ENTIRE CHROMATIC NUMBER AND Δ－MATCHING OF OUTERPLANE GRAPHS ${ }^{1}$

Wang Weifan（王维凡 ）
Department of Mathematics，Zhejiang Normal University，Jinhua 321004，China
E－mail：wangwf0062＠sina．com．cn
Zhang Kemin（张克民）
Department of Mathematics，Nanjing University，Nanjing 210093，China

Abstract

Let G be an outerplane graph with maximum degree Δ and the entire chro－ matic number $\chi_{\text {vef }}(G)$ ．This paper proves that if $\Delta \geq 6$ ，then $\Delta+1 \leq \chi_{\mathrm{vef}}(G) \leq \Delta+2$ ， and $\chi_{\text {vef }}(G)=\Delta+1$ if and only if G has a matching M consisting of some inner edges which covers all its vertices of maximum degree．

Key words Outerplane graph，matching，entire chromatic number
2000 MR Subject Classification 05C15

1 Introduction

We only consider simple graphs in this paper unless otherwise stated．For a plane graph G ，we denote its vertex set，edge set，face set，minimum degree，and maximum degree by $V(G)$ ， $E(G), F(G), \delta(G)$ ，and $\Delta(G)$ ，respectively．For $v \in V(G)$ ，let $d_{G}(v)$ denote the degree of v in G ，and $N_{G}(v)$ the neighbor set of v in G ．For $S \subseteq V(G)$ ，let $G[S]$ denote the subgraph of G induced by S ．A vertex（or face）of degree k is called a k－vertex（or k－face）．Other statements and notations can be found in［2］．

A plane graph G is k－entire colorable if the elements of $V(G) \cup E(G) \cup F(G)$ can be colored with k colors such that any two adjacent or incident elements receive different colors． The entire chromatic number $\chi_{\text {vef }}(G)$ of G is the minimum number k such that G is k－entire colorable．

By the definition，$\chi_{\text {vef }}(G) \geq \Delta(G)+1$ ．Kronk and Mitchem ${ }^{[4]}$ conjectured that $\chi_{\text {vef }}(G) \leq$ $\Delta(G)+4$ for any plane graph G and they confirmed the conjecture for the case $\Delta(G) \leq 3$ ．In 1996，Borodin ${ }^{[3]}$ established the conjecture for all plane graphs G with $\Delta(G) \geq 7$ ．More recently， Sanders and Zhao ${ }^{[5]}$ further settled the case $\Delta(G)=6$ ．Thus the conjecture remains open only for the case $\Delta(G)=4,5$ ．Wang ${ }^{[7]}$ recently proved that every plane graph G is $\left(\chi^{\prime}(G)+4\right)$－entire colorable，where $\chi^{\prime}(G)$ is the chromatic index of G ．This implies that Kronk and Mitchem＇s conjecture holds for bipartite plane graphs．It is proved in［6］that every outerplane graph G

[^0]with $\Delta(G) \geq 6$ satisfies $\Delta(G)+1 \leq \chi_{\text {vef }}(G) \leq \Delta(G)+2$ and $\chi_{\text {vef }}(G)=\Delta(G)+1$ if G is 2 -connected. Both lower and upper bounds of this result are tight. A fan F_{n} of order $n \geq 6$ has $\chi_{\text {vef }}\left(F_{n}\right)=\Delta\left(F_{n}\right)+1$ and a star $K_{1, n-1}$ of order $n \geq 6$ has $\chi_{\text {vef }}\left(K_{1, n-1}\right)=\Delta\left(K_{1, n-1}\right)+2$. Thus it seems very interesting to give a complete classification of all outerplane graphs G with $\Delta(G) \geq 6$ according to their entire chromatic numbers. This paper presents a perfect solution for the problem.

2 Structural Properties

A plane graph G is called an outerplane graph if all the vertices of G lie on the boundary of some face. This face is called outer face, denoted by $f_{0}(G)$, and other faces inner faces. The edges on the boundary of outer face are called outer edges, and other edges inner edges. Let $E_{\text {in }}(G)$ and $E_{\text {out }}(G)$ denote the sets of inner edges and outer edges of G, respectively. In the sequel, we use $[x y z]$ to denote a 3 -face with boundary vertices x, y, and z. Moreover, for $k=0,1, \cdots, \Delta=\Delta(G)$, let $V_{k}(G)$ denote the set of all k-vertices in G.

Lemma 2.1 Every outerplane graph of order ≥ 2 contains two vertices of degree at most 2.

Lemma 2.2 If G is a 2-connected outerplane graph with $|V(G)| \geq 5$, then
(1) $\left|N_{G}(u) \cap V_{2}(G)\right| \leq 2$ for each vertex $u \in V(G)$; and
(2) $N_{G}(u) \neq N_{G}(v)$ for any two distinct vertices $u, v \in V_{2}(G)$.

Lemmas 2.1 and 2.2 are straightforward and thus we omit their proofs.
Lemma 2.3 Let G be a 2 -connected outerplane graph and $s^{*} \in V(G)$. Then G contains one of the following configurations:
(1) Two adjacent 2 -vertices u and v such that $s^{*} \notin\{u, v\}$.
(2) A 3-face $[u x y]$ with $d_{G}(u)=2, d_{G}(x)=3$, and $x y \in E_{\text {in }}(G)$ such that $s^{*} \notin\{u, x\}$.
(3) A 3-face $[u x y]$ with $d_{G}(u)=2, d_{G}(x)=d_{G}(y)=4$, and $x y \in E_{\text {in }}(G)$ such that $s^{*} \notin\{u, x, y\}$.
(4) Three 3-faces $\left[x u_{1} v_{1}\right],\left[x u_{2} v_{2}\right]$, and $\left[x v_{1} v_{2}\right]$ with $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=2, d_{G}(x)=4$, and $v_{1} v_{2} \in E_{\text {in }}(G)$ such that $s^{*} \notin\left\{x, u_{1}, u_{2}\right\}$.

Proof If $|V(G)| \leq 4$ or $\Delta(G)=2, G$ contains obviously either (1) or (2). Thus assume that $|V(G)| \geq 5$ and $\Delta(G) \geq 3$. Suppose to the contrary that the lemma is false, i.e., G contains none of the configurations (1) to (4). Let

$$
\begin{aligned}
& \widetilde{V}=\left\{v \in V_{2}(G) \backslash\left\{s^{*}\right\} \mid x y \notin E(G) \text { with } N_{G}(v)=\{x, y\}\right\} \\
& \widetilde{E}=\left\{x y \mid v \in \widetilde{V} \text { with } N_{G}(v)=\{x, y\}\right\} \\
& H=G-\widetilde{V}+\widetilde{E}
\end{aligned}
$$

Thus H is a 2-connected outerplane graph with $s^{*} \in V(H)$. It is easy to see that H also doesn't contain any of (1) to (4). For every 2-vertex $v \in V_{2}(H) \backslash\left\{s^{*}\right\}$ with $N_{H}(v)=\{x, y\}$, we have $x y \in E(G), d_{H}(x) \geq 4, d_{H}(y) \geq 4$, and $\max \left\{d_{H}(x), d_{H}(y)\right\} \geq 5$ (when $s^{*} \in\{x, y\}, d_{H}\left(s^{*}\right) \geq 3$ since H is 2-connected). Without loss of generality, we assume $x \neq s^{*}$ (otherwise, we take $\left.y \neq s^{*}\right)$.

If $y \neq s^{*}$, we furthermore assume that $d_{H}(y) \geq 5$. Hence one of the following cases holds by the assumption:
(a) $d_{H}(x) \geq 5$;
(b) $d_{H}(x)=4$ and $N_{H}(x) \cap\left(V_{2}(H) \backslash\left\{s^{*}, v\right\}\right)=\emptyset$;
(c) $d_{H}(x)=4$ and there exists $x_{1} \in N_{H}(x) \cap\left(V_{2}(H) \backslash\left\{s^{*}, v\right\}\right)$. Let y_{1} denote the neighbor of x_{1} in H different from x. Then $y y_{1} \notin E(H)$ because H contains no (4).

If $y=s^{*}$, we can similarly prove that one of (a), (b), and (c) holds.
Let H_{1} denote the graph obtained from H by handling all 2-vertices v in $V_{2}(H) \backslash\left\{s^{*}\right\}$ in this way: if either (a) or (b) holds, we remove the vertex v; if (c) holds, we add the edge $y y_{1}$ after removing the vertices v, x, and x_{1}. Clearly, H_{1} is a 2 -connected outerplane graph. Using Lemma 2.2, we may prove that $d_{H_{1}}\left(s^{*}\right) \geq 2$ and $d_{H_{1}}(t) \geq 3$ for all $t \in V\left(H_{1}\right) \backslash\left\{s^{*}\right\}$. This implies that $V_{2}\left(H_{1}\right) \backslash\left\{s^{*}\right\}=\emptyset$, which contradicts Lemma 2.1.

Theorem 2.4 Let G be an outerplane graph with $\delta(G)=2$. Then G contains one of the following configurations:
(1) Two adjacent 2 -vertices u and v.
(2) A 3-face $[u x y]$ with $d_{G}(u)=2, d_{G}(x)=3$, and $x y \in E_{\text {in }}(G)$.
(3) A 3-face $[u x y]$ with $d_{G}(u)=2, d_{G}(x)=d_{G}(y)=4$, and $x y \in E_{\text {in }}(G)$.
(4) Three 3-faces $\left[x u_{1} v_{1}\right],\left[x u_{2} v_{2}\right]$, and $\left[x v_{1} v_{2}\right]$ with $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=2, d_{G}(x)=4$, and $v_{1} v_{2} \in E_{\text {in }}(G)$.

Proof If G is 2-connected, the result follows immediately from Lemma 2.3. In fact, we may choose any vertex of G as the specific vertex s^{*}. Otherwise, let B be a block of G that contains a unique cut vertex, say s^{*}, of G. Since B is 2 -connected and $s^{*} \in V(B), B$ contains one of the following configurations by Lemma 2.3.
(1') Two adjacent 2-vertices u and v such that $s^{*} \notin\{u, v\}$.
(2') A 3-face $[u x y]$ with $d_{B}(u)=2, d_{B}(x)=3$, and $x y \in E_{\text {in }}(B)$ such that $s^{*} \notin\{u, x\}$.
$\left(3^{\prime}\right)$ A 3 -face $[u x y]$ with $d_{B}(u)=2, d_{B}(x)=d_{B}(y)=4$, and $x y \in E_{\text {in }}(B)$ such that $s^{*} \notin\{u, x, y\}$.
(4') Three 3-faces $\left[x u_{1} v_{1}\right],\left[x u_{2} v_{2}\right]$, and $\left[x v_{1} v_{2}\right]$ with $d_{B}\left(u_{1}\right)=d_{B}\left(u_{2}\right)=2, d_{B}(x)=4$, and $v_{1} v_{2} \in E_{\text {in }}(B)$ such that $s^{*} \notin\left\{x, u_{1}, u_{2}\right\}$.

Note that $E_{\text {in }}(B) \subseteq E_{\text {in }}(G)$ and $d_{B}(t)=d_{G}(t)$ for all $t \in\left\{u, v, x, y, u_{1}, u_{2}\right\}$. Thus (1') to $\left(4^{\prime}\right)$ are the desired subgraphs of G.

Corollary 2.5 Let G be an outerplane graph with $\delta(G)=2$. Then G contains one of the following configurations:
(1) Two adjacent 2-vertices u and v.
(2) A 3-face $[u x y]$ with $d_{G}(u)=2$ and $d_{G}(x)=3$.
(3) Two 3-faces $\left[x u_{1} v_{1}\right]$ and $\left[x u_{2} v_{2}\right]$ with $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=2$ and $d_{G}(x)=4$.

3 Entire Chromatic Number

A matching M of an ouerplane graph G is called a Δ-matching if it consists of some inner edges and covers all its vertices of maximum degree.

Theorem 3.1 Let G be an outerplane graph and $t(G)=\max \{\Delta(G)+2,7\}$. Then G admits a $t(G)$-entire coloring satisfying the following Property (P1):
$(\mathrm{P} 1):$ some color is only used to color the outer face $f_{0}(G)$.

Proof By induction on the vertex number $|V(G)|$. When $|V(G)| \leq 5$, the theorem holds trivially. Suppose that it is true for all the outerplane graphs with less than n vertices, and let G be an outerplane graph with $|V(G)|=n \geq 6$. Note that the proof is easy for the case $\delta(G) \leq 1$. Thus we suppose that $\delta(G)=2$. By Corollary 2.5, we need to handle three cases. For each case, we define an outerplane graph H with $|V(H)|<n$ and let ϕ denote a desired $t(G)$-entire coloring of H with the color set $C=\{1,2, \cdots, t(G)\}$ by the induction hypothesis. Then we extend ϕ to a $t(G)$-entire coloring of G satisfying (P1). Since every 2-vertex $y \in V(G) \backslash V(H)$ is adjacent or incident to at most six colored elements (namely, at most two vertices, two edges, and two faces) whereas $|C| \geq 7, y$ can always be colored properly whatever its adjacent or incident elements have been colored. Thus we may omit the coloring for all 2 -vertices in the following proof.

Case $1 G$ contains two adjacent 2-vertices u and v. Let $u_{1} \in N_{G}(u) \backslash\{v\}$ and $v_{1} \in$ $N_{G}(v) \backslash\{u\}$. Let f^{\prime} denote the face of G whose boundary contains the edge $u v$ and $f^{\prime} \neq f_{0}(G)$.

First suppose that $u_{1} \neq v_{1}$. Define the graph $H=G-u+v u_{1}$ and let $f^{\prime \prime}$, different from the outer face $f_{0}(H)$, denote the face of H whose boundary contains the edge $v u_{1}$. Obviously, $|V(H)|<n$ and $\Delta(H) \leq \Delta(G)$, so $t(H) \leq t(G)$. Suppose that $\phi\left(f_{0}(H)\right)=c_{0}$. Thus c_{0} is used only once in the coloring ϕ by (P1). In G, we color $f_{0}(G)$ with c_{0}, f^{\prime} with $\phi\left(f^{\prime \prime}\right)$, uu u_{1} with $\phi\left(v u_{1}\right)$, and $u v$ with a color $c_{1} \in C \backslash\left\{\phi\left(v v_{1}\right), \phi\left(v u_{1}\right), \phi\left(f^{\prime \prime}\right), c_{0}\right\}$. Since $u v$ has at most four forbidden colors when it will be colored whereas $t(G) \geq 7$, the coloring is admissible.

Next suppose that $u_{1}=v_{1}$. This implies that $\left[u v u_{1}\right]$ is a 3 -face of G. Let $H=G-u-v$ and suppose $\phi\left(f_{0}(H)\right)=c_{0}$ is used only once. We use $S(x)$ to denote the set of colors assigned to a vertex $x \in V(H)$ and those edges incident to x in H under the coloring ϕ. In G, we further color $f_{0}(G)$ with c_{0}, uu u_{1} with $c_{1} \in C \backslash\left(S\left(u_{1}\right) \cup\left\{c_{0}\right\}\right)$, vu with $c_{2} \in C \backslash\left(S\left(u_{1}\right) \cup\left\{c_{1}, c_{0}\right\}\right)$, $u v$ with $c_{3} \in C \backslash\left\{c_{2}, c_{1}, c_{0}\right\}$, and $\left[u v u_{1}\right]$ with $c_{4} \in C \backslash\left\{\phi\left(u_{1}\right), c_{3}, c_{2}, c_{1}, c_{0}\right\}$. Since $\left|S\left(u_{1}\right)\right|=$ $d_{H}\left(u_{1}\right)+1 \leq d_{G}\left(u_{1}\right)-2+1=d_{G}\left(u_{1}\right)-1 \leq \Delta(G)-1$, each element x has at most six or $\Delta(G)+1$ forbidden colors when we consider to color it. By $t(G)=\max \{\Delta(G)+2,7\}$, the coloring is available.

Case $2 G$ contains a 3 -face $[u x y]$ with $d_{G}(u)=2$ and $d_{G}(x)=3$. Let f^{*}, different from [uxy], denote the face of G whose boundary contains the edge $x y$. Define $H=G-u$ and suppose $\phi\left(f_{0}(H)\right)=c_{0}$. In G, we color $f_{0}(G)$ with c_{0}, uy with a color $c_{1} \in C \backslash\left(S(y) \cup\left\{c_{0}\right\}\right)$, [uxy] with a color $c_{2} \in C \backslash\left\{\phi(x), \phi(y), \phi\left(f^{*}\right), \phi(x y), c_{1}, c_{0}\right\}$, and $u x$ with a color $c_{3} \in C \backslash\left(S(x) \cup\left\{c_{2}, c_{1}, c_{0}\right\}\right)$. Since $|S(y)| \leq d_{G}(y)-1+1 \leq \Delta(G)$ and $|S(x)| \leq 3$, the coloring is available.

Case $3 G$ contains two 3 -faces $\left[x u_{1} v_{1}\right]$ and $\left[x u_{2} v_{2}\right]$ with $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=2$ and $d_{G}(x)=4$. Let f^{*} denote the face of G with $x v_{1}$ and $x v_{2}$ as boundary edges. Consider the graph $H=G-u_{1}-u_{2}$ and assume $\phi\left(f_{0}(H)\right)=c_{0}$. In G, we first color $f_{0}(G)$ with $c_{0}, u_{i} v_{i}$ with a color $c_{i} \in C \backslash\left(S\left(v_{i}\right) \cup\left\{c_{0}\right\}\right)$ for $i=1,2$.

If $c_{1} \in\left\{\phi\left(f^{*}\right), \phi(x)\right\}$, we color $\left[x u_{2} v_{2}\right]$ with $c_{3} \in C \backslash\left\{\phi(x), \phi\left(v_{2}\right), \phi\left(x v_{2}\right), \phi\left(f^{*}\right), c_{2}, c_{0}\right\}, x u_{2}$ with $c_{4} \in C \backslash\left\{\phi(x), \phi\left(x v_{1}\right), \phi\left(x v_{2}\right), c_{3}, c_{2}, c_{0}\right\}, x u_{1}$ with $c_{5} \in C \backslash\left\{\phi(x), \phi\left(x v_{1}\right), \phi\left(x v_{2}\right), c_{4}, c_{1}, c_{0}\right\}$, and $\left[x u_{1} v_{1}\right]$ with $c_{6} \in C \backslash\left\{\phi(x), \phi\left(v_{1}\right), \phi\left(x v_{1}\right), \phi\left(f^{*}\right), c_{5}, c_{1}, c_{0}\right\}$. If $c_{2} \in\left\{\phi\left(f^{*}\right), \phi(x)\right\}$, we have a similar proof. So assume $c_{1}, c_{2} \notin\left\{\phi\left(f^{*}\right), \phi(x)\right\}$. If $\phi\left(v_{2}\right) \neq \phi\left(x v_{1}\right)$, we color $x u_{2}$ with $\phi\left(v_{2}\right), x u_{1}$ with $\phi\left(f^{*}\right),\left[x u_{2} v_{2}\right]$ with $c_{3} \in C \backslash\left\{\phi(x), \phi\left(v_{2}\right), \phi\left(x v_{2}\right), \phi\left(f^{*}\right), c_{2}, c_{0}\right\}$, and $\left[x u_{1} v_{1}\right]$ with $c_{4} \in C \backslash\left\{\phi(x), \phi\left(v_{1}\right), \phi\left(x v_{1}\right), \phi\left(f^{*}\right), c_{1}, c_{0}\right\}$. If $\phi\left(v_{1}\right) \neq \phi\left(x v_{2}\right)$, a similar argument can be established. If $\phi\left(v_{2}\right)=\phi\left(x v_{1}\right)$ and $\phi\left(v_{1}\right)=\phi\left(x v_{2}\right)$, we interchange the colors of $u_{1} v_{1}$ and
$x v_{1}$, and color $x u_{2}$ with $\phi\left(v_{2}\right)$ and $x u_{1}$ with $\phi\left(f^{*}\right)$. Afterwards we color similarly $\left[x u_{1} v_{1}\right]$ and [$\left.x u_{2} v_{2}\right]$.

It is easy to check that the above coloring is available. Thus the proof of Theorem 3.1 is completed.

Corollary 3.2 If G is an outerplane graph with $\Delta(G) \geq 5$, then $\Delta(G)+1 \leq \chi_{\text {vef }}(G) \leq$ $\Delta(G)+2$; and moreover G admits a $(\Delta(G)+2$)-entire coloring satisfying Property (P1).

Theorem 3.3 If G is an outerplane graph with $\Delta(G) \geq 6$, then $\chi_{\text {vef }}(G)=\Delta(G)+1$ if and only if G has a Δ-matching.

Proof Suppose that $\chi_{\text {vef }}(G)=\Delta(G)+1$. Let ϕ be an arbitrary $(\Delta(G)+1)$-entire coloring of G. Then, for each $u \in V_{\Delta}(G)$, all the $\Delta(G)+1$ colors used by ϕ must, at the same time, occur on the vertex u and those edges incident to u. This means that there is an inner edge e_{u} incident to u which receives the same color as $f_{0}(G)$. It is easy to see that, for any two distinct vertices $u, v \in V_{\Delta}(G)$, either $e_{u}=e_{v}=u v \in E_{\text {in }}(G)$, or $e_{u} \neq e_{v}$ and e_{u} is non-adjacent to e_{v} in G. We put

$$
M_{\Delta}=\left\{e \in E_{\text {in }}(G) \mid \phi(e)=\phi\left(f_{0}(G)\right\} .\right.
$$

Then $M_{\Delta} \subseteq E_{\text {in }}(G)$ and M_{Δ} covers all the vertices in $V_{\Delta}(G)$. Hence M_{Δ} is a Δ - matching of G.

Conversely, if G contains a Δ-matching M_{Δ}, let us prove that G admits a $(\Delta(G)+1)$-entire coloring ϕ satisfying the following Property (P2):
(P2): all the edges in M_{Δ} are assigned to the same color as $\phi\left(f_{0}(G)\right)$.
We make use of induction on $|V(G)|$. If $|V(G)|=\Delta(G)+1, G$ is either a fan F_{n} or a subgraph $\overline{F_{n}}$ of F_{n} with $\Delta\left(\overline{F_{n}}\right)=\Delta\left(F_{n}\right)$, where $n=|V(G)|$. It is easy to check that given a Δ matching of G, there exists a $(\Delta(G)+1)$-entire coloring of G satisfying Property (P2). Suppose that G is an outerplane graph with a Δ-matching M_{Δ} and $|V(G)| \geq \Delta(G)+2$. Obviously, we may assume that G is connected and M_{Δ} is a maximal Δ-matching of G (namely, it contains as many edges as possible). If G contains a 1 -vertex u, let v be the neighbor of u and let $H=G-u$. We consider two cases below.
(i) $\Delta(H)=\Delta(G)$. We note that M_{Δ} is also a Δ-matching of H. By the induction hypothesis, H has a $(\Delta(G)+1)$-entire coloring ϕ with the color set C satisfying Property (P2). Suppose $\phi\left(f_{0}(H)\right)=c_{0}$. In G, we color $f_{0}(G)$ with c_{0}, $u v$ with a color $c_{1} \in C \backslash\left(S(v) \cup\left\{c_{0}\right\}\right)$, and u with a color $c_{2} \in C \backslash\left\{\phi(v), c_{1}, c_{0}\right\}$. When $d_{G}(v)<\Delta(G),|S(v)|=d_{G}(v)-1+1 \leq \Delta(G)-1$ and hence at most $\Delta(G)$ colors are forbidden to color $u v$; when $d_{G}(v)=\Delta(G)$, there exists some edge $e \in M_{\Delta}$ that covers v in G. Since e also covers v in $H, \phi(e)=c_{0}$ by Property (P2). Again, at most $\Delta(G)$ colors are forbidden to color $u v$ in G. Therefore the above coloring is available.
(ii) $\Delta(H)<\Delta(G)$. In this case, $\Delta(H)=\Delta(G)-1 \geq 5$. By Corollary 3.2, H admits a $(\Delta(G)+1)$-entire coloring ϕ satisfying Property (P1). First, all the edges in M_{Δ} are recolored by the same color $\phi\left(f_{0}(H)\right)$, then (ii) is reduced to the case (i).

Suppose now $\delta(G)=2$. By Theorem 2.4, we need to consider the following cases.
Case $1 G$ contains two adjacent 2-vertices u and v. Let $x \in N_{G}(u) \backslash\{v\}$ and $y \in$ $N_{G}(v) \backslash\{u\}$. Consider the graph $H=G-u+x v$ if $x \neq y$ and $H=G-u$ if $x=y$. It suffices to note that M_{Δ} is a Δ-matching of H. Similarly to the proof of Case 1 in Theorem 3.1, we can
extend any $(\Delta(G)+1)$-entire coloring of H satisfying Property (P2) into a $(\Delta(G)+1)$-entire coloring of G satisfying Property (P2).

Case $2 G$ contains a 3 -face $[u x y]$ with $d_{G}(u)=2, d_{G}(x)=3$, and $x y \in E_{\text {in }}(G)$. We denote by f^{*} the face of G, distinct from $[u x y]$, whose boundary contains the edge $x y$. Let $H=G-u$. Clearly, M_{Δ} (or its subset) forms a Δ-matching of H. Let ϕ be a $(\Delta(G)+1)$-entire coloring of H satisfying Property (P2). In G, we first color $f_{0}(G)$ with $\phi\left(f_{0}(H)\right)=c_{0}$.

If $x y \notin M_{\Delta}$, there exists an edge $e \in M_{\Delta}$ that is incident to y in H since, as otherwise, $M_{\Delta} \cup\{x y\}$ is a Δ-matching of G with more edges than M_{Δ}, contradict to the maximality of M_{Δ}. Thus $\phi(e)=c_{0}$ by Property (P2). We color $u y$ with $c_{1} \in C \backslash S(y)$, [uxy] with $c_{2} \in C \backslash\left\{\phi(x), \phi(y), \phi(x y), \phi\left(f^{*}\right), c_{1}, c_{0}\right\}$, and $u x$ with $c_{3} \in C \backslash\left(S(x) \cup\left\{c_{2}, c_{1}, c_{0}\right\}\right)$.

If $x y \in M_{\Delta}$, then no edge incident to the vertex y in H is assigned to the color c_{0}. We color $u y$ with $\phi(x y)$ and recolor $x y$ with c_{0}. Then we color [uxy] with $c_{1} \in C \backslash\{\phi(x), \phi(y), \phi(x y)$, $\left.\phi\left(f^{*}\right), c_{0}\right\}$, and $u x$ with $c_{2} \in C \backslash\left(S(x) \cup\left\{c_{1}, c_{0}\right\}\right)$.

Noting that $|S(y)| \leq \Delta(G),|S(x)| \leq 3$, and $|C| \geq \Delta(G)+1 \geq 7$, the above coloring is available.

Case $3 G$ contains a 3 -face $[u x y]$ with $d_{G}(u)=2, d_{G}(x)=d_{G}(y)=4$, and $x y \in E_{\text {in }}(G)$. Similarly, let f^{*} denote the face of G, distinct from [uxy], whose boundary contains the edge $x y$. Let $H=G-u$. Let ϕ be a $(\Delta(G)+1)$-entire coloring of H with $c_{0}=\phi\left(f_{0}(H)\right)$ satisfying (P2). In G, we first color $f_{0}(G)$ with c_{0}. If $x y \in M_{\Delta}$, we furthermore color $u y$ with $\phi(x y)$ and recolor $x y$ with c_{0}, then color [uxy] with $c_{1} \in C \backslash\left\{\phi(x), \phi(y), \phi(x y), \phi\left(f^{*}\right), c_{0}\right\}$, and $u x$ with $c_{2} \in C \backslash\left(S(x) \cup\left\{c_{1}, c_{0}\right\}\right)$. So suppose $x y \notin M_{\Delta}$. By the maximality of M_{Δ}, there exists some edge $e \in M_{\Delta}$ that is incident to one of x and y in H. Without loss of generality, we suppose that e is incident to x, so $\phi(e)=c_{0}$ by Property (P2). We color $u y$ with $c_{1} \in C \backslash\left(S(y) \cup\left\{c_{0}\right\}\right)$, [uxy] with $c_{2} \in C \backslash\left\{\phi(x), \phi(y), \phi(x y), \phi\left(f^{*}\right), c_{1}, c_{0}\right\}$, and $u x$ with $c_{3} \in C \backslash\left(S(x) \cup\left\{c_{2}, c_{1}\right\}\right)$. Since $|S(x)| \leq 4$ and $|S(y)| \leq 4$, the coloring is feasible.

Case $4 G$ contains three 3 -faces $\left[x u_{1} v_{1}\right],\left[x u_{2} v_{2}\right]$, and $\left[x v_{1} v_{2}\right]$ such that $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=$ $2, d_{G}(x)=4$, and $v_{1} v_{2} \in E_{\text {in }}(G)$. Suppose that f^{*} is the face of G whose boundary contains $v_{1} v_{2}$ and $f^{*} \neq\left[x v_{1} v_{2}\right]$. Let $H=G-u_{1}-u_{2}-x$. It is easy to see that M_{Δ} (or its subset) forms a Δ-matching of H . Suppose that ϕ is a $(\Delta(G)+1)$-entire coloring of H satisfying Property (P2). In order to construct a desired $(\Delta(G)+1)$-entire coloring of G, we first color $f_{0}(G)$ with $c_{0}=\phi\left(f_{0}(H)\right)$. Then the proof is divided into the following subcases.

Subcase 4.1 $v_{1} v_{2} \in M_{\Delta}$. It follows that c_{0} can not occur on those edges in H each of which is incident to v_{1} or v_{2}. We color both $u_{1} v_{1}$ and $x v_{2}$ with $\phi\left(v_{1} v_{2}\right), x u_{1}$ with $\phi\left(v_{1}\right)$, and recolor $v_{1} v_{2}$ with c_{0}. Furthermore, we color $x v_{1}$ with $c_{1} \in C \backslash\left(S\left(v_{1}\right) \cup\left\{c_{0}\right\}\right)$, $u_{2} v_{2}$ with $c_{2} \in C \backslash\left(S\left(v_{2}\right) \cup\left\{c_{0}\right\}\right),\left[x v_{1} v_{2}\right]$ with $c_{3} \in C \backslash\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right), \phi\left(v_{1} v_{2}\right), \phi\left(f^{*}\right), c_{1}, c_{0}\right\}, x$ with $c_{4} \in C \backslash\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right), \phi\left(v_{1} v_{2}\right), c_{3}, c_{1}, c_{0}\right\}$, and $\left[x u_{1} v_{1}\right]$ with $c_{5} \in C \backslash\left\{\phi\left(v_{1}\right), \phi\left(v_{1} v_{2}\right), c_{4}, c_{3}, c_{1}, c_{0}\right\}$.

If $c_{1} \neq \phi\left(v_{2}\right)$, we color $x u_{2}$ with $\phi\left(v_{2}\right)$. So assume $c_{1}=\phi\left(v_{2}\right)$. When $c_{3}=c_{2}$, we color $x u_{2}$ properly. When $c_{3} \neq c_{2}$, we color $x u_{2}$ with c_{3}. Finally, we can color $\left[x u_{2} v_{2}\right]$ properly in both cases.

Subcase $4.2 x v_{2} \in M_{\Delta}$. In this case, either c_{0} occurs on some incident edge of v_{1} in H, or $d_{G}\left(v_{1}\right)<\Delta(G)$ and c_{0} does not occur on any incident edge of v_{1} in H. We color $x v_{2}$ with $c_{0}, x u_{1}$ with $\phi\left(v_{1}\right), x u_{2}$ with $\phi\left(v_{2}\right), x v_{1}$ with $c_{1} \in C \backslash\left(S\left(v_{1}\right) \cup\left\{c_{0}\right\}\right), u_{1} v_{1}$ with $c_{2} \in C \backslash\left(S\left(v_{1}\right) \cup\left\{c_{1}, c_{0}\right\}\right)$, $u_{2} v_{2}$ with $c_{3} \in C \backslash\left(S\left(v_{2}\right) \cup\left\{c_{0}\right\}\right),\left[x v_{1} v_{2}\right]$ with $c_{4} \in C \backslash\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right), \phi\left(v_{1} v_{2}\right), \phi\left(f^{*}\right), c_{1}, c_{0}\right\}, x$
with $c_{5} \in C \backslash\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right), c_{4}, c_{1}, c_{0}\right\},\left[x u_{1} v_{1}\right]$ with $c_{6} \in C \backslash\left\{\phi\left(v_{1}\right), c_{5}, c_{4}, c_{2}, c_{1}, c_{0}\right\}$, and $\left[x u_{2} v_{2}\right]$ with $c_{7} \in C \backslash\left\{\phi\left(v_{2}\right), c_{5}, c_{4}, c_{3}, c_{0}\right\}$.

If $x v_{1} \in M_{\Delta}$, we have a similar argument.
Subcase $4.3 x v_{1}, x v_{2}, v_{1} v_{2} \notin M_{\Delta}$. The maximality of M_{Δ} implies that, for $i=1,2$, there exists some edge e_{i} incident to v_{i} in H such that $\phi\left(e_{i}\right)=c_{0}$. We color $\left[x v_{1} v_{2}\right]$ with $c_{0}, u_{1} v_{1}$ with $c_{1} \in C \backslash S\left(v_{1}\right), x v_{1}$ with $c_{2} \in C \backslash\left(S\left(v_{1}\right) \cup\left\{c_{1}\right\}\right), x v_{2}$ with $c_{3} \in C \backslash\left(S\left(v_{2}\right) \cup\left\{c_{2}\right\}\right), u_{2} v_{2}$ with $c_{4} \in$ $C \backslash\left(S\left(v_{2}\right) \cup\left\{c_{3}\right\}\right), x$ with $c_{5} \in C \backslash\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right), c_{3}, c_{2}, c_{0}\right\}, x u_{1}$ with $c_{6} \in C \backslash\left\{c_{5}, c_{3}, c_{2}, c_{1}, c_{0}\right\}$, $x u_{2}$ with $c_{7} \in C \backslash\left\{c_{6}, c_{5}, c_{4}, c_{3}, c_{2}, c_{0}\right\},\left[x u_{1} v_{1}\right]$ with $c_{8} \in C \backslash\left\{\phi\left(v_{1}\right), c_{6}, c_{5}, c_{2}, c_{1}, c_{0}\right\}$, and $\left[x u_{2} v_{2}\right]$ with $c_{9} \in C \backslash\left\{\phi\left(v_{2}\right), c_{7}, c_{5}, c_{4}, c_{3}, c_{0}\right\}$. Since $\left|S\left(v_{i}\right)\right| \leq \Delta(G)-1$ for $i=1,2$, the coloring is feasible.

Finally, we can color properly all the 2-vertices in $V(G) \backslash V(H)$, similarly to the proof of Theorem 3.1. This completes the proof of the theorem.

We conjecture that Theorem 3.3 holds for an outerplane graph of maximum degree 5 . It was proved in [8] that every outerplane graph G with $\Delta(G)=4$ has $5 \leq \chi_{\text {vef }}(G) \leq 6$, and a sufficient and necessary condition for $\chi_{\text {vef }}(G)=5$ was established. Using Corollary 3.2 and repeating the proof of the necessity for Theorem 3.3, we can derive the following

Theorem 3.4 If G is an outerplane graph with $\Delta(G)=5$ and without a Δ-matching, then $\chi_{\text {vef }}(G)=\Delta(G)+2$.

4Δ-Matching

Theorem 3.3 shows that the problem of determining the entire chromatic number of an outerplane graph G with $\Delta(G) \geq 6$ is equivalent to search for a Δ-matching in G. In this section, we investigate the existence of Δ-matchings in an outerplane graph. We first prove a useful lemma.

Lemma 4.1 Every outerplane graph G contains a matching M that covers all the vertices of degree at least 3 .

Proof The result holds obviously if $|V(G)| \leq 4$. Suppose that G is a connected outerplane graph with $|V(G)| \geq 5$. If G contains a 1-vertex u, let $u v \in E(G)$. By the induction hypothesis, $G-u$ admits a matching M^{\prime} that covers every vertex of degree at least 3 in $G-u$. Let $M=M^{\prime} \cup\{u v\}$ if M^{\prime} does not cover v and $M=M^{\prime}$ otherwise. It is easy to see that M is a required matching of G.

Now suppose that $\delta(G)=2$. By Corollary 2.5, we need to consider the following two cases.
Case $1 G$ contains two adjacent 2-vertices u and v. Let $u_{1} \in N_{G}(u) \backslash\{v\}$ and $v_{1} \in$ $N_{G}(v) \backslash\{u\}$. By the induction hypothesis, $G-u-v$ admits a matching M that covers every vertex of degree at least 3 . If M^{\prime} covers both u_{1} and v_{1}, let $M=M^{\prime}$. If M^{\prime} covers exactly one of u_{1} and v_{1}, say u_{1}, let $M=M^{\prime} \cup\left\{v v_{1}\right\}$. If M^{\prime} covers neither u_{1} nor v_{1}, let $M=M^{\prime} \cup\left\{u u_{1}, v v_{1}\right\}$ when $u_{1} \neq v_{1}$, and $M=M^{\prime} \cup\left\{u u_{1}\right\}$ when $u_{1}=v_{1}$. Thus M is a matching of G covering each vertex of degree at least 3 .

Case $2 G$ contains a 3 -face $[u x y]$ with $d(u)=2$. Suppose that M^{\prime} is a matching of $G-u$ that covers every vertex of degree at least 3 by the induction hypothesis. Similarly, if M^{\prime} covers both x and y, we take $M=M^{\prime}$. If M^{\prime} covers exactly one of x and y, say x, we take $M=M^{\prime} \cup\{u y\}$. If M^{\prime} covers neither x nor y, we take $M=M^{\prime} \cup\{x y\}$. It is easy to show
that M is a matching of G covering every vertex of degree at least 3. The proof of the lemma is completed.

Lemma 4.1 is the best possible in the sense that there exist outerplane graphs without a matching covering all vertices of degree at least 2. For example, an odd cycle is an outerplane graph without a perfect matching.

Suppose that G is an outerplane graph and $u \in V(G)$. The inner degree, denoted by $d_{i n}(u)$, of u is defined to be the number of inner edges incident to u in G. Set

$$
\begin{aligned}
& A(G)=V_{\Delta}(G) \\
& \delta_{\mathrm{in}}(G)=\min \left\{d_{\mathrm{in}}(u) \mid u \in A(G)\right\}, \\
& B(G)=\left\{x \in V(G) \backslash A(G) \mid, \text { there is } y \in A(G) \text { such that } x y \in E_{\mathrm{in}}(G)\right\}, \\
& G^{*}=G[A(G) \cup B(G)]-E_{\text {out }}(G)-E(G[B(G)]) .
\end{aligned}
$$

Then G contains a Δ-matching if and only if G^{*} has a matching that covers all vertices in $A(G)$. Moreover, if $\delta_{\text {in }}(G)=0$, i.e., G has a vertex of maximum degree not incident to any inner edge, then G has not a Δ-matching. However, we have the following.

Theorem 4.2 If G is an outerplane graph with $\delta_{\text {in }}(G) \geq 3$, then G contains a Δ matching.

Proof Let G^{*} be defined as above. By Lemma 4.1, G^{*} admits a matching M^{*} that covers every vertex of degree at least 3 in G^{*}. We note that $M^{*} \subseteq E\left(G^{*}\right) \subseteq E_{\text {in }}(G)$ and $A(G) \subseteq V\left(G^{*}\right)$. For every vertex $v \in A(G), d_{G^{*}}(v) \geq \delta_{\mathrm{in}}(G) \geq 3$. It follows that M^{*} is a matching of G that covers every vertex of maximum degree. Thus M^{*} is a Δ-matching of G.

The condition that $\delta_{\text {in }}(G) \geq 3$ in Theorem 4.2 can not be weaken to the case $1 \leq \delta_{\text {in }}(G) \leq 2$. Let G be an outerplane graph obtained by adding n chords $x_{1} x_{3}, x_{3} x_{5}, x_{5} x_{7}, \cdots, x_{2 n-1} x_{1}$ to a $2 n$-cycle $x_{1} x_{2} x_{3} \cdots x_{2 n} x_{1}$, where $n \geq 3$ is odd. It is easy to see that $\delta_{\text {in }}(G)=2$ and G has not a Δ-matching.

Corollary 4.3 Every 2-connected outerplane graph G with $\Delta(G) \geq 5$ contains a Δ matching.

Proof Since G is 2-connected, every vertex is incident to exactly two outer edges. Thus, for each $u \in A(G), d_{\text {in }}(u)=d_{G}(u)-2 \geq 5-2=3$. Therefore $\delta_{\text {in }}(G) \geq 3$, and hence the result follows from Theorem 4.2.

Combining Theorem 3.3 and Corollary 4.3, we have the following.
Corollary 4.4 If G is a 2-connected outerplane graph with $\Delta(G) \geq 6$, then $\chi_{\text {vef }}(G)=$ $\Delta(G)+1$.

Theorem 4.5 Let G be an outerplane graph with $\Delta(G) \geq 5$. If one of the following conditions holds, then G has a Δ-matching:
(1) $\delta_{\text {in }}(G) \geq|A(G)|$;
(2) G^{*} contains no cut vertex and each odd component of G^{*} contains at least one vertex in $B(G)$.

Proof First suppose that (1) holds. Let $A(G)=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$. Thus $\delta_{\text {in }}(G) \geq k$. If $k \geq 3, G$ contains a Δ-matching by Theorem 4.2. Assume that $1 \leq k \leq 2$. It is easy to observe that there exists a subset $M=\left\{e_{1}, \cdots, e_{k}\right\} \subseteq E\left(G^{*}\right)$ such that x_{i} is incident to e_{i} for $i=1,2, \cdots, k$, and for $i \neq j$, either $e_{i}=e_{j}$ or e_{i} is not adjacent to e_{j}. Hence M is a Δ-matching
of G. Next suppose that (2) holds. It suffices to note that each component of G^{*} is either a K_{2} or a Hamiltonian graph. In every case, G contains obviously a Δ-matching.

Lemma 4.6 (Bollobás [1]) Let G be a graph and $T \subseteq V(G)$. Then G has a matching covering T if and only if

$$
o(G-S \mid T) \leq|S| \text { for all } S \subset V(G)
$$

where $o(H \mid T)$ denotes the number of odd components of H whose vertex set is contained in T.
Applying Lemma 4.6, we have the following result.
Theorem 4.7 An outerplane graph G has a Δ-matching if and only if

$$
o\left(G^{*}-S \mid A(G)\right) \leq|S| \text { for all } S \subset A(G) \cup B(G)
$$

Finally, we would like to provide an effective procedure to determine if an outerplane graph has a Δ-matching. It is described as follows:

Step 1 For a given outerplane graph G, define $A(G), B(G), G^{*}$ and $n=\left|V\left(G^{*}\right)\right|$.
Step 2 Construct a graph H with $2 n$ vertices obtained from $G^{*}+K_{n}$ by joining every vertex of K_{n} to every vertex of $B(G)$. Thus G has a Δ-matching iff H has a perfect matching.

Step 3 Find a perfect matching of H by means of some known algorithms. Particularly, if $G^{*}[A(G)]$ is an empty graph, then G^{*} is a bipartite graph with a vertex bipartition $(A(G), B(G))$. In this case, we can solve it by the well-known Hungarian method (see [2]). If $B(G)=\emptyset$, the problem of solving a Δ-matching of G is equivalent to find a perfect matching in G^{*}.

Actually, the above procedure provides a polynomial-time algorithm, so it is a good algorithm. Thus all outerplane graphs of maximum degree at least 6 have been completely classified according to their entire chromatic numbers.

References

[^1]
[^0]: ${ }^{1}$ Received March 28，2003；revised May 30，2004．Research supported partially by NSFC（10471131）and ZJNSF（M103094）

[^1]: 1 Bollobás B. Extremal Graph Theory. London: Academic Press Inc, 1978
 2 Bondy J A, Murty U S R. Graph Theory with Applications. New York: Macmillan, 1976
 3 Borodin O V. Structural theorem on plane graphs with application to the entire coloring number. J Graph Theory, 1996, 23: 233-239
 4 Kronk H, Mitchem J. A seven-color theorem on the sphere. Discrete Math, 1973, 5: 253-260
 5 Sanders D P, Zhao Y. On the entire coloring conjecture. Canad Math Bull, 2000, 43(1): 108-114
 6 Wang Weifan. On the colorings of outerplanr graphs. Discrete Math, 1995, 147: 257-269
 7 Wang Weifan. Upper bounds of entire chromatic number of plane graphs. European J Combin, 1999, 20: 303-305
 8 Wang Weifan. Entire chromatic number of outerplane graphs with maximum degree four. Chinese J Engry Math, 2000, 17(4): 19-24

