 3$ and hence $\bar{G}\left[\left\{w_{3}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub w_{2}, a contradiction. Thus we have $R\left(T_{8 f}, W_{6}\right) \leq 15$.

If G contains no $T_{8 h}$, then $w_{2} v_{i} \notin E(G)$ for $2 \leq i \leq 4$ and $N_{U}\left(w_{2}\right)=\emptyset$. If $\Delta(G[U]) \leq 2$, then since $|U|=7, \bar{G}[U]$ contains a C_{6} by Lemma 1 and hence \bar{G} contains a W_{6} with the hub w_{2}, a contradiction. Hence we may assume $u \in U$ and $u_{1}, u_{2}, u_{3} \in N_{U}(u)$. In this case, we have $v_{i} u_{j} \notin E(G)$ for $2 \leq i \leq 4$ and $1 \leq j \leq 3$ for otherwise G contains a $T_{8 h}$ and hence $\bar{G}\left[\left\{w_{2}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub w_{2}, again a contradiction. Thus we have $R\left(T_{8 h}, W_{6}\right) \leq 15$.

If G contains no $T_{8 j}$, then $v_{1} v_{i} \notin E(G)$ for $2 \leq i \leq 4, N_{U}\left(v_{1}\right)=\emptyset$ and $d_{U}\left(v_{i}\right) \leq 1$ for $2 \leq i \leq 4$. Thus, since $|U|=7$, we can choose three vertices $u_{1}, u_{2}, u_{3} \in U$ such that $v_{i} u_{j} \notin E(G)$ for $2 \leq i \leq 4$ and $1 \leq j \leq 3$ and hence $\bar{G}\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub w_{2}, a contradiction. Thus we have $R\left(T_{8 j}, W_{6}\right) \leq 15$.

If G contains no $T_{8 l}$, then $N_{U}\left(v_{i}\right)=\emptyset$ for $2 \leq i \leq 4$ and $\left\{v_{2}, v_{3}, v_{4}\right\}$ is an independent set. By Lemma 4, we have $\delta(G[U]) \geq 4$
and hence $G[U]$ contains a C_{7} by Lemma 1. In this case, we have $d_{U}(v)=0$ for each $v \in V(T)$ which implies $\delta(G[V]) \geq 5$ by Lemma 4 . Noting that $\left\{v_{2}, v_{3}, v_{4}\right\}$ is an independent set, we have $v_{2} v_{1}, v_{3} w_{3} \in$ $E(G)$ and hence G contains a $T_{8 l}$. Thus we have $R\left(T_{8 l}, W_{6}\right) \leq 15$. I

Theorem 7. $R\left(T_{8 g}, W_{6}\right)=15$.
Proof. By Lemma 6, G contains an $S_{8}[4]$. Let T be an $S_{8}[4]$ with $V(T)=\left\{v_{0}, \ldots, v_{4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq\right.$ $4\} \cup\left\{v_{1} w_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Set $U=V(G)-V(T)$. If G contains no $T_{8 g}$, then $w_{2} v_{i} \notin E(G)$ for $2 \leq i \leq 4, N_{U}\left(w_{2}\right)=\emptyset$ and $d_{U}\left(v_{i}\right)=$ 0 for $2 \leq i \leq 4$. Thus, for any three vertices $u_{1}, u_{2}, u_{3} \in U$, $\bar{G}\left[\left\{w_{2}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub w_{2}, a contradiction. Hence we have $R\left(T_{8 g}, W_{6}\right) \leq 15$.

Theorem 8. $R\left(T_{8 i}, W_{6}\right)=15$.
Proof. By Lemma 8, G contains an $S_{8}(3,1)$. Let T be an $S_{8}(3,1)$ in G with $V(T)=\left\{v_{0}, \ldots, v_{4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq\right.$ $4\} \cup\left\{v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}\right\}$. Set $U=V(G)-V(T)$. Obviously, $|U|=7$. If G contains no $T_{8 i}$, then we have $v_{4} v_{i} \notin E(G)$ for $1 \leq i \leq 3$, $N_{U}\left(v_{i}\right)=\emptyset$ for $1 \leq i \leq 3$ and $d_{U}\left(v_{4}\right) \leq 1$. Thus, since $|U|=7$, there is three vertices $u_{1}, u_{2}, u_{3} \in U$ such that $u_{1}, u_{2}, u_{3} \notin N_{U}\left(v_{4}\right)$ and hence $\bar{G}\left[\left\{v_{4}, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub v_{4}, a contradiction. Thus we have $R\left(T_{8 i}, W_{6}\right) \leq 15$.

Theorem 9. $R\left(T_{8 o}, W_{6}\right)=15$.
Proof. By Theorem 8, G contains a $T_{8 i}$. Let T be a $T_{8 i}$ with $V(T)=\left\{v_{0}, \ldots, v_{3}, w_{1}, \ldots, w_{4}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 3\right\} \cup$ $\left\{v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}, v_{3} w_{4}\right\}$. Set $U=V(G)-V(T)$. If G contains no T_{80}, then we have $w_{4} w_{i} \notin E(G)$ for $1 \leq i \leq 3$ and $N_{U}\left(w_{i}\right)=$ \emptyset for $1 \leq i \leq 4$. Thus, for any three vertices $u_{1}, u_{2}, u_{3} \in U$, $\bar{G}\left[\left\{w_{4}, w_{1}, w_{2}, w_{3}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub w_{4}, a contradiction. Hence we have $R\left(T_{80}, W_{6}\right) \leq 15$.

Theorem 10. $R\left(T_{8 m}, W_{6}\right)=15$.

Proof. By Theorem 4, G contains a $T_{8 a}$. Let T be a $T_{8 a}$ with $V(T)=\left\{v_{0}, \ldots, v_{4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{i} \mid 1 \leq i \leq 4\right\} \cup$ $\left\{v_{1} w_{1}, v_{1} w_{2}, w_{2} w_{3}\right\}$. Set $U=V(G)-V(T)$. Obviously, $|U|=7$. If G contains no $T_{8 m}$, then $\left\{v_{2}, v_{3}, v_{4}\right\}$ is an independent set and $N_{U}\left(v_{i}\right)=\emptyset$ for $2 \leq i \leq 4$. By Lemmas 1 and $4, G[U]$ contains a C_{7}. This implies $N_{U}\left(w_{2}\right)=\emptyset$ for otherwise G contains a $T_{8 m}$. If $\left\{v_{2}, v_{3}, v_{4}\right\} \subseteq N\left(w_{2}\right)$, then G contains a $T_{8 m}$. Hence we may assume $v_{2} w_{2} \notin E(G)$. Thus, for any three vertices $u_{1}, u_{2}, u_{3} \in U$, $\bar{G}\left[\left\{v_{2}, v_{3}, v_{4}, w_{2}, u_{1}, u_{2}, u_{3}\right\}\right]$ contains a W_{6} with the hub v_{2}, a contradiction. Hence we have $R\left(T_{80}, W_{6}\right) \leq 15$.

The proof of Theorem 3 is completed.

5. Proof of Theorem 1

Proof of Theorem 1. If $\Delta\left(T_{n}\right)=2$, then Theorem 1 holds by Lemma 2. Hence we may assume $\Delta\left(T_{n}\right) \geq 3$. If $n=5$, then $T_{5}=$ $S_{5}(1,1)$ and hence Theorem 1 holds. If $n \geq 6$ and $\Delta\left(T_{n}\right) \geq n-3$, then Theorem 1 holds by Theorems D and E . Thus we may assume $3 \leq \Delta\left(T_{n}\right) \leq n-4$. In this case, we have $n \geq 7$. If $n=7$, then Theorem 1 holds by Theorem 2. If $n=8$, then Theorem 1 holds by Theorem 3.

References

[1] J.A. Bondy, Pancyclic graphs, Journal of Combinatorial Theory, Series B, 11(1971), 80-84.
[2] E.T. Baskoro, Surahmat, S.M. Nababan and M. Miller, On Ramsey numbers for trees versus wheels of five or six vertices, Graphs and Combinatorics, 18(2002), 717-721.
[3] G.T. Chen, A result on C_{4}-star Ramsey number, Discrete Mathematics, 163(1997), 243-246.
[4] Y.J. Chen, Y.Q. Zhang and K.M. Zhang, The Ramsey numbers of paths versus wheels, Discrete Mathematics, 290(2005), 85-87.
[5] Y.J. Chen, Y.Q. Zhang and K.M. Zhang, The Ramsey numbers of stars versus wheels, European Journal of Combinatorics, 25(2004), 1067-1075.
[6] Y.J. Chen, Y.Q. Zhang and K.M. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for $\Delta\left(T_{n}\right) \geq n-3$, Applied Mathematics Letters, 17(2004), 281-285.
[7] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small off diagonal numbers, Pacific Journal of Mathematics, 41(1972), 335-345.
[8] G.R.T. Henry, The Ramsey numbers $R\left(K_{2}+\overline{K_{3}}, K_{4}\right)$ and $R\left(K_{1}+C_{4}, K_{4}\right)$, Utilitas Mathematica, 41(1992), 181-203.
[9] S.P. Radziszowski and J. Xia, Paths, cycles and wheels without antitriangles, Australasian Journal of Combinatorics, 9(1994), 221-232.
[10] Surahmat and E.T. Baskoro, On the Ramsey number of path or star versus W_{4} or W_{5}, Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17(2001), 174-179.

[^0]: *This project was supported by NSFC under grant number 10201012
 ${ }^{\dagger}$ This project was partially supported by Nanjing University Talent Development Foundation

