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Abstract: Let T, denote a tree of order n and W, a
wheel of order m + 1. Baskoro et al. conjectured in [2]
that if 7), is not a star, then R(T,,W,,) = 2n — 1 for
m > 6 even and n > m — 1. We disprove the Conjecture
in [6]. In this paper, we determine R(T,, Ws) for n < 8
which is the first step for us to determine R(7},, W) for
any tree T,,.

Key words: Ramsey number, Tree, Wheel

1. Introduction

All graphs considered in this paper are finite simple graph with-
out loops. For two given graphs G; and Ga, the Ramsey number
R(G1,G>) is the smallest positive integer n such that for any graph
G of order n, either G contains G or G contains Gg, where G is the
complement of G. Let G be a graph. The neighborhood N (v) of a
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vertex v is the set of vertices adjacent to v in G. The minimum and
mazimum degree of G are denoted by 0(G) and A(G), respectively.
For a vertex v € V(G) and a subgraph H of G, Ny(v) is the set
of neighbors of v contained in H, i.e., Ng(v) = N(v)NV(H). We
let dg(v) = |[Ng(v)|. For S C V(G), G[S] denotes the subgraph
induced by S in G. Let U,V be two disjoint vertex set. We use
E(U,V) to denote the set of edges between U and V. Let m be a
positive integer, we use mG to denote m vertex disjoint copies of
G. A path and a cycle of order n are denoted by P, and C,, re-
spectively. A Star S,, (n > 3) is a bipartite graph Ky ,—1. A Wheel
W, = {z}+C, is a graph of n+1 vertices, that is, a vertex x, called
the hub of the wheel, adjacent to all vertices of Cy,. S, (I, m) is a tree
of order n obtained from S,,_;x., by subdividing each of its [ edges m
times. Sy, (1) is a tree of order n obtained from an S; and an S,,_; by
adding an edge joining the centers of them. S,[l] is a tree of order n
obtained from an S; and an S,,_; by adding an edge joining a vertex
of degree one of S; to the center of S,,_;. A graph on n vertices is
pancyclic if it contains cycles of every length [, 3 <[ < n.

Many Ramsey numbers concerning wheel or star have been es-
tablished, see for instance [3, 7, 8, 9]. Recently, the following Ramsey
numbers were obtained.

Theorem A (Surahmat et al. [10]). R(S,,W4) =2n —1 for n > 3
and odd; R(Sy, Wy) = 2n+1 for n > 4 and even; R(S,, Ws5) = 3n—2
for n > 4.

Theorem B (Baskoro et al. [2]). Let T}, be a tree of order n other
than S,,. Then R(T,,Wy) = 2n — 1 for n > 3; R(T,,W5) = 3n — 2
for n > 4.

Motivated by Theorem B, Baskoro et al. [2] posed the following
conjecture.

Conjecture 1. Let T, be a tree other than S,, and n > m—1. Then
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R(T,,,Wp,) =2n—1 for m > 6 even; R(T,,, Wy,) =3n—2form >7
and odd.

In [6], we consider R(T,,Ws) for T,, # S, and A(T,) > n —3
and obtain the following.

Theorem C (Chen et al. [6]). R(S,(1,1), Ws) = 2n for n > 4.

Theorem D (Chen et al. [6]). R(S,(1,2),Ws) = 2n for n > 6 and
n =0 (mod 3).

Theorem E (Chen et al. [6]). R(S,(3),Ws) = R(Sn(2,1),Ws) =
2n—1 for n > 6; R(S,(1,2),Ws) =2n—1 for n > 6 and n #Z 0 (mod
3).

By Theorems C and D, we can see that Conjecture 1 is not true
when m is even. However, we believe that for n > 5, if T}, # S, (1, 1),
Sn(1,2), then R(T,,, Ws) = 2n — 1. In order to determine R(T},, W)
for general tree T, this paper consider R(T),,, Ws) for n < 8 as the
first step. The main result is the following.

Theorem 1. Let T, be a tree of order n other than S,, and 5 <
n <8 IfT, #S,(1,1) and T}, # Sp(1,2) for n = 0 (mod 3), then
R(T,,Ws) =2n — 1.

2. Some Lemmas

In order to prove Theorem 1, we need the following lemmas.

Lemma 1 (Bondy [1]). Let G be a graph of order n. If §(G) > n/2,
then either G is pancyclic or n is even and G = K, 2 /2

Lemma 2 (Chen et al. [4]). R(P,, W,,) = 2n — 1 for m even and
n>m-—12>3.
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Lemma 3 (Chen et al. [5]). R(Sp, Ws) =2n+ 1 for n > 3.

Lemma 4 (Chen et al. [6]). Let G be a graph of order 2n —1 > 7
and (U, W) a partition of V(G) with |U| > 3 and |W| > 4. Suppose
u; € U and Ny (u;) = 0, where 1 <4 < 3. If G contains no W, then
I(GW]) > |[W]| - 3.

Lemma 5. Let G be a graph of order 7 and §(G) > 4. Then for any
v € V(G), G contains a tree T' = S7(3,1) such that dr(v) = 3.

Proof. Let G’ = G —v. Then §(G’') > 3 and hence G’ contains a
Cs by Lemma 1. Since d(v) > 4, after an easy check, we can see G
contains a tree T' = S7(3,1) such that dr(v) = 3. 1

Lemma 6. R(S,[4],Ws) =2n — 1 for n > 8.

Proof. Let G be a graph of order 2n — 1. If G contains no Wy,
then G contains an S,(3) by Theorem E. Let T' be an S,(3) with
V(T) = Vo UW, where Vj = {vg,v1,...,0n-3}, W = {wy,wa} and
E(T) ={vov; | 1 <i <n—-3}U{viwi,viwa}. Set U =V (G)—-V(T).
If G contains no S,[4], then we have

viv; ¢ E(G) for 2 <i<n-—3, (1)
and

for uw € U with dy(u) > 2, N(u) N (Vo — {vo}) = 0. (2)

Since |U| =n —1 > 7 and G[U] contains no Wg, by Lemma 3, G[U]
contains an S3 which implies

A(GU]) > 2. (3)
Claim 1. dy(vi) <n—8.

Proof. If dy(vi) > n — 7, then since G contains no Sy,[4], we
have A(G[Vh — {vo,v1}]) < 1. If there are two vertices uj,uy € U
such that dy(u;) > 2 for ¢ = 1,2, then since n > 8 we can see
G[{v1,v2,v3,v4,v5,u1,u2}] contains a Wy with the hub v; by (1)
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and (2), a contradiction. Thus, by (3), we conclude that there is
only one vertex u € U such that dy(u) > 2 which implies Ny (u) is
an independent set. If dy(u) > n — 4, then N(v;) N Ny(u) = 0 for
i = 1,2,3 since otherwise G contains an S,[4]. Thus, since n > 8,
G[{v1,v2,v3,u1, uz, uz,us}] contains a W with the hub wu; for any
four vertices wuy, ug,us,us € Ny(u), a contradiction. Hence we have
dy(u) <n—>5. Let U' = U—N(u), then |U’| > 3. If G[U’] contains an
edge, say ujus € E(G[U']), then |N(u;) N (Vo—{vo})| <1 fori=1,2
since otherwise G[VoU{u1,uz}] contains an Sy, [4]. Thus, noting that
n > 8 and A(G[Vo — {vo,v1}]) < 1, G[{v1,ve,v3,v4,v5,ur,u}]| con-
tains a Wg with the hub u by (1) and (2). Hence we may assume U’
is an independent set which implies U — {u} is an independent set.
If n > 9, then G[U — {u}] = K,,_2 and hence G[U] contains a Wg, a
contradiction. If n = 8, then |U| = 7 and dy(u) < 3. It is easy to
see G[U] contains a Wg in this case, again a contradiction. 1

Let U' = U — N(v;). By Claim 1, we have |U’| > 7. If A(G[U']) < 2,
then by Lemma 1, G[U’] contains a Cg and hence G contains a Ws
with the hub vy, a contradiction. Thus there is some vertex v € U’
such that dy/(u) > 3. Assume {uj,uz,us} C Ny/(u). If there is
some u; with 1 <4 < 3 such that dy, (u;) > 2, then G[Vp U {u, u;}]
contains an Sy,[4]. Hence we have dy,(u;) < 1. If there is some
vertex v; with 2 < i < n — 3 such that |N(v;) N {uy,u,us}| > 2,
then we have |N(v;) N {ui,uz,u3z}| < 1 for any j with 2 < j <
n —3 and j # 4. Thus, since n — 3 > 6 we can always choose
three vertices, say wvz,vs,vs such that |N(v;) N {u1,uz,usz}| < 1
for 2 < i < 4. Noting that dy,(u;) < 1 for 1 < i < 3, we can
see that G[{u1,us,us,v2,v3,v4}] contains a Cg and hence G con-
tains a W with the hub v; by (1), a contradiction. Thus we have
R(S,[4],Ws) < 2n — 1. On the other hand, the graph G = 2K,,_;
shows R(Sp[4],Ws) > 2n — 1 and hence we have R(S,[4], Ws) =
2n — 1. 1

Lemma 7. R(S,(1,3),Ws) =2n —1 for n > 8.
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Proof. Let G be a graph of order 2n — 1. If G contains no Wy,
then G contains an S,[4] by Lemma 6. Let T" be an S,[4] with
V(T) = Vo UW, where Vy = {vg,v1,...,0p-4}, W = {wy,ws, w3}
and E(T) = {vov; | 1 < i < n —4} U {vjwy, wjwe, wrws}. Let
U=V(G)—V(T). If G contains no S,(1, 3), then we have

N(w;) N (VouU — {w}) =0 for i = 2,3, (4)
and if u € U and dy(u) > 2, then
N(ui) N (Vo = {vo}) = 0 for any u; € Ny (u). (5)

If A(G[U]) < 2, then since |U| = n—1 > 7, G[U] contains a
Cs by Lemma 1 and hence G contains a Ws with the hub wy by
(4), a contradiction. Thus there is some vertex w € U such that
dy(u) > 3. Assume {ug,uz,u3} € Ny(u). By (4) and (5), we can see
G[{wa, v1,v2,v3,u1,u2,u3}] contains a Ws with the hub ws, again a
contradiction. Thus we have R(S,(1,3), Ws) < 2n—1. On the other
hand, the graph G = 2K,,_; shows R(S,(1,3),Ws) > 2n — 1 and
hence we have R(S,(1,3), W) =2n — 1. 1

Lemma 8. R(S,(3,1),Ws) =2n —1 for n > 8.

Proof. Let G be a graph of order 2n — 1. If G contains no Wy,
then by Theorem E, G contains an S,,(2,1). Let T'= S,(2,1) with
V(T) = Vo = {vo,...,vn—3,wi,wa} and E(T) = {vov; | 1 < i <
n—3}U{viwy,vaws}. Set U = V(G)—Vp. Obviously, [U| =n—1 > 7.

If G contains no S,(3,1), then Ny (v;) =0 for 3<i <n—3 and
{v3,...,v,_3} is an independent set. If n > 9, then G[{vs, vy, vs, v,
ui,u2,us}] contains a W with the hub vs for any three vertices
uy,ug,u3 € U, a contradiction. Hence we have n = 8. By Lemma
4, we have §(G[U]) > 4. By Lemma 5, we have Ny, (u) = 0 for
any v € U which implies §(G[Vp]) > 5 by Lemma 4. Noting that
{v3,v4,v5} is an independent set, we have {vi, w1} C N(v3) NN (v4)
which implies G contains an S, (3,1), a contradiction. Thus we have
R(Sp(3,1), Ws) < 2n—1. On the other hand, the graph G = 2K,,_
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shows R(S,(3,1), Ws) > 2n—1 and hence we have R(S,(3,1), Ws) =
2n — 1. 1

3. The Ramsey Numbers R(T,,,Ws) for A(T,)=3 and
n="7

In this section, we determine R(T,,, W) for n = 7 and A(T},) = 3.
Theorem 2. R(T,,, Ws) = 13 for n = 7 and A(T,,) = 3.

Proof. Let T be tree with order 7 and A(T") = 3, then it is not
difficult to see T' must be isomorphic to one of the five trees of order

7 below.

< <zl <

T7, T7 T7. T7q T7e

Thus we need only to show R(T,Ws) = 13 for T' = Tr,, Ty, Tre, T
and Tr,.

Let G be a graph of order 13. Suppose G contains no Wg. Since
2K contains no trees of order 7 and its complement contains no
We, we have R(T,Ws) > 13 for each tree T' with |T| = 7. In the
following proof, we need only to prove R(T, Ws) < 13 for each T €

{T%a, Trv, Tre, Trg, Tre }-

We first show R(T7q, W) = R(T7., Ws) = 13. By Theorem E, G
contains an S7(1,2). Let T be an S7(1,2) in G with V(T') =V =
{vo,...,vq,w1,w2} and E(T) = {vov; | 1 <1 < 4} U {vjwi, wiwa}.
Set U = V(G) — V. Obviously, |U| = 6.

If G contains no Tr,, then N(w2) N (U U {vg,v3,v4}) = 0. If
dy(u) < 2 for each u € U, then G[U] contains a Cg by Lemma
1 and hence G contains a Wy with the hub wsy, a contradiction.
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Thus there is some vertex v € U such that dy(u) > 3. Assume
u1, uz,u3 € Ny(u). Since G contains no T7,, we have viu; ¢ E(G)
for 2 < i <4and 1 < j < 3. Thus G[{ws,us,us, us, v, v3,v4}]
contains a Wy with the hub ws, a contradiction. Thus we have
R(Trq, We) < 13.

If G contains no T%., then Ny(v;) = 0 for 2 < i < 4 and
{v2, v3,v4} is an independent set. Thus by Lemma 4, we have §(G[U])
> 3 which implies G[U] contains a Cg. In this case, we have Ny (u) =
() for any u € U since otherwise G contains a T7.. By Lemma 4,
we have §(G[V]) > 4 which implies Ny (v;) = {wvo,v1, w1, wa} for
i = 2,3,4 and hence G[V] contains a T%., a contradiction. Thus we
have R(T7c, W6) S 13.

Next, we show R(T7, Ws) = R(T74,Ws) = 13. By Theorem E,
G contains an S7(3). Let T = S7(3), V(T) = {vo,...,vs4, w1, wa},
E(T) ={vov; | 1 <1 <4} U {vjwy,vywe}. Set U = V(G) — V(T).
Obviously, |U| = 6.

If G contains no 17, we have viv; ¢ E(G) for 2 < i < 4. For
any u € U, if u € N(v;) for some ¢ with 1 <7 < 4, then dy(u) < 1.
Thus, if there are three vertices u, ug, us € U such that dy(u;) > 2
for 1 < i < 3, then G[{v1,v2,vs,v4,u1,us, u3}] contains a Wy with
the hub v1, a contradiction. If there is some v; with 2 < i < 4 such
that diy(v;) > 2, then G contains a T7, and hence we have dy(v;) < 1
for 2 < i < 4. If G[{ve, v3,v4}] contains two edges, then G contains a
T7, and hence we may assume vovs, vovg ¢ E(G). Let U = {u; | 1 <
i <6}. Assume Ny (v2) € {u1} and Ny (vs) U Ny (va) C {uq, ug, uz}.
If ug ¢ Ny(v3) U Ny (va), then since U contains at most two vertices
with degree not less than 2, we can see G[{uz, u4,us, ug}] contains a
Ps, say ugugqus is a P3. Then vsusususvaugvs is a Cg in G and hence
G contains a Wg with the hub vy. If us € Ny(vs) U Ny(vg), then
since dy(ug2) < 1, we may assume usuy, ugus ¢ FE(G) which implies
v3uguausvaugus is a Cg in G and hence G contains a Wy with the
hub v9, again a contradiction. Thus we have R(T7,, Wg) < 13.
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If G contains no Trg, then Ny(wi) = Ny(v;) = 0 for 2 < i <
4 and N(wi) N {vg,v3,v4} = 0. Thus G[{w1,vs,v3,v4,u1,us, us}]
contains a Wg with the hub w; for any three vertices u1, uo, ug € U,
a contradiction. Thus we have R(T7q4, Ws) < 13.

Finally, we show R(7%7.,Ws) = 13. By Theorem E, G contains
an S7(2,1). Let T' = S7(2,1), V(T) =V = {vg,...,v4, w1, w2} and
E(T) = {vov; | 1 < i < 4} U{vjwr,vowe}. Set U = V(G) — V.
Obviously, |U| = 6.

If G contains no Tre, then Ny(v;) = 0 for i = 3,4 and vsvy ¢
E(G). If dy(vg) = 0, then by Lemma 4, we have 6(G[U]) > 3 which
implies G[U] contains a Cs by Lemma 1 and hence Ny (u) = () for
any u € U since G contains no T7.. Thus by Lemma 4, we have
d(G[V]) > 4. Noting that vsvy ¢ E(G), after an easy check, we can
see G[V] contains a Tr, and hence we may assume dy(vg) > 1.

For any v € U, if wyy € E(G), then dy(u) = 0 for other-
wise G contains a Tr.. If dy(vg) > 2, say uj,us € Ny(vg), then
{v3,v4,u1,u2} is an independent set and for any v € U — {uy,us},
N(u) N {vs,vq,u1,us} = 0. In this case, we can see G[{vs, v4, u1, uz,
us, ug,us}] contains a W with the hub vg for any three vertices
us,ug,us € U — {u1,us}, a contradiction. Hence we may assume

dy(vo) = 1.

Let NU(’UQ) = {ul} and U = U — {ul} = {UQ,Ug,U4,U5,u6}. If
G[U'] contains a C5, then for any u € U’, Ny (u) = 0 for otherwise
G contains a T7.. By Lemma 4, we have §(G[V]) > 4. Noting that
vavg ¢ E(G), after an easy check, we can see G[V] contains a Tr.
Hence we may assume G[U’] contains no C5. By Lemma 1, there
is some vertex v € U’ such that dy/(u) < 2 which implies G[U’]
contains a P3, say ususuy is a P3 in G. Then vqusuzusuiusvy is a Cg
in G and hence G contains a Wg with the hub vs, also a contradiction.
Thus we have R(T7., Ws) < 13.

The proof of Theorem 2 is completed. |
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4. The Ramsey Numbers R(T,,W;) for 3 <A(T,) <4
and n =8

In this section, we determine R(7T,,Ws) for n = 8 and 3 <
A(Ty) < 4.

Theorem 3. R(T),,Ws) =15 for n =8 and 3 < A(T},) < 4.

Proof. Let T be a tree with order 8 and 3 < A(T") < 4. Since 2K~
contains no trees of order 8 and its complement contains no Wy, we
have R(T,Ws) > 15. Thus, in order to prove R(T,Ws) = 15, we
need only to show R(T, Wg) < 15.

If T'= Sg[4], then Theorem 3 holds by Lemma 6. If ' = Sg(1, 3),
then Theorem 3 holds by Lemma 7. If T' # Sg[4], Sg(1, 3), then we
have the following.

Proposition 1. Let T be a tree of order 8 with 3 < A(T") < 4. If
T # Ss[4], Ss(1,3), then T" must be isomorphic to one of the fifteen
trees of order 8 below.

< <P <i <

TSe
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Tgi TS J T8k TSl
T8m TSn T8 o

Let G be a graph of order 15. Suppose G contains no Wg. By
Proposition 1, we will complete the proof by showing the following
theorems.

Theorem 4. R(T,Ws) = 15 for T = Tg,, Tsp, Tsq or Tsp.

Proof. By Theorem E, G contains an Sg(3). Let T" be an Sg(3)
with V(T) =V = {vg,...,vs5,wi,wa} and E(T) = {vov; | 1 <@ <
5} U{viwy,viwa}. Set U = V(G) — V. Obviously, |U| =T7.

If G contains no Tg,, then wiv; ¢ E(G) for 2 < i < 5 and
Ny(wy) = 0. If there is some vertex v; with 2 < i < 5 such that
dy(vi) > 2, say ui,ug € Ny(v2), then vav; ¢ E(G) for 3 <i <5 and
viuj ¢ E(G) for 3 <i <5 and j = 1,2 since otherwise G contains a
Tsq. Thus, G[{w1,va,u1,us,v3,v4,v5}] contains a W with the hub
w1, a contradiction. Hence we may assume dy(v;) < 1 for 2 <i <5
which implies there are three vertices uq, u2,u3 € U such that v;u; ¢
E(G) for 2 <i<5and 1< j<3. Thus G[{wy, ve, v3, va, u, uz, us}]
contains a Wy with the hub w;, again a contradiction. Hence we
have R(Tga, Wﬁ) < 15.

If G contains no Tgp, then we have Ny (v1) = 0, viv; ¢ E(G) for
2 <i<5anddy(v;) <2for 2 <i <5 Thus, since Ul =7, we
can choose three vertices uy,us,us € U such that dy(u;) < 1 for
1 <i<3and Ny(u;) NNy (uj) =0 fori,j e {1,2,3} and ¢ # j, and
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hence G[{v1,v2,v3, v, u1,us, u3}] contains a Wg with the hub vy, a
contradiction. Thus we have R(Tg,, Wg) < 15.

If G contains no Tgg, then vov; ¢ E(G) for 3 < i < 5 and
Ny (v;) =0 for 2 < i <5. Thus for any three vertices uy, us, ug € U,
G[{v2, v3,v4, 5, u1, Uz, us}] contains a Ws with the hub vy, a contra-
diction. Hence we have R(Tgq, Ws) < 15.

If G contains no Ty, then dy(v;) < 1for 2 < i < 5. Let V' =
{va,v3,v4,v5}. Since |U| = 7, there are three vertices uy, u2,ug € U
such that Ny (u;) = 0 for 1 <i < 3. If §(G[V']) = 0, say dy(v2) = 0,
then G[{va,vs3,v4,vs5,u1,u2,u3}] contains a Wg with the hub ve, a
contradiction. Hence we have §(G[V']) > 1. If A(G[V']) > 2, then
G contains a Tgi. Thus we may assume E(G[V']) = {vavs, v4vs}. In
this case, we have Ny (v;) = () for 2 < i < 5. By Lemmas 1 and 4,
G[U] contains a C7. If Ny(wi) # 0 or {ve,v3} C N(wy), then G
contains a Tg,. Hence we may assume Ny (wq) = () and vy & N(wq).
Thus, G[{va, w1, v4, V5, u1, U2, u3}] contains a Wy with the hub vy for
any three vertices uj,u2,us € U, a contradiction. Hence we have
R(Tsk, We) < 15. |

Theorem 5. R(T,Ws) =15 for T' = Ty, Tsy,-

Proof. By Theorem E, G contains an Sg(1,2). Let T = Ss(1,2)
with V(T) =V = {vg,...,vs,w1,wa} and E(T) = {vgv; | 1 < i <
5} U {viwy,wiwa}. Set V! = {vg,v3,v4,v5} and U = V(G) — V.
Obviously, |U| =T7.

If G contains no Tg., then vov; ¢ E(G) for 3 < i < 5 and
Ny (v;) =0 for 2 < i <5. Thus for any three vertices uy, us, ug € U,
G[{v2, v3,v4, V5, u1, Uz, us}] contains a Wg with the hub v, a contra-
diction. Hence we have R(Tg., Ws) < 15.

Since |U| = 7 and G[U] contains no Ws, By Lemma 3, G[U]
contains an S3. Assume uqj,uz,us € U and ujug, ugus € E(G). If
G contains no Tg,, then Ny/(u;) = 0 for 1 < i < 3. If §(G[V']) =
0, say dy(ve) = 0, then G[{ve,vs,v4, vs,u1, uz,us}] contains a Ws
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with the hub v, a contradiction. Hence we have §(G[V']) > 1.
If A(G]V']) > 2, then G contains a Tg,. Thus we may assume
E(G[V']) = {vavs,v4vs}. In this case, we have Ny (v;) = () for 2 <
i < 5. By Lemmas 1 and 4, G[U] contains a C7 and hence Ny (u) = ()
for any u € U since otherwise G contains a Tg,. By Lemma 4, we
have 6(G[V]) > 5 which implies vswy,vswe € E(G) and hence G
contains a Tg,. Thus we have R(Tg,, Ws) < 15. |

Theorem 6. R(T, W6) =15for T = Tgf, Tgh, ng, Tgl.

Proof. By Lemma 7, G contains an Sg(1,3). Let T' be an Sg(1,3) in
G with V(T) = {vo, ..., v4, w1, w2, w3} and E(T) = {vov; | 1 <@ <
4} U {vjwy, wywe, waws}. Set U = V(G) — V. Obviously, |U| = 7.

If G contains no Ty, then wsv; ¢ E(G) for 2 <i <4, Ny(wz) =0
and dy(v;) < 1 for 2 < ¢ < 4. Thus, since |[U| = 7, we can choose
three vertices ui,u2,us € U such that viu; ¢ E(G) for 2 < i < 4
and 1 < j < 3 and hence G[{ws, v2, v3,v4, U1, uz, ug}] contains a Ws
with the hub wy, a contradiction. Thus we have R(Tgs, We) < 15.

If G contains no Tgp, then wov; ¢ E(G) for 2 < i < 4 and
Ny(wz) = 0. If A(G[U]) < 2, then since |U| = 7, G[U] contains
a Cg by Lemma 1 and hence G contains a Ws with the hub ws, a
contradiction. Hence we may assume u € U and uq, ug,us € Ny (u).
In this case, we have vju; ¢ E(G) for 2 <i<4and 1< j <3 for
otherwise G contains a Ty, and hence G[{ws, v, v3, v4, U1, Uz, us}]
contains a Wy with the hub we, again a contradiction. Thus we have
R(Tgp, Ws) < 15.

If G contains no Tgj, then viv; ¢ E(G) for 2 <i <4, Ny(vi) =0
and dy(v;) < 1 for 2 < ¢ < 4. Thus, since |[U| = 7, we can choose
three vertices ui,u2, uz € U such that v;u; ¢ E(G) for 2 <i < 4 and
1 < j < 3 and hence G[{v1, v, v3, v4, U1, uz, ug}] contains a We with
the hub wsg, a contradiction. Thus we have R(Tg;, Ws) < 15.

If G contains no Tg;, then Ny(v;)) = 0 for 2 < ¢ < 4 and
{va,v3,v4} is an independent set. By Lemma 4, we have §(G[U]) > 4
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and hence G[U] contains a C7 by Lemma 1. In this case, we have
dy(v) = 0 for each v € V(T') which implies 6(G[V]) > 5 by Lemma 4.
Noting that {ve,v3,v4} is an independent set, we have vovy, v3ws €
E(G) and hence G contains a Tg;. Thus we have R(Tg;, W) < 15. 1

Theorem 7. R(Tz,, Ws) = 15.

Proof. By Lemma 6, G contains an Sg[4]. Let 7" be an Sg[4]
with V(T') = {vo,...,vs, w1, we, w3} and E(T) = {vov; | 1 < i <
4} U {vywy, wiwa, wiws}. Set U = V(G) — V(T). If G contains no
Tgg, then wov; ¢ E(G) for 2 < i < 4, Ny(wz) = 0 and dy(v;) =
0 for 2 < ¢ < 4. Thus, for any three vertices ui,us,us € U,
G[{wa, va,v3,v4,u1,u2,u3}] contains a Ws with the hub ws, a con-
tradiction. Hence we have R(Tgg, Ws) < 15. 1

Theorem 8. R(Ts;, Ws) = 15.

Proof. By Lemma 8, G contains an Sg(3,1). Let T" be an Sg(3,1) in
G with V(T) = {vo, ..., va, w1, wa, w3} and E(T) = {vov; | 1 <i <
4} U {vywy, vawa, v3ws}. Set U = V(G) — V(T'). Obviously, |[U| = T.
If G contains no Tg;, then we have vqv; ¢ E(G) for 1 < i < 3,
Ny(v)) = 0 for 1 <4 < 3 and dy(vs) < 1. Thus, since |U| = 7,
there is three vertices ui,ug,us € U such that ui,ue,us ¢ Ny(vy)
and hence G[{v4,v1,v9,v3,u1,u2,u3}] contains a Wg with the hub
vy4, a contradiction. Thus we have R(Tg;, Ws) < 15. |

Theorem 9. R(T5,, Ws) = 15.

Proof. By Theorem 8, G contains a Tg;. Let T be a Tg; with
V(T) = {vo,...,v3,wi,...,wa} and E(T) = {vov; | 1 < i <3} U
{viw1, vowse, v3ws, v3ws}. Set U = V(G) — V(T). If G contains
no Tg,, then we have wyw; ¢ E(G) for 1 < ¢ < 3 and Ny(w;) =
() for 1 < i < 4. Thus, for any three vertices wui,us,u3 € U,
G{ws4, w1, wa,ws, ui, uz, uz}] contains a Wy with the hub wy, a con-
tradiction. Hence we have R(Tg,, Ws) < 15. |

Theorem 10. R(Tg,,, Ws) = 15.
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Proof. By Theorem 4, G contains a Tg,. Let T be a Tg, with
V(T) = {vo,...,vs,w1, w2, w3} and E(T) = {vov; | 1 <7 < 4} U
{viw1, viwe, wows}. Set U = V(G) — V(T'). Obviously, |U| = 7.
If G contains no Tg,, then {v9,v3,v4} is an independent set and
Ny(v;)) = 0 for 2 < i < 4. By Lemmas 1 and 4, G[U] contains a
C7. This implies Ny(ws) = () for otherwise G contains a Tg,,. If
{va,v3,v4} C N(ws), then G contains a Tg,,. Hence we may as-
sume vows ¢ E(G). Thus, for any three vertices uj,ug,us € U,
G[{v2, v3,v4, wa, u1,u2,u3}] contains a Wy with the hub v, a con-
tradiction. Hence we have R(Tg,, Ws) < 15. |

The proof of Theorem 3 is completed. |

5. Proof of Theorem 1

Proof of Theorem 1. If A(T,) = 2, then Theorem 1 holds by
Lemma 2. Hence we may assume A(T),) > 3. If n = 5, then T5 =
S5(1,1) and hence Theorem 1 holds. If n > 6 and A(7;,) > n — 3,
then Theorem 1 holds by Theorems D and E. Thus we may assume
3 < A(T,) < n—4. In this case, we have n > 7. If n = 7, then
Theorem 1 holds by Theorem 2. If n = 8, then Theorem 1 holds by
Theorem 3. 1
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