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Abstract Let G be an outerplane graph with maximum degree ∆ and the entire chro-

matic number χ
vef

(G). This paper proves that if ∆ ≥ 6, then ∆ + 1 ≤ χ
vef

(G) ≤ ∆ + 2,

and χ
vef

(G) = ∆ + 1 if and only if G has a matching M consisting of some inner edges

which covers all its vertices of maximum degree.
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1 Introduction

We only consider simple graphs in this paper unless otherwise stated. For a plane graph

G, we denote its vertex set, edge set, face set, minimum degree, and maximum degree by V (G),

E(G), F (G), δ(G), and ∆(G), respectively. For v ∈ V (G), let dG(v) denote the degree of v in

G, and NG(v) the neighbor set of v in G. For S ⊆ V (G), let G[S] denote the subgraph of G

induced by S. A vertex (or face) of degree k is called a k-vertex (or k-face). Other statements

and notations can be found in [2].

A plane graph G is k- entire colorable if the elements of V (G) ∪ E(G) ∪ F (G) can be

colored with k colors such that any two adjacent or incident elements receive different colors.

The entire chromatic number χ
vef

(G) of G is the minimum number k such that G is k-entire

colorable.

By the definition, χ
vef

(G) ≥ ∆(G) + 1. Kronk and Mitchem[4] conjectured that χ
vef

(G) ≤

∆(G) + 4 for any plane graph G and they confirmed the conjecture for the case ∆(G) ≤ 3. In

1996, Borodin[3] established the conjecture for all plane graphs G with ∆(G) ≥ 7. More recently,

Sanders and Zhao[5] further settled the case ∆(G) = 6. Thus the conjecture remains open only

for the case ∆(G) = 4, 5. Wang[7] recently proved that every plane graph G is (χ′(G)+4)-entire

colorable, where χ′(G) is the chromatic index of G. This implies that Kronk and Mitchem’s

conjecture holds for bipartite plane graphs. It is proved in [6] that every outerplane graph G
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with ∆(G) ≥ 6 satisfies ∆(G) + 1 ≤ χ
vef

(G) ≤ ∆(G) + 2 and χ
vef

(G) = ∆(G) + 1 if G is

2-connected. Both lower and upper bounds of this result are tight. A fan Fn of order n ≥ 6

has χ
vef

(Fn) = ∆(Fn) + 1 and a star K1,n−1 of order n ≥ 6 has χ
vef

(K1,n−1) = ∆(K1,n−1) + 2.

Thus it seems very interesting to give a complete classification of all outerplane graphs G with

∆(G) ≥ 6 according to their entire chromatic numbers. This paper presents a perfect solution

for the problem.

2 Structural Properties

A plane graph G is called an outerplane graph if all the vertices of G lie on the boundary

of some face. This face is called outer face, denoted by f0(G), and other faces inner faces.

The edges on the boundary of outer face are called outer edges, and other edges inner edges.

Let Ein(G) and Eout(G) denote the sets of inner edges and outer edges of G, respectively. In

the sequel, we use [xyz] to denote a 3-face with boundary vertices x, y, and z. Moreover, for

k = 0, 1, · · · , ∆ = ∆(G), let Vk(G) denote the set of all k-vertices in G.

Lemma 2.1 Every outerplane graph of order ≥ 2 contains two vertices of degree at most

2.

Lemma 2.2 If G is a 2-connected outerplane graph with |V (G)| ≥ 5, then

(1) |NG(u) ∩ V2(G)| ≤ 2 for each vertex u ∈ V (G); and

(2) NG(u) 6= NG(v) for any two distinct vertices u, v ∈ V2(G).

Lemmas 2.1 and 2.2 are straightforward and thus we omit their proofs.

Lemma 2.3 Let G be a 2-connected outerplane graph and s∗ ∈ V (G). Then G contains

one of the following configurations:

(1) Two adjacent 2-vertices u and v such that s∗ /∈ {u, v}.

(2) A 3-face [uxy] with dG(u) = 2, dG(x) = 3, and xy ∈ Ein(G) such that s∗ /∈ {u, x}.

(3) A 3-face [uxy] with dG(u) = 2, dG(x) = dG(y) = 4, and xy ∈ Ein(G) such that

s∗ /∈ {u, x, y}.

(4) Three 3-faces [xu1v1], [xu2v2], and [xv1v2] with dG(u1) = dG(u2) = 2, dG(x) = 4, and

v1v2 ∈ Ein(G) such that s∗ /∈ {x, u1, u2}.

Proof If |V (G)| ≤ 4 or ∆(G) = 2, G contains obviously either (1) or (2). Thus assume

that |V (G)| ≥ 5 and ∆(G) ≥ 3. Suppose to the contrary that the lemma is false, i.e., G contains

none of the configurations (1) to (4). Let

Ṽ = {v ∈ V2(G) \ {s∗}|xy /∈ E(G) with NG(v) = {x, y}},

Ẽ = {xy|v ∈ Ṽ with NG(v) = {x, y}},

H = G − Ṽ + Ẽ.

Thus H is a 2-connected outerplane graph with s∗ ∈ V (H). It is easy to see that H also doesn’t

contain any of (1) to (4). For every 2-vertex v ∈ V2(H) \ {s∗} with NH(v) = {x, y}, we have

xy ∈ E(G), dH(x) ≥ 4, dH(y) ≥ 4, and max{dH(x), dH (y)} ≥ 5 (when s∗ ∈ {x, y}, dH(s∗) ≥ 3

since H is 2-connected). Without loss of generality, we assume x 6= s∗ (otherwise, we take

y 6= s∗).

If y 6= s∗, we furthermore assume that dH(y) ≥ 5. Hence one of the following cases holds

by the assumption:
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(a) dH(x) ≥ 5;

(b) dH(x) = 4 and NH(x) ∩ (V2(H) \ {s∗, v}) = ∅;

(c) dH(x) = 4 and there exists x1 ∈ NH(x)∩ (V2(H) \ {s∗, v}). Let y1 denote the neighbor

of x1 in H different from x. Then yy1 /∈ E(H) because H contains no (4).

If y = s∗, we can similarly prove that one of (a), (b), and (c) holds.

Let H1 denote the graph obtained from H by handling all 2-vertices v in V2(H) \ {s∗} in

this way: if either (a) or (b) holds, we remove the vertex v; if (c) holds, we add the edge yy1

after removing the vertices v, x, and x1. Clearly, H1 is a 2-connected outerplane graph. Using

Lemma 2.2, we may prove that dH1
(s∗) ≥ 2 and dH1

(t) ≥ 3 for all t ∈ V (H1) \ {s∗}. This

implies that V2(H1) \ {s∗} = ∅, which contradicts Lemma 2.1.

Theorem 2.4 Let G be an outerplane graph with δ(G) = 2. Then G contains one of the

following configurations:

(1) Two adjacent 2-vertices u and v.

(2) A 3-face [uxy] with dG(u) = 2, dG(x) = 3, and xy ∈ Ein(G).

(3) A 3-face [uxy] with dG(u) = 2, dG(x) = dG(y) = 4, and xy ∈ Ein(G).

(4) Three 3-faces [xu1v1], [xu2v2], and [xv1v2] with dG(u1) = dG(u2) = 2, dG(x) = 4, and

v1v2 ∈ Ein(G).

Proof If G is 2-connected, the result follows immediately from Lemma 2.3. In fact, we

may choose any vertex of G as the specific vertex s∗. Otherwise, let B be a block of G that

contains a unique cut vertex, say s∗, of G. Since B is 2-connected and s∗ ∈ V (B), B contains

one of the following configurations by Lemma 2.3.

(1′) Two adjacent 2-vertices u and v such that s∗ /∈ {u, v}.

(2′) A 3-face [uxy] with dB(u) = 2, dB(x) = 3, and xy ∈ Ein(B) such that s∗ /∈ {u, x}.

(3′) A 3-face [uxy] with dB(u) = 2, dB(x) = dB(y) = 4, and xy ∈ Ein(B) such that

s∗ /∈ {u, x, y}.

(4′) Three 3-faces [xu1v1], [xu2v2], and [xv1v2] with dB(u1) = dB(u2) = 2, dB(x) = 4, and

v1v2 ∈ Ein(B) such that s∗ /∈ {x, u1, u2}.

Note that Ein(B) ⊆ Ein(G) and dB(t) = dG(t) for all t ∈ {u, v, x, y, u1, u2}. Thus (1′) to

(4′) are the desired subgraphs of G.

Corollary 2.5 Let G be an outerplane graph with δ(G) = 2. Then G contains one of

the following configurations:

(1) Two adjacent 2-vertices u and v.

(2) A 3-face [uxy] with dG(u) = 2 and dG(x) = 3.

(3) Two 3-faces [xu1v1] and [xu2v2] with dG(u1) = dG(u2) = 2 and dG(x) = 4.

3 Entire Chromatic Number

A matching M of an ouerplane graph G is called a ∆-matching if it consists of some inner

edges and covers all its vertices of maximum degree.

Theorem 3.1 Let G be an outerplane graph and t(G) = max{∆(G) + 2, 7}. Then G

admits a t(G)-entire coloring satisfying the following Property (P1):

(P1): some color is only used to color the outer face f0(G).
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Proof By induction on the vertex number |V (G)|. When |V (G)| ≤ 5, the theorem holds

trivially. Suppose that it is true for all the outerplane graphs with less than n vertices, and let G

be an outerplane graph with |V (G)| = n ≥ 6. Note that the proof is easy for the case δ(G) ≤ 1.

Thus we suppose that δ(G) = 2. By Corollary 2.5, we need to handle three cases. For each

case, we define an outerplane graph H with |V (H)| < n and let φ denote a desired t(G)-entire

coloring of H with the color set C = {1, 2, · · · , t(G)} by the induction hypothesis. Then we

extend φ to a t(G)-entire coloring of G satisfying (P1). Since every 2-vertex y ∈ V (G) \ V (H)

is adjacent or incident to at most six colored elements (namely, at most two vertices, two edges,

and two faces) whereas |C| ≥ 7, y can always be colored properly whatever its adjacent or

incident elements have been colored. Thus we may omit the coloring for all 2-vertices in the

following proof.

Case 1 G contains two adjacent 2-vertices u and v. Let u1 ∈ NG(u) \ {v} and v1 ∈

NG(v)\ {u}. Let f ′ denote the face of G whose boundary contains the edge uv and f ′ 6= f0(G).

First suppose that u1 6= v1. Define the graph H = G − u + vu1 and let f ′′, different from

the outer face f0(H), denote the face of H whose boundary contains the edge vu1. Obviously,

|V (H)| < n and ∆(H) ≤ ∆(G), so t(H) ≤ t(G). Suppose that φ(f0(H)) = c0. Thus c0 is used

only once in the coloring φ by (P1). In G, we color f0(G) with c0, f ′ with φ(f ′′), uu1 with

φ(vu1), and uv with a color c1 ∈ C \ {φ(vv1), φ(vu1), φ(f ′′), c0}. Since uv has at most four

forbidden colors when it will be colored whereas t(G) ≥ 7, the coloring is admissible.

Next suppose that u1 = v1. This implies that [uvu1] is a 3-face of G. Let H = G − u − v

and suppose φ(f0(H)) = c0 is used only once. We use S(x) to denote the set of colors assigned

to a vertex x ∈ V (H) and those edges incident to x in H under the coloring φ. In G, we further

color f0(G) with c0, uu1 with c1 ∈ C \ (S(u1) ∪ {c0}), vu1 with c2 ∈ C \ (S(u1) ∪ {c1, c0}),

uv with c3 ∈ C \ {c2, c1, c0}, and [uvu1] with c4 ∈ C \ {φ(u1), c3, c2, c1, c0}. Since |S(u1)| =

dH(u1) + 1 ≤ dG(u1) − 2 + 1 = dG(u1) − 1 ≤ ∆(G) − 1, each element x has at most six or

∆(G) + 1 forbidden colors when we consider to color it. By t(G) = max{∆(G) + 2, 7}, the

coloring is available.

Case 2 G contains a 3-face [uxy] with dG(u) = 2 and dG(x) = 3. Let f∗, different from

[uxy], denote the face of G whose boundary contains the edge xy. Define H = G−u and suppose

φ(f0(H)) = c0. In G, we color f0(G) with c0, uy with a color c1 ∈ C \(S(y)∪{c0}), [uxy] with a

color c2 ∈ C \{φ(x), φ(y), φ(f∗), φ(xy), c1, c0}, and ux with a color c3 ∈ C \ (S(x)∪{c2, c1, c0}).

Since |S(y)| ≤ dG(y) − 1 + 1 ≤ ∆(G) and |S(x)| ≤ 3, the coloring is available.

Case 3 G contains two 3-faces [xu1v1] and [xu2v2] with dG(u1) = dG(u2) = 2 and

dG(x) = 4. Let f∗ denote the face of G with xv1 and xv2 as boundary edges. Consider the

graph H = G − u1 − u2 and assume φ(f0(H)) = c0. In G, we first color f0(G) with c0, uivi

with a color ci ∈ C \ (S(vi) ∪ {c0}) for i = 1, 2.

If c1 ∈ {φ(f∗), φ(x)}, we color [xu2v2] with c3 ∈ C \{φ(x), φ(v2), φ(xv2), φ(f∗), c2, c0}, xu2

with c4 ∈ C\{φ(x), φ(xv1), φ(xv2), c3, c2, c0}, xu1 with c5 ∈ C\{φ(x), φ(xv1), φ(xv2), c4, c1, c0},

and [xu1v1] with c6 ∈ C \ {φ(x), φ(v1), φ(xv1), φ(f∗), c5, c1, c0}. If c2 ∈ {φ(f∗), φ(x)}, we have

a similar proof. So assume c1, c2 /∈ {φ(f∗), φ(x)}. If φ(v2) 6= φ(xv1), we color xu2 with

φ(v2), xu1 with φ(f∗), [xu2v2] with c3 ∈ C \ {φ(x), φ(v2), φ(xv2), φ(f∗), c2, c0}, and [xu1v1]

with c4 ∈ C \ {φ(x), φ(v1), φ(xv1), φ(f∗), c1, c0}. If φ(v1) 6= φ(xv2), a similar argument can

be established. If φ(v2) = φ(xv1) and φ(v1) = φ(xv2), we interchange the colors of u1v1 and
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xv1, and color xu2 with φ(v2) and xu1 with φ(f∗). Afterwards we color similarly [xu1v1] and

[xu2v2].

It is easy to check that the above coloring is available. Thus the proof of Theorem 3.1 is

completed.

Corollary 3.2 If G is an outerplane graph with ∆(G) ≥ 5, then ∆(G) + 1 ≤ χ
vef

(G) ≤

∆(G) + 2; and moreover G admits a (∆(G) + 2)-entire coloring satisfying Property (P1).

Theorem 3.3 If G is an outerplane graph with ∆(G) ≥ 6, then χ
vef

(G) = ∆(G) + 1 if

and only if G has a ∆-matching.

Proof Suppose that χ
vef

(G) = ∆(G)+1. Let φ be an arbitrary (∆(G)+1)-entire coloring

of G. Then, for each u ∈ V∆(G), all the ∆(G) + 1 colors used by φ must, at the same time,

occur on the vertex u and those edges incident to u. This means that there is an inner edge eu

incident to u which receives the same color as f0(G). It is easy to see that, for any two distinct

vertices u, v ∈ V∆(G), either eu = ev = uv ∈ Ein(G), or eu 6= ev and eu is non-adjacent to ev

in G. We put

M∆ = {e ∈ Ein(G)|φ(e) = φ(f0(G)}.

Then M∆ ⊆ Ein(G) and M∆ covers all the vertices in V∆(G). Hence M∆ is a ∆- matching of

G.

Conversely, if G contains a ∆-matching M∆, let us prove that G admits a (∆(G)+1)-entire

coloring φ satisfying the following Property (P2):

(P2): all the edges in M∆ are assigned to the same color as φ(f0(G)).

We make use of induction on |V (G)|. If |V (G)| = ∆(G) + 1, G is either a fan Fn or a

subgraph Fn of Fn with ∆(Fn) = ∆(Fn), where n = |V (G)|. It is easy to check that given a ∆-

matching of G, there exists a (∆(G)+1)-entire coloring of G satisfying Property (P2). Suppose

that G is an outerplane graph with a ∆-matching M∆ and |V (G)| ≥ ∆(G) + 2. Obviously, we

may assume that G is connected and M∆ is a maximal ∆-matching of G (namely, it contains

as many edges as possible). If G contains a 1-vertex u, let v be the neighbor of u and let

H = G − u. We consider two cases below.

(i) ∆(H) = ∆(G). We note that M∆ is also a ∆-matching of H . By the induction

hypothesis, H has a (∆(G)+1)-entire coloring φ with the color set C satisfying Property (P2).

Suppose φ(f0(H)) = c0. In G, we color f0(G) with c0, uv with a color c1 ∈ C\(S(v)∪{c0}), and

u with a color c2 ∈ C \ {φ(v), c1, c0}. When dG(v) < ∆(G), |S(v)| = dG(v)− 1 + 1 ≤ ∆(G)− 1

and hence at most ∆(G) colors are forbidden to color uv; when dG(v) = ∆(G), there exists

some edge e ∈ M∆ that covers v in G. Since e also covers v in H , φ(e) = c0 by Property (P2).

Again, at most ∆(G) colors are forbidden to color uv in G. Therefore the above coloring is

available.

(ii) ∆(H) < ∆(G). In this case, ∆(H) = ∆(G) − 1 ≥ 5. By Corollary 3.2, H admits a

(∆(G) + 1)-entire coloring φ satisfying Property (P1). First, all the edges in M∆ are recolored

by the same color φ(f0(H)), then (ii) is reduced to the case (i).

Suppose now δ(G) = 2. By Theorem 2.4, we need to consider the following cases.

Case 1 G contains two adjacent 2-vertices u and v. Let x ∈ NG(u) \ {v} and y ∈

NG(v)\{u}. Consider the graph H = G−u+xv if x 6= y and H = G−u if x = y. It suffices to

note that M∆ is a ∆-matching of H . Similarly to the proof of Case 1 in Theorem 3.1, we can
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extend any (∆(G) + 1)-entire coloring of H satisfying Property (P2) into a (∆(G) + 1)-entire

coloring of G satisfying Property (P2).

Case 2 G contains a 3-face [uxy] with dG(u) = 2, dG(x) = 3, and xy ∈ Ein(G). We

denote by f∗ the face of G, distinct from [uxy], whose boundary contains the edge xy. Let

H = G−u. Clearly, M∆ (or its subset) forms a ∆-matching of H . Let φ be a (∆(G)+1)-entire

coloring of H satisfying Property (P2). In G, we first color f0(G) with φ(f0(H)) = c0.

If xy /∈ M∆, there exists an edge e ∈ M∆ that is incident to y in H since, as otherwise,

M∆ ∪ {xy} is a ∆-matching of G with more edges than M∆, contradict to the maximality

of M∆. Thus φ(e) = c0 by Property (P2). We color uy with c1 ∈ C \ S(y), [uxy] with

c2 ∈ C \ {φ(x), φ(y), φ(xy), φ(f∗), c1, c0}, and ux with c3 ∈ C \ (S(x) ∪ {c2, c1, c0}).

If xy ∈ M∆, then no edge incident to the vertex y in H is assigned to the color c0. We color

uy with φ(xy) and recolor xy with c0. Then we color [uxy] with c1 ∈ C \ {φ(x), φ(y), φ(xy),

φ(f∗), c0}, and ux with c2 ∈ C \ (S(x) ∪ {c1, c0}).

Noting that |S(y)| ≤ ∆(G), |S(x)| ≤ 3, and |C| ≥ ∆(G) + 1 ≥ 7, the above coloring is

available.

Case 3 G contains a 3-face [uxy] with dG(u) = 2, dG(x) = dG(y) = 4, and xy ∈ Ein(G).

Similarly, let f∗ denote the face of G, distinct from [uxy], whose boundary contains the edge

xy. Let H = G − u. Let φ be a (∆(G) + 1)-entire coloring of H with c0 = φ(f0(H)) satisfying

(P2). In G, we first color f0(G) with c0. If xy ∈ M∆, we furthermore color uy with φ(xy) and

recolor xy with c0, then color [uxy] with c1 ∈ C \ {φ(x), φ(y), φ(xy), φ(f∗), c0}, and ux with

c2 ∈ C \ (S(x) ∪ {c1, c0}). So suppose xy /∈ M∆. By the maximality of M∆, there exists some

edge e ∈ M∆ that is incident to one of x and y in H . Without loss of generality, we suppose

that e is incident to x, so φ(e) = c0 by Property (P2). We color uy with c1 ∈ C \ (S(y)∪ {c0}),

[uxy] with c2 ∈ C \ {φ(x), φ(y), φ(xy), φ(f∗), c1, c0}, and ux with c3 ∈ C \ (S(x) ∪ {c2, c1}).

Since |S(x)| ≤ 4 and |S(y)| ≤ 4, the coloring is feasible.

Case 4 G contains three 3-faces [xu1v1], [xu2v2], and [xv1v2] such that dG(u1) = dG(u2) =

2, dG(x) = 4, and v1v2 ∈ Ein(G). Suppose that f∗ is the face of G whose boundary contains

v1v2 and f∗ 6= [xv1v2]. Let H = G−u1−u2−x. It is easy to see that M∆ (or its subset) forms

a ∆-matching of H. Suppose that φ is a (∆(G) + 1)-entire coloring of H satisfying Property

(P2). In order to construct a desired (∆(G) + 1)-entire coloring of G, we first color f0(G) with

c0 = φ(f0(H)). Then the proof is divided into the following subcases.

Subcase 4.1 v1v2 ∈ M∆. It follows that c0 can not occur on those edges in H each

of which is incident to v1 or v2. We color both u1v1 and xv2 with φ(v1v2), xu1 with φ(v1),

and recolor v1v2 with c0. Furthermore, we color xv1 with c1 ∈ C \ (S(v1) ∪ {c0}), u2v2 with

c2 ∈ C \ (S(v2) ∪ {c0}), [xv1v2] with c3 ∈ C \ {φ(v1), φ(v2), φ(v1v2), φ(f∗), c1, c0}, x with

c4 ∈ C\{φ(v1), φ(v2), φ(v1v2), c3, c1, c0}, and [xu1v1] with c5 ∈ C\{φ(v1), φ(v1v2), c4, c3, c1, c0}.

If c1 6= φ(v2), we color xu2 with φ(v2). So assume c1 = φ(v2). When c3 = c2, we color xu2

properly. When c3 6= c2, we color xu2 with c3. Finally, we can color [xu2v2] properly in both

cases.

Subcase 4.2 xv2 ∈ M∆. In this case, either c0 occurs on some incident edge of v1 in H , or

dG(v1) < ∆(G) and c0 does not occur on any incident edge of v1 in H . We color xv2 with c0, xu1

with φ(v1), xu2 with φ(v2), xv1 with c1 ∈ C\(S(v1)∪{c0}), u1v1 with c2 ∈ C\(S(v1)∪{c1, c0}),

u2v2 with c3 ∈ C \ (S(v2) ∪ {c0}), [xv1v2] with c4 ∈ C \ {φ(v1), φ(v2), φ(v1v2), φ(f∗), c1, c0}, x
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with c5 ∈ C \{φ(v1), φ(v2), c4, c1, c0}, [xu1v1] with c6 ∈ C \{φ(v1), c5, c4, c2, c1, c0}, and [xu2v2]

with c7 ∈ C \ {φ(v2), c5, c4, c3, c0}.

If xv1 ∈ M∆, we have a similar argument.

Subcase 4.3 xv1, xv2, v1v2 /∈ M∆. The maximality of M∆ implies that, for i = 1, 2, there

exists some edge ei incident to vi in H such that φ(ei) = c0. We color [xv1v2] with c0, u1v1 with

c1 ∈ C \S(v1), xv1 with c2 ∈ C \ (S(v1)∪{c1}), xv2 with c3 ∈ C \ (S(v2)∪{c2}), u2v2 with c4 ∈

C \ (S(v2)∪ {c3}), x with c5 ∈ C \ {φ(v1), φ(v2), c3, c2, c0}, xu1 with c6 ∈ C \ {c5, c3, c2, c1, c0},

xu2 with c7 ∈ C \{c6, c5, c4, c3, c2, c0}, [xu1v1] with c8 ∈ C \{φ(v1), c6, c5, c2, c1, c0}, and [xu2v2]

with c9 ∈ C \ {φ(v2), c7, c5, c4, c3, c0}. Since |S(vi)| ≤ ∆(G) − 1 for i = 1, 2, the coloring is

feasible.

Finally, we can color properly all the 2-vertices in V (G) \ V (H), similarly to the proof of

Theorem 3.1. This completes the proof of the theorem.

We conjecture that Theorem 3.3 holds for an outerplane graph of maximum degree 5. It

was proved in [8] that every outerplane graph G with ∆(G) = 4 has 5 ≤ χ
vef

(G) ≤ 6, and

a sufficient and necessary condition for χ
vef

(G) = 5 was established. Using Corollary 3.2 and

repeating the proof of the necessity for Theorem 3.3, we can derive the following

Theorem 3.4 If G is an outerplane graph with ∆(G) = 5 and without a ∆-matching,

then χ
vef

(G) = ∆(G) + 2.

4 ∆-Matching

Theorem 3.3 shows that the problem of determining the entire chromatic number of an

outerplane graph G with ∆(G) ≥ 6 is equivalent to search for a ∆-matching in G. In this

section, we investigate the existence of ∆-matchings in an outerplane graph. We first prove a

useful lemma.

Lemma 4.1 Every outerplane graph G contains a matching M that covers all the vertices

of degree at least 3.

Proof The result holds obviously if |V (G)| ≤ 4. Suppose that G is a connected outerplane

graph with |V (G)| ≥ 5. If G contains a 1-vertex u, let uv ∈ E(G). By the induction hypothesis,

G − u admits a matching M ′ that covers every vertex of degree at least 3 in G − u. Let

M = M ′ ∪ {uv} if M ′ does not cover v and M = M ′ otherwise. It is easy to see that M is a

required matching of G.

Now suppose that δ(G) = 2. By Corollary 2.5, we need to consider the following two cases.

Case 1 G contains two adjacent 2-vertices u and v. Let u1 ∈ NG(u) \ {v} and v1 ∈

NG(v) \ {u}. By the induction hypothesis, G − u − v admits a matching M that covers every

vertex of degree at least 3. If M ′ covers both u1 and v1, let M = M ′. If M ′ covers exactly one of

u1 and v1, say u1, let M = M ′∪{vv1}. If M ′ covers neither u1 nor v1, let M = M ′∪{uu1, vv1}

when u1 6= v1, and M = M ′ ∪ {uu1} when u1 = v1. Thus M is a matching of G covering each

vertex of degree at least 3.

Case 2 G contains a 3-face [uxy] with d(u) = 2. Suppose that M ′ is a matching of

G − u that covers every vertex of degree at least 3 by the induction hypothesis. Similarly, if

M ′ covers both x and y, we take M = M ′. If M ′ covers exactly one of x and y, say x, we take

M = M ′ ∪ {uy}. If M ′ covers neither x nor y, we take M = M ′ ∪ {xy}. It is easy to show
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that M is a matching of G covering every vertex of degree at least 3. The proof of the lemma

is completed.

Lemma 4.1 is the best possible in the sense that there exist outerplane graphs without a

matching covering all vertices of degree at least 2. For example, an odd cycle is an outerplane

graph without a perfect matching.

Suppose that G is an outerplane graph and u ∈ V (G). The inner degree, denoted by

din(u), of u is defined to be the number of inner edges incident to u in G. Set

A(G) = V∆(G),

δin(G) = min{din(u)|u ∈ A(G)},

B(G) = {x ∈ V (G) \ A(G)|, there is y ∈ A(G) such that xy ∈ Ein(G)},

G∗ = G[A(G) ∪ B(G)] − Eout(G) − E(G[B(G)]).

Then G contains a ∆-matching if and only if G∗ has a matching that covers all vertices in A(G).

Moreover, if δin(G) = 0, i.e., G has a vertex of maximum degree not incident to any inner edge,

then G has not a ∆-matching. However, we have the following.

Theorem 4.2 If G is an outerplane graph with δin(G) ≥ 3, then G contains a ∆-

matching.

Proof Let G∗ be defined as above. By Lemma 4.1, G∗ admits a matching M∗ that

covers every vertex of degree at least 3 in G∗. We note that M∗ ⊆ E(G∗) ⊆ Ein(G) and

A(G) ⊆ V (G∗). For every vertex v ∈ A(G), dG∗(v) ≥ δin(G) ≥ 3. It follows that M∗ is a

matching of G that covers every vertex of maximum degree. Thus M∗ is a ∆-matching of G.

The condition that δin(G) ≥ 3 in Theorem 4.2 can not be weaken to the case 1 ≤ δin(G) ≤ 2.

Let G be an outerplane graph obtained by adding n chords x1x3, x3x5, x5x7, · · · , x2n−1x1 to a

2n-cycle x1x2x3 · · ·x2nx1, where n ≥ 3 is odd. It is easy to see that δin(G) = 2 and G has not

a ∆-matching.

Corollary 4.3 Every 2-connected outerplane graph G with ∆(G) ≥ 5 contains a ∆-

matching.

Proof Since G is 2-connected, every vertex is incident to exactly two outer edges. Thus,

for each u ∈ A(G), din(u) = dG(u)− 2 ≥ 5 − 2 = 3. Therefore δin(G) ≥ 3, and hence the result

follows from Theorem 4.2.

Combining Theorem 3.3 and Corollary 4.3, we have the following.

Corollary 4.4 If G is a 2-connected outerplane graph with ∆(G) ≥ 6, then χ
vef

(G) =

∆(G) + 1.

Theorem 4.5 Let G be an outerplane graph with ∆(G) ≥ 5. If one of the following

conditions holds, then G has a ∆-matching:

(1) δin(G) ≥ |A(G)|;

(2) G∗ contains no cut vertex and each odd component of G∗ contains at least one vertex

in B(G).

Proof First suppose that (1) holds. Let A(G) = {x1, x2, · · · , xk}. Thus δin(G) ≥ k.

If k ≥ 3, G contains a ∆-matching by Theorem 4.2. Assume that 1 ≤ k ≤ 2. It is easy to

observe that there exists a subset M = {e1, · · · , ek} ⊆ E(G∗) such that xi is incident to ei for

i = 1, 2, · · · , k, and for i 6= j, either ei = ej or ei is not adjacent to ej. Hence M is a ∆-matching
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of G. Next suppose that (2) holds. It suffices to note that each component of G∗ is either a K2

or a Hamiltonian graph. In every case, G contains obviously a ∆-matching.

Lemma 4.6 (Bollobás [1]) Let G be a graph and T ⊆ V (G). Then G has a matching

covering T if and only if

o(G − S|T ) ≤ |S| for all S ⊂ V (G),

where o(H |T ) denotes the number of odd components of H whose vertex set is contained in T .

Applying Lemma 4.6, we have the following result.

Theorem 4.7 An outerplane graph G has a ∆-matching if and only if

o(G∗ − S|A(G)) ≤ |S| for all S ⊂ A(G) ∪ B(G).

Finally, we would like to provide an effective procedure to determine if an outerplane graph

has a ∆-matching. It is described as follows:

Step 1 For a given outerplane graph G, define A(G), B(G), G∗ and n = |V (G∗)|.

Step 2 Construct a graph H with 2n vertices obtained from G∗ + Kn by joining every

vertex of Kn to every vertex of B(G). Thus G has a ∆-matching iff H has a perfect matching.

Step 3 Find a perfect matching of H by means of some known algorithms. Particu-

larly, if G∗[A(G)] is an empty graph, then G∗ is a bipartite graph with a vertex bipartition

(A(G), B(G)). In this case, we can solve it by the well-known Hungarian method (see [2]). If

B(G) = ∅, the problem of solving a ∆-matching of G is equivalent to find a perfect matching

in G∗.

Actually, the above procedure provides a polynomial-time algorithm, so it is a good algo-

rithm. Thus all outerplane graphs of maximum degree at least 6 have been completely classified

according to their entire chromatic numbers.
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