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Abstract: Let Tn denote a tree of order n and Wm a
wheel of order m + 1. Baskoro et al. conjectured in [2]
that if Tn is not a star, then R(Tn,Wm) = 2n − 1 for
m ≥ 6 even and n ≥ m− 1. We disprove the Conjecture
in [6]. In this paper, we determine R(Tn,W6) for n ≤ 8
which is the first step for us to determine R(Tn,W6) for
any tree Tn.
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1. Introduction

All graphs considered in this paper are finite simple graph with-
out loops. For two given graphs G1 and G2, the Ramsey number
R(G1, G2) is the smallest positive integer n such that for any graph
G of order n, either G contains G1 or G contains G2, where G is the
complement of G. Let G be a graph. The neighborhood N(v) of a
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vertex v is the set of vertices adjacent to v in G. The minimum and
maximum degree of G are denoted by δ(G) and ∆(G), respectively.
For a vertex v ∈ V (G) and a subgraph H of G, NH(v) is the set
of neighbors of v contained in H, i.e., NH(v) = N(v) ∩ V (H). We
let dH(v) = |NH(v)|. For S ⊆ V (G), G[S] denotes the subgraph
induced by S in G. Let U, V be two disjoint vertex set. We use
E(U, V ) to denote the set of edges between U and V . Let m be a
positive integer, we use mG to denote m vertex disjoint copies of
G. A path and a cycle of order n are denoted by Pn and Cn re-
spectively. A Star Sn (n ≥ 3) is a bipartite graph K1,n−1. A Wheel
Wn = {x}+Cn is a graph of n+1 vertices, that is, a vertex x, called
the hub of the wheel, adjacent to all vertices of Cn. Sn(l,m) is a tree
of order n obtained from Sn−l×m by subdividing each of its l edges m

times. Sn(l) is a tree of order n obtained from an Sl and an Sn−l by
adding an edge joining the centers of them. Sn[l] is a tree of order n

obtained from an Sl and an Sn−l by adding an edge joining a vertex
of degree one of Sl to the center of Sn−l. A graph on n vertices is
pancyclic if it contains cycles of every length l, 3 ≤ l ≤ n.

Many Ramsey numbers concerning wheel or star have been es-
tablished, see for instance [3, 7, 8, 9]. Recently, the following Ramsey
numbers were obtained.

Theorem A (Surahmat et al. [10]). R(Sn,W4) = 2n− 1 for n ≥ 3
and odd; R(Sn,W4) = 2n+1 for n ≥ 4 and even; R(Sn,W5) = 3n−2
for n ≥ 4.

Theorem B (Baskoro et al. [2]). Let Tn be a tree of order n other
than Sn. Then R(Tn,W4) = 2n − 1 for n ≥ 3; R(Tn,W5) = 3n − 2
for n ≥ 4.

Motivated by Theorem B, Baskoro et al. [2] posed the following
conjecture.

Conjecture 1. Let Tn be a tree other than Sn and n ≥ m−1. Then
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R(Tn,Wm) = 2n− 1 for m ≥ 6 even; R(Tn,Wm) = 3n− 2 for m ≥ 7
and odd.

In [6], we consider R(Tn,W6) for Tn 6= Sn and ∆(Tn) ≥ n − 3
and obtain the following.

Theorem C (Chen et al. [6]). R(Sn(1, 1),W6) = 2n for n ≥ 4.

Theorem D (Chen et al. [6]). R(Sn(1, 2),W6) = 2n for n ≥ 6 and
n ≡ 0 (mod 3).

Theorem E (Chen et al. [6]). R(Sn(3),W6) = R(Sn(2, 1),W6) =
2n−1 for n ≥ 6; R(Sn(1, 2),W6) = 2n−1 for n ≥ 6 and n 6≡ 0 (mod
3).

By Theorems C and D, we can see that Conjecture 1 is not true
when m is even. However, we believe that for n ≥ 5, if Tn 6= Sn(1, 1),
Sn(1, 2), then R(Tn,W6) = 2n− 1. In order to determine R(Tn,W6)
for general tree Tn, this paper consider R(Tn,W6) for n ≤ 8 as the
first step. The main result is the following.

Theorem 1. Let Tn be a tree of order n other than Sn and 5 ≤
n ≤ 8. If Tn 6= Sn(1, 1) and Tn 6= Sn(1, 2) for n ≡ 0 (mod 3), then
R(Tn,W6) = 2n− 1.

2. Some Lemmas

In order to prove Theorem 1, we need the following lemmas.

Lemma 1 (Bondy [1]). Let G be a graph of order n. If δ(G) ≥ n/2,
then either G is pancyclic or n is even and G = Kn/2,n/2.

Lemma 2 (Chen et al. [4]). R(Pn,Wm) = 2n − 1 for m even and
n ≥ m− 1 ≥ 3.
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Lemma 3 (Chen et al. [5]). R(Sn,W6) = 2n + 1 for n ≥ 3.

Lemma 4 (Chen et al. [6]). Let G be a graph of order 2n − 1 ≥ 7
and (U,W ) a partition of V (G) with |U | ≥ 3 and |W | ≥ 4. Suppose
ui ∈ U and NW (ui) = ∅, where 1 ≤ i ≤ 3. If G contains no W6, then
δ(G[W ]) ≥ |W | − 3.

Lemma 5. Let G be a graph of order 7 and δ(G) ≥ 4. Then for any
v ∈ V (G), G contains a tree T = S7(3, 1) such that dT (v) = 3.

Proof. Let G′ = G − v. Then δ(G′) ≥ 3 and hence G′ contains a
C6 by Lemma 1. Since d(v) ≥ 4, after an easy check, we can see G

contains a tree T = S7(3, 1) such that dT (v) = 3.

Lemma 6. R(Sn[4],W6) = 2n− 1 for n ≥ 8.

Proof. Let G be a graph of order 2n − 1. If G contains no W6,
then G contains an Sn(3) by Theorem E. Let T be an Sn(3) with
V (T ) = V0 ∪ W , where V0 = {v0, v1, . . . , vn−3}, W = {w1, w2} and
E(T ) = {v0vi | 1 ≤ i ≤ n−3}∪{v1w1, v1w2}. Set U = V (G)−V (T ).
If G contains no Sn[4], then we have

v1vi /∈ E(G) for 2 ≤ i ≤ n− 3, (1)

and

for u ∈ U with dU (u) ≥ 2, N(u) ∩ (V0 − {v0}) = ∅. (2)

Since |U | = n− 1 ≥ 7 and G[U ] contains no W6, by Lemma 3, G[U ]
contains an S3 which implies

∆(G[U ]) ≥ 2. (3)

Claim 1. dU (v1) ≤ n− 8.

Proof. If dU (v1) ≥ n − 7, then since G contains no Sn[4], we
have ∆(G[V0 − {v0, v1}]) ≤ 1. If there are two vertices u1, u2 ∈ U

such that dU (ui) ≥ 2 for i = 1, 2, then since n ≥ 8 we can see
G[{v1, v2, v3, v4, v5, u1, u2}] contains a W6 with the hub v1 by (1)
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and (2), a contradiction. Thus, by (3), we conclude that there is
only one vertex u ∈ U such that dU (u) ≥ 2 which implies NU (u) is
an independent set. If dU (u) ≥ n − 4, then N(vi) ∩ NU (u) = ∅ for
i = 1, 2, 3 since otherwise G contains an Sn[4]. Thus, since n ≥ 8,
G[{v1, v2, v3, u1, u2, u3, u4}] contains a W6 with the hub u1 for any
four vertices u1, u2, u3, u4 ∈ NU (u), a contradiction. Hence we have
dU (u) ≤ n−5. Let U ′ = U−N(u), then |U ′| ≥ 3. If G[U ′] contains an
edge, say u1u2 ∈ E(G[U ′]), then |N(ui)∩(V0−{v0})| ≤ 1 for i = 1, 2
since otherwise G[V0∪{u1, u2}] contains an Sn[4]. Thus, noting that
n ≥ 8 and ∆(G[V0 − {v0, v1}]) ≤ 1, G[{v1, v2, v3, v4, v5, u1, u}] con-
tains a W6 with the hub u by (1) and (2). Hence we may assume U ′

is an independent set which implies U − {u} is an independent set.
If n ≥ 9, then G[U − {u}] = Kn−2 and hence G[U ] contains a W6, a
contradiction. If n = 8, then |U | = 7 and dU (u) ≤ 3. It is easy to
see G[U ] contains a W6 in this case, again a contradiction.

Let U ′ = U−N(v1). By Claim 1, we have |U ′| ≥ 7. If ∆(G[U ′]) ≤ 2,
then by Lemma 1, G[U ′] contains a C6 and hence G contains a W6

with the hub v1, a contradiction. Thus there is some vertex u ∈ U ′

such that dU ′(u) ≥ 3. Assume {u1, u2, u3} ⊆ NU ′(u). If there is
some ui with 1 ≤ i ≤ 3 such that dV0(ui) ≥ 2, then G[V0 ∪ {u, ui}]
contains an Sn[4]. Hence we have dV0(ui) ≤ 1. If there is some
vertex vi with 2 ≤ i ≤ n − 3 such that |N(vi) ∩ {u1, u2, u3}| ≥ 2,
then we have |N(vj) ∩ {u1, u2, u3}| ≤ 1 for any j with 2 ≤ j ≤
n − 3 and j 6= i. Thus, since n − 3 ≥ 6 we can always choose
three vertices, say v2, v3, v4 such that |N(vi) ∩ {u1, u2, u3}| ≤ 1
for 2 ≤ i ≤ 4. Noting that dV0(ui) ≤ 1 for 1 ≤ i ≤ 3, we can
see that G[{u1, u2, u3, v2, v3, v4}] contains a C6 and hence G con-
tains a W6 with the hub v1 by (1), a contradiction. Thus we have
R(Sn[4],W6) ≤ 2n − 1. On the other hand, the graph G = 2Kn−1

shows R(Sn[4],W6) ≥ 2n − 1 and hence we have R(Sn[4],W6) =
2n− 1.

Lemma 7. R(Sn(1, 3),W6) = 2n− 1 for n ≥ 8.
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Proof. Let G be a graph of order 2n − 1. If G contains no W6,
then G contains an Sn[4] by Lemma 6. Let T be an Sn[4] with
V (T ) = V0 ∪ W , where V0 = {v0, v1, . . . , vn−4}, W = {w1, w2, w3}
and E(T ) = {v0vi | 1 ≤ i ≤ n − 4} ∪ {v1w1, w1w2, w1w3}. Let
U = V (G)− V (T ). If G contains no Sn(1, 3), then we have

N(wi) ∩ (V0 ∪ U − {v0}) = ∅ for i = 2, 3, (4)

and if u ∈ U and dU (u) ≥ 2, then

N(ui) ∩ (V0 − {v0}) = ∅ for any ui ∈ NU (u). (5)

If ∆(G[U ]) ≤ 2, then since |U | = n − 1 ≥ 7, G[U ] contains a
C6 by Lemma 1 and hence G contains a W6 with the hub w2 by
(4), a contradiction. Thus there is some vertex u ∈ U such that
dU (u) ≥ 3. Assume {u1, u2, u3} ⊆ NU (u). By (4) and (5), we can see
G[{w2, v1, v2, v3, u1, u2, u3}] contains a W6 with the hub w2, again a
contradiction. Thus we have R(Sn(1, 3),W6) ≤ 2n−1. On the other
hand, the graph G = 2Kn−1 shows R(Sn(1, 3),W6) ≥ 2n − 1 and
hence we have R(Sn(1, 3),W6) = 2n− 1.

Lemma 8. R(Sn(3, 1),W6) = 2n− 1 for n ≥ 8.

Proof. Let G be a graph of order 2n − 1. If G contains no W6,
then by Theorem E, G contains an Sn(2, 1). Let T = Sn(2, 1) with
V (T ) = V0 = {v0, . . . , vn−3, w1, w2} and E(T ) = {v0vi | 1 ≤ i ≤
n−3}∪{v1w1, v2w2}. Set U = V (G)−V0. Obviously, |U | = n−1 ≥ 7.

If G contains no Sn(3, 1), then NU (vi) = ∅ for 3 ≤ i ≤ n− 3 and
{v3, . . . , vn−3} is an independent set. If n ≥ 9, then G[{v3, v4, v5, v6,

u1, u2, u3}] contains a W6 with the hub v3 for any three vertices
u1, u2, u3 ∈ U , a contradiction. Hence we have n = 8. By Lemma
4, we have δ(G[U ]) ≥ 4. By Lemma 5, we have NV0(u) = ∅ for
any u ∈ U which implies δ(G[V0]) ≥ 5 by Lemma 4. Noting that
{v3, v4, v5} is an independent set, we have {v1, w1} ⊆ N(v3)∩N(v4)
which implies G contains an Sn(3, 1), a contradiction. Thus we have
R(Sn(3, 1),W6) ≤ 2n− 1. On the other hand, the graph G = 2Kn−1
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shows R(Sn(3, 1),W6) ≥ 2n−1 and hence we have R(Sn(3, 1),W6) =
2n− 1.

3. The Ramsey Numbers R(Tn, W6) for ∆(Tn) = 3 and
n = 7

In this section, we determine R(Tn,W6) for n = 7 and ∆(Tn) = 3.

Theorem 2. R(Tn,W6) = 13 for n = 7 and ∆(Tn) = 3.

Proof. Let T be tree with order 7 and ∆(T ) = 3, then it is not
difficult to see T must be isomorphic to one of the five trees of order
7 below.

r r
r r rrr

T7a

r r r rrrr
T7b

r r r rrrr
T7c

r r r rrrr
T7d

r r r
rrrr

T7e

Thus we need only to show R(T,W6) = 13 for T = T7a, T7b, T7c, T7d

and T7e.

Let G be a graph of order 13. Suppose G contains no W6. Since
2K6 contains no trees of order 7 and its complement contains no
W6, we have R(T,W6) ≥ 13 for each tree T with |T | = 7. In the
following proof, we need only to prove R(T,W6) ≤ 13 for each T ∈
{T7a, T7b, T7c, T7d, T7e}.

We first show R(T7a,W6) = R(T7c,W6) = 13. By Theorem E, G

contains an S7(1, 2). Let T be an S7(1, 2) in G with V (T ) = V =
{v0, . . . , v4, w1, w2} and E(T ) = {v0vi | 1 ≤ i ≤ 4} ∪ {v1w1, w1w2}.
Set U = V (G)− V . Obviously, |U | = 6.

If G contains no T7a, then N(w2) ∩ (U ∪ {v2, v3, v4}) = ∅. If
dU (u) ≤ 2 for each u ∈ U , then G[U ] contains a C6 by Lemma
1 and hence G contains a W6 with the hub w2, a contradiction.
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Thus there is some vertex u ∈ U such that dU (u) ≥ 3. Assume
u1, u2, u3 ∈ NU (u). Since G contains no T7a, we have viuj /∈ E(G)
for 2 ≤ i ≤ 4 and 1 ≤ j ≤ 3. Thus G[{w2, u1, u2, u3, v2, v3, v4}]
contains a W6 with the hub w2, a contradiction. Thus we have
R(T7a,W6) ≤ 13.

If G contains no T7c, then NU (vi) = ∅ for 2 ≤ i ≤ 4 and
{v2, v3, v4} is an independent set. Thus by Lemma 4, we have δ(G[U ])
≥ 3 which implies G[U ] contains a C6. In this case, we have NV (u) =
∅ for any u ∈ U since otherwise G contains a T7c. By Lemma 4,
we have δ(G[V ]) ≥ 4 which implies NV (vi) = {v0, v1, w1, w2} for
i = 2, 3, 4 and hence G[V ] contains a T7c, a contradiction. Thus we
have R(T7c,W6) ≤ 13.

Next, we show R(T7b,W6) = R(T7d,W6) = 13. By Theorem E,
G contains an S7(3). Let T = S7(3), V (T ) = {v0, . . . , v4, w1, w2},
E(T ) = {v0vi | 1 ≤ i ≤ 4} ∪ {v1w1, v1w2}. Set U = V (G) − V (T ).
Obviously, |U | = 6.

If G contains no T7b, we have v1vi /∈ E(G) for 2 ≤ i ≤ 4. For
any u ∈ U , if u ∈ N(vi) for some i with 1 ≤ i ≤ 4, then dU (u) ≤ 1.
Thus, if there are three vertices u1, u2, u3 ∈ U such that dU (ui) ≥ 2
for 1 ≤ i ≤ 3, then G[{v1, v2, v3, v4, u1, u2, u3}] contains a W6 with
the hub v1, a contradiction. If there is some vi with 2 ≤ i ≤ 4 such
that dU (vi) ≥ 2, then G contains a T7b and hence we have dU (vi) ≤ 1
for 2 ≤ i ≤ 4. If G[{v2, v3, v4}] contains two edges, then G contains a
T7b and hence we may assume v2v3, v2v4 /∈ E(G). Let U = {ui | 1 ≤
i ≤ 6}. Assume NU (v2) ⊆ {u1} and NU (v3)∪NU (v4) ⊆ {u1, u2, u3}.
If u2 /∈ NU (v3)∪NU (v4), then since U contains at most two vertices
with degree not less than 2, we can see G[{u2, u4, u5, u6}] contains a
P3, say u2u4u5 is a P3. Then v3u2u4u5v4u6v3 is a C6 in G and hence
G contains a W6 with the hub v2. If u2 ∈ NU (v3) ∪ NU (v4), then
since dU (u2) ≤ 1, we may assume u2u4, u2u5 /∈ E(G) which implies
v3u4u2u5v4u6v3 is a C6 in G and hence G contains a W6 with the
hub v2, again a contradiction. Thus we have R(T7b,W6) ≤ 13.
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If G contains no T7d, then NU (w1) = NU (vi) = ∅ for 2 ≤ i ≤
4 and N(w1) ∩ {v2, v3, v4} = ∅. Thus G[{w1, v2, v3, v4, u1, u2, u3}]
contains a W6 with the hub w1 for any three vertices u1, u2, u3 ∈ U ,
a contradiction. Thus we have R(T7d,W6) ≤ 13.

Finally, we show R(T7e,W6) = 13. By Theorem E, G contains
an S7(2, 1). Let T = S7(2, 1), V (T ) = V = {v0, . . . , v4, w1, w2} and
E(T ) = {v0vi | 1 ≤ i ≤ 4} ∪ {v1w1, v2w2}. Set U = V (G) − V .
Obviously, |U | = 6.

If G contains no T7e, then NU (vi) = ∅ for i = 3, 4 and v3v4 /∈
E(G). If dU (v0) = 0, then by Lemma 4, we have δ(G[U ]) ≥ 3 which
implies G[U ] contains a C6 by Lemma 1 and hence NV (u) = ∅ for
any u ∈ U since G contains no T7e. Thus by Lemma 4, we have
δ(G[V ]) ≥ 4. Noting that v3v4 /∈ E(G), after an easy check, we can
see G[V ] contains a T7e and hence we may assume dU (v0) ≥ 1.

For any u ∈ U , if uv0 ∈ E(G), then dU (u) = 0 for other-
wise G contains a T7e. If dU (v0) ≥ 2, say u1, u2 ∈ NU (v0), then
{v3, v4, u1, u2} is an independent set and for any u ∈ U − {u1, u2},
N(u)∩ {v3, v4, u1, u2} = ∅. In this case, we can see G[{v3, v4, u1, u2,

u3, u4, u5}] contains a W6 with the hub v3 for any three vertices
u3, u4, u5 ∈ U − {u1, u2}, a contradiction. Hence we may assume
dU (v0) = 1.

Let NU (v0) = {u1} and U ′ = U − {u1} = {u2, u3, u4, u5, u6}. If
G[U ′] contains a C5, then for any u ∈ U ′, NV (u) = ∅ for otherwise
G contains a T7e. By Lemma 4, we have δ(G[V ]) ≥ 4. Noting that
v3v4 /∈ E(G), after an easy check, we can see G[V ] contains a T7e.
Hence we may assume G[U ′] contains no C5. By Lemma 1, there
is some vertex u ∈ U ′ such that dU ′(u) ≤ 2 which implies G[U ′]
contains a P3, say u2u3u4 is a P3 in G. Then v4u2u3u4u1u5v4 is a C6

in G and hence G contains a W6 with the hub v3, also a contradiction.
Thus we have R(T7e,W6) ≤ 13.

The proof of Theorem 2 is completed.
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4. The Ramsey Numbers R(Tn, W6) for 3 ≤ ∆(Tn) ≤ 4
and n = 8

In this section, we determine R(Tn,W6) for n = 8 and 3 ≤
∆(Tn) ≤ 4.

Theorem 3. R(Tn,W6) = 15 for n = 8 and 3 ≤ ∆(Tn) ≤ 4.

Proof. Let T be a tree with order 8 and 3 ≤ ∆(T ) ≤ 4. Since 2K7

contains no trees of order 8 and its complement contains no W6, we
have R(T,W6) ≥ 15. Thus, in order to prove R(T,W6) = 15, we
need only to show R(T,W6) ≤ 15.

If T = S8[4], then Theorem 3 holds by Lemma 6. If T = S8(1, 3),
then Theorem 3 holds by Lemma 7. If T 6= S8[4], S8(1, 3), then we
have the following.

Proposition 1. Let T be a tree of order 8 with 3 ≤ ∆(T ) ≤ 4. If
T 6= S8[4], S8(1, 3), then T must be isomorphic to one of the fifteen
trees of order 8 below.

rr
rrr rr

r
T8a

rr
rrr rr

r
T8b

rr
rrr rr

r
T8c

rr
rrr rr

r
T8d

rr
rrr rr

r
T8e

r
rrr

rr
rr

T8f

r
rrr

rr
rr

T8g

rr
rr rrr r
T8h
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T8i

rrrr rr
rr

T8j

rrrr rr
rr

T8k

r
rrr rr

rr
T8l

rrrr rr
rr

T8m

rrrr rr
rr

T8n

rr
rr rr

r
r

T8o

Let G be a graph of order 15. Suppose G contains no W6. By
Proposition 1, we will complete the proof by showing the following
theorems.

Theorem 4. R(T,W6) = 15 for T = T8a, T8b, T8d or T8k.

Proof. By Theorem E, G contains an S8(3). Let T be an S8(3)
with V (T ) = V = {v0, . . . , v5, w1, w2} and E(T ) = {v0vi | 1 ≤ i ≤
5} ∪ {v1w1, v1w2}. Set U = V (G)− V . Obviously, |U | = 7.

If G contains no T8a, then w1vi /∈ E(G) for 2 ≤ i ≤ 5 and
NU (w1) = ∅. If there is some vertex vi with 2 ≤ i ≤ 5 such that
dU (vi) ≥ 2, say u1, u2 ∈ NU (v2), then v2vi /∈ E(G) for 3 ≤ i ≤ 5 and
viuj /∈ E(G) for 3 ≤ i ≤ 5 and j = 1, 2 since otherwise G contains a
T8a. Thus, G[{w1, v2, u1, u2, v3, v4, v5}] contains a W6 with the hub
w1, a contradiction. Hence we may assume dU (vi) ≤ 1 for 2 ≤ i ≤ 5
which implies there are three vertices u1, u2, u3 ∈ U such that viuj /∈
E(G) for 2 ≤ i ≤ 5 and 1 ≤ j ≤ 3. Thus G[{w1, v2, v3, v4, u1, u2, u3}]
contains a W6 with the hub w1, again a contradiction. Hence we
have R(T8a,W6) ≤ 15.

If G contains no T8b, then we have NU (v1) = ∅, v1vi /∈ E(G) for
2 ≤ i ≤ 5 and dU (vi) ≤ 2 for 2 ≤ i ≤ 5. Thus, since |U | = 7, we
can choose three vertices u1, u2, u3 ∈ U such that dV (ui) ≤ 1 for
1 ≤ i ≤ 3 and NV (ui)∩NV (uj) = ∅ for i, j ∈ {1, 2, 3} and i 6= j, and
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hence G[{v1, v2, v3, v4, u1, u2, u3}] contains a W6 with the hub v1, a
contradiction. Thus we have R(T8b,W6) ≤ 15.

If G contains no T8d, then v2vi /∈ E(G) for 3 ≤ i ≤ 5 and
NU (vi) = ∅ for 2 ≤ i ≤ 5. Thus for any three vertices u1, u2, u3 ∈ U ,
G[{v2, v3, v4, v5, u1, u2, u3}] contains a W6 with the hub v2, a contra-
diction. Hence we have R(T8d,W6) ≤ 15.

If G contains no T8k, then dU (vi) ≤ 1 for 2 ≤ i ≤ 5. Let V ′ =
{v2, v3, v4, v5}. Since |U | = 7, there are three vertices u1, u2, u3 ∈ U

such that NV ′(ui) = ∅ for 1 ≤ i ≤ 3. If δ(G[V ′]) = 0, say dV ′(v2) = 0,
then G[{v2, v3, v4, v5, u1, u2, u3}] contains a W6 with the hub v2, a
contradiction. Hence we have δ(G[V ′]) ≥ 1. If ∆(G[V ′]) ≥ 2, then
G contains a T8k. Thus we may assume E(G[V ′]) = {v2v3, v4v5}. In
this case, we have NU (vi) = ∅ for 2 ≤ i ≤ 5. By Lemmas 1 and 4,
G[U ] contains a C7. If NU (w1) 6= ∅ or {v2, v3} ⊆ N(w1), then G

contains a T8k. Hence we may assume NU (w1) = ∅ and v2 /∈ N(w1).
Thus, G[{v2, w1, v4, v5, u1, u2, u3}] contains a W6 with the hub v2 for
any three vertices u1, u2, u3 ∈ U , a contradiction. Hence we have
R(T8k,W6) ≤ 15.

Theorem 5. R(T,W6) = 15 for T = T8c, T8n.

Proof. By Theorem E, G contains an S8(1, 2). Let T = S8(1, 2)
with V (T ) = V = {v0, . . . , v5, w1, w2} and E(T ) = {v0vi | 1 ≤ i ≤
5} ∪ {v1w1, w1w2}. Set V ′ = {v2, v3, v4, v5} and U = V (G) − V .
Obviously, |U | = 7.

If G contains no T8c, then v2vi /∈ E(G) for 3 ≤ i ≤ 5 and
NU (vi) = ∅ for 2 ≤ i ≤ 5. Thus for any three vertices u1, u2, u3 ∈ U ,
G[{v2, v3, v4, v5, u1, u2, u3}] contains a W6 with the hub v2, a contra-
diction. Hence we have R(T8c,W6) ≤ 15.

Since |U | = 7 and G[U ] contains no W6, By Lemma 3, G[U ]
contains an S3. Assume u1, u2, u3 ∈ U and u1u2, u2u3 ∈ E(G). If
G contains no T8n, then NV ′(ui) = ∅ for 1 ≤ i ≤ 3. If δ(G[V ′]) =
0, say dV ′(v2) = 0, then G[{v2, v3, v4, v5, u1, u2, u3}] contains a W6
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with the hub v2, a contradiction. Hence we have δ(G[V ′]) ≥ 1.
If ∆(G[V ′]) ≥ 2, then G contains a T8n. Thus we may assume
E(G[V ′]) = {v2v3, v4v5}. In this case, we have NU (vi) = ∅ for 2 ≤
i ≤ 5. By Lemmas 1 and 4, G[U ] contains a C7 and hence NV (u) = ∅
for any u ∈ U since otherwise G contains a T8n. By Lemma 4, we
have δ(G[V ]) ≥ 5 which implies v3w1, v5w2 ∈ E(G) and hence G

contains a T8n. Thus we have R(T8n,W6) ≤ 15.

Theorem 6. R(T,W6) = 15 for T = T8f , T8h, T8j , T8l.

Proof. By Lemma 7, G contains an S8(1, 3). Let T be an S8(1, 3) in
G with V (T ) = {v0, . . . , v4, w1, w2, w3} and E(T ) = {v0vi | 1 ≤ i ≤
4} ∪ {v1w1, w1w2, w2w3}. Set U = V (G)− V . Obviously, |U | = 7.

If G contains no T8f , then w3vi /∈ E(G) for 2 ≤ i ≤ 4, NU (w3) = ∅
and dU (vi) ≤ 1 for 2 ≤ i ≤ 4. Thus, since |U | = 7, we can choose
three vertices u1, u2, u3 ∈ U such that viuj /∈ E(G) for 2 ≤ i ≤ 4
and 1 ≤ j ≤ 3 and hence G[{w3, v2, v3, v4, u1, u2, u3}] contains a W6

with the hub w2, a contradiction. Thus we have R(T8f ,W6) ≤ 15.

If G contains no T8h, then w2vi /∈ E(G) for 2 ≤ i ≤ 4 and
NU (w2) = ∅. If ∆(G[U ]) ≤ 2, then since |U | = 7, G[U ] contains
a C6 by Lemma 1 and hence G contains a W6 with the hub w2, a
contradiction. Hence we may assume u ∈ U and u1, u2, u3 ∈ NU (u).
In this case, we have viuj /∈ E(G) for 2 ≤ i ≤ 4 and 1 ≤ j ≤ 3 for
otherwise G contains a T8h and hence G[{w2, v2, v3, v4, u1, u2, u3}]
contains a W6 with the hub w2, again a contradiction. Thus we have
R(T8h,W6) ≤ 15.

If G contains no T8j , then v1vi /∈ E(G) for 2 ≤ i ≤ 4, NU (v1) = ∅
and dU (vi) ≤ 1 for 2 ≤ i ≤ 4. Thus, since |U | = 7, we can choose
three vertices u1, u2, u3 ∈ U such that viuj /∈ E(G) for 2 ≤ i ≤ 4 and
1 ≤ j ≤ 3 and hence G[{v1, v2, v3, v4, u1, u2, u3}] contains a W6 with
the hub w2, a contradiction. Thus we have R(T8j ,W6) ≤ 15.

If G contains no T8l, then NU (vi) = ∅ for 2 ≤ i ≤ 4 and
{v2, v3, v4} is an independent set. By Lemma 4, we have δ(G[U ]) ≥ 4
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and hence G[U ] contains a C7 by Lemma 1. In this case, we have
dU (v) = 0 for each v ∈ V (T ) which implies δ(G[V ]) ≥ 5 by Lemma 4.
Noting that {v2, v3, v4} is an independent set, we have v2v1, v3w3 ∈
E(G) and hence G contains a T8l. Thus we have R(T8l,W6) ≤ 15.

Theorem 7. R(T8g,W6) = 15.

Proof. By Lemma 6, G contains an S8[4]. Let T be an S8[4]
with V (T ) = {v0, . . . , v4, w1, w2, w3} and E(T ) = {v0vi | 1 ≤ i ≤
4} ∪ {v1w1, w1w2, w1w3}. Set U = V (G) − V (T ). If G contains no
T8g, then w2vi /∈ E(G) for 2 ≤ i ≤ 4, NU (w2) = ∅ and dU (vi) =
0 for 2 ≤ i ≤ 4. Thus, for any three vertices u1, u2, u3 ∈ U ,
G[{w2, v2, v3, v4, u1, u2, u3}] contains a W6 with the hub w2, a con-
tradiction. Hence we have R(T8g,W6) ≤ 15.

Theorem 8. R(T8i,W6) = 15.

Proof. By Lemma 8, G contains an S8(3, 1). Let T be an S8(3, 1) in
G with V (T ) = {v0, . . . , v4, w1, w2, w3} and E(T ) = {v0vi | 1 ≤ i ≤
4} ∪ {v1w1, v2w2, v3w3}. Set U = V (G)− V (T ). Obviously, |U | = 7.
If G contains no T8i, then we have v4vi /∈ E(G) for 1 ≤ i ≤ 3,
NU (vi) = ∅ for 1 ≤ i ≤ 3 and dU (v4) ≤ 1. Thus, since |U | = 7,
there is three vertices u1, u2, u3 ∈ U such that u1, u2, u3 /∈ NU (v4)
and hence G[{v4, v1, v2, v3, u1, u2, u3}] contains a W6 with the hub
v4, a contradiction. Thus we have R(T8i,W6) ≤ 15.

Theorem 9. R(T8o,W6) = 15.

Proof. By Theorem 8, G contains a T8i. Let T be a T8i with
V (T ) = {v0, . . . , v3, w1, . . . , w4} and E(T ) = {v0vi | 1 ≤ i ≤ 3} ∪
{v1w1, v2w2, v3w3, v3w4}. Set U = V (G) − V (T ). If G contains
no T8o, then we have w4wi /∈ E(G) for 1 ≤ i ≤ 3 and NU (wi) =
∅ for 1 ≤ i ≤ 4. Thus, for any three vertices u1, u2, u3 ∈ U ,
G[{w4, w1, w2, w3, u1, u2, u3}] contains a W6 with the hub w4, a con-
tradiction. Hence we have R(T8o,W6) ≤ 15.

Theorem 10. R(T8m,W6) = 15.
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Proof. By Theorem 4, G contains a T8a. Let T be a T8a with
V (T ) = {v0, . . . , v4, w1, w2, w3} and E(T ) = {v0vi | 1 ≤ i ≤ 4} ∪
{v1w1, v1w2, w2w3}. Set U = V (G) − V (T ). Obviously, |U | = 7.
If G contains no T8m, then {v2, v3, v4} is an independent set and
NU (vi) = ∅ for 2 ≤ i ≤ 4. By Lemmas 1 and 4, G[U ] contains a
C7. This implies NU (w2) = ∅ for otherwise G contains a T8m. If
{v2, v3, v4} ⊆ N(w2), then G contains a T8m. Hence we may as-
sume v2w2 /∈ E(G). Thus, for any three vertices u1, u2, u3 ∈ U ,
G[{v2, v3, v4, w2, u1, u2, u3}] contains a W6 with the hub v2, a con-
tradiction. Hence we have R(T8o,W6) ≤ 15.

The proof of Theorem 3 is completed.

5. Proof of Theorem 1

Proof of Theorem 1. If ∆(Tn) = 2, then Theorem 1 holds by
Lemma 2. Hence we may assume ∆(Tn) ≥ 3. If n = 5, then T5 =
S5(1, 1) and hence Theorem 1 holds. If n ≥ 6 and ∆(Tn) ≥ n − 3,
then Theorem 1 holds by Theorems D and E. Thus we may assume
3 ≤ ∆(Tn) ≤ n − 4. In this case, we have n ≥ 7. If n = 7, then
Theorem 1 holds by Theorem 2. If n = 8, then Theorem 1 holds by
Theorem 3.
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