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Abstract

Let T denote a tree of orderandWm a wheel of ordem+-1. In this paper, we show the Ramsey
numbersR(Th, Wg) = 2n — 1+ uforn > 5, whereu = 2if Th = Sy, u = 1if Th = $H(1,1) or
Th = SH(1, 2) andn = 0 (mod 3, andu = 0 otherwise;R(Ty, Wy) = 3n — 2 forn > 6.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

All graphs considered in this paper are finite simple graphs without loops. For two given

graphsG; and G, theRamsey number R(G1, G») is the smallest positive integarsuch
that for any graptG of ordern, either G containsG; or G containsG,, whereG is the
complement ofG. Let G be a graph andh be a positive integer. We useG to denote
m vertex dsjoint copies ofG. A path and acycle of ordern are denoted by, andCy,
respectively. Astar S, (n > 3) is a bipartite grapliK1,n—1. A complete graph of ordern is
denoted byK,. A wheel W, = K1 + Cp, is a grgoh of n + 1 vertices, whereK1 is called
the hub of the wheel.S,(I, m) is a tree & ordern obtained fromS,_|xm by subdividing
each of chosen edgem times. S,(l) is a tree of ordem obtained from ar§ and anS,_
by adding an edge joining the centers of the&g(l] is a tree of ordem obtained from an
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S and anS,_| by adding an edge joining a vertex of degree on& ab the center of5,_. 1
Define 2

T={S|n>5U{S@, D |n>5U{S(1,2) | n>6andn =0 (mod 3}.

For atreel, we defineL(T) = {v | v € V(T) andd(v) = 1}. LetV C L(T) and|V| = k.
Write Ty =T — V. If Ty ¢ 7, wecall V ak-deletable set. If k = 2 and|N(V)| = 2, we
callV all-set. If k = 3and|N(V)| = 3, we callV alll-set. If k = 3and|N(V)| = 2, we
call V alV-set. If Vis all-setandTy ¢ 7, wecall V all-deletable set. Similarly, we can
define Ill-deletable and IV-deletable sets. Terminology and notations not defined here can
be found in P].

In [1], Baskoro et al. obtain the following.

© ® ~N o a » w

=
o

Theorem 1 ([1]). Let T, beatreeof order n other than S,. Then R(T,, Ws) = 2n— 1for 1

n> 3; R(Th, Ws) = 3n —2for n > 4. 12
Motivated byTheorem 1Baskoroet al. [1] pose the following. 13
Conjecturel. Let T, beatreeof order n other than S, andn > m—21. Then R(T,, W) = 14
2n — 1for evenm > 6; R(Tp, Wm) = 3n — 2for odd m > 7. 15

In [3], we showConjecture lholds forT, = Py. 16
Theorem 2 ([3]). R(Py, Wm) =3n—2formoddandn > m—1 > 2; R(Py, W) = 17
2n —1formevenandn>m—1> 3. 18

In [4], we obtain the following. 19

Theorem 3 ([4]). R(S, Ws) = 2n+ 1 for n > 3; R(S,, W) = 3n — 2 for m odd and 20
n>m-1>2 21

Using Theorem 3we @nsiderR(T,, We) for A(Tp) > n — 3in [5] and the bllowing 22

are established. 2
Theorem 4 ([5]). R($(1, 1), We) = 2nfor n > 4. 2
Theorem 5 ([9]). R(S(1, 2), We) = 2nforn > 6andn = 0 (mod 3. 2
Theorem 6 ([9]). R(SS3),Ws) = RS2, H),We) = 2n — 1 for n > 6; 2
R($(1,2),Ws) =2n—1forn > 6andn #£ 0 (mod 3. 27

By Theorems 4nd5, we can see thaConjecture 1is not tue whenm = 6. In fact, as 2
pointed out in b], for evenm, R(T,, Win) is a function related to bothandm. However, 2

we believe thaR(T,, W) =2n — 1forT, ¢ 7. 30

In [6], we evaluateR(T,, We) for 5 < n < 8 andget the following. a1
Theorem 7 ([6]). Let T, € 7 beatreeof order nand 5 < n < 8, then R(T,,, W) = 32
2n — 1. 33

In [7], we considerR(T,, Ws) for T,, without certain deletable sets and establish theu
following. 3
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Theorem 8 ([7]). Let T ¢ 7 beatreeof order n > 9. If T contains no |1-deletable set,
or |[L(T)| > 3and T containsneither |11-deletable set nor |V-deletable set, or |[L(T)| > 4
and T containsno | V-deletable set, then R(T, Wg) = 2n — 1.

In this paper, we will determin&(T,, Ws) for all T, ¢ 7 andn > 5. On tte other
hand, we will consider the conjecture in the case wheiis odd. As a special case, this
paper will deermineR(Ty, W+).

Let Ty be a tree of ordem. The main rsults of this paper are the following.

Theorem 9. R(Th,Ws) = 2n— 1+ puforn > 5, wherepu = 2if Ty, = S, u = 11if
Th=S@DorTh=S(1,2 andn = 0(mod 3, and u = 0 otherwise.

Theorem 10. R(Tp, W) = 3n — 2for n > 6.

By Theorem 10we can see thaConjecture lholds form = 7. For oddm > 9, the
conjecture is still alive. Although th mnjecture is not true for evem in general, we
believe it holds for odain.

2. Somelemmas
In order to prove the main results ofistpaper, we need the following lemmas.

Lemmal ([9]). Let G bea graphof order 2n — 1 > 7 and (U, V) a partition of V(G)
with |U| > 3and |V| > 4. Supposeu; € U and Ny (uj) = @,1 <i < 3.1f G containsno
Ws, then §(G[V]) > |V | — 3.

Lemma?2 ([7]). Let G beagraphof order 2n — 1. If «(G) < 2, then G containsall trees
of order n.

Ore showed in §] that if a graph om vertices in which the degree sum of any two
nonadjacent vertices is at least+ 1, thenG is Hamilton-onnected. From this result we
can get easily the following.

Lemma 3. Let G beagraph of order n. If §(G) > n/2+ 1, then G is Hamilton-connected.

Lemmad4. Let G beagraphof order n > 9. If (G) < 2and §(G) > n— 3,then G
containsall trees T of order n with |[L(T)| = 3.

Proof. If «(G) = 1, then it holddrivially. Hence we may assumg(G) = 2. LetT be a
given tree of orden with |L(T)| = 3. Obviously,A(T) = 3 andT has only one vertex
of degree 3. Leb € V(G) andGg = G — v. Sincen > 9 and§(G) > n — 3, we have
83(Gg) > (n—3)—1>(n—-1)/2+4+1 = |Gp|/2 + 1 which implies Gg is Hamilton-
connected byemma 31If d(v) = n— 3, we @&sumevy, v2 € N(v). Noting thata (G) = 2,
we haveviv2 € E(G) and henceésg contains a Hamilton cycl€ = vivz - - - vp—1 Such
thatv; € N(v) for3 <i < n—1.Inthis case, itis easy to s€econtainsT . If d(v) > n—2,
then sinceGp contains a Hamilton cycle, it is not difficult to s€&containsT. O

The following lemma is well known and can be found in many graph theory textbooks,

see for instance?].
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Lemma 5. A bipartite graph G with bipartition (U, V) contains a matching saturating U
if and onlyif IN(S)| > |S| for every SC U.

3. Proof of Theorem 9

Proof of Theorem 9. LetT be a giventree of order> 5. If |L(T)| = 2, thenT = P, and
henceTheorem Sholds byTheorem 2If T € 7, thenTheorem Sholds byTheorems 35.
Thus we may assumé&(T)| > 3andT ¢ 7.

We use induction om. If 5 < n < 8, thenTheorem 9holds byTheorem 7 In the
following proof, we assume > 9 andTheorem Sholds for small values af.

Let G be a graph of order2— 1. If G contains noWs, then a(G)
| be a maximum independent set Gf By Lemma 2 we mayassume|l |
| ={v1,v2,..., v}, where 3< k < 6.

Suppose to the contrai@ contains nol . We now onsiderthe following two cases.

Casel k=3.

6. Let
3. Let

=
=

In order to proveCase 1we reed the following three claims.
Claim 1. G contains an induced subgraph K1 U K> U K3.

Proof. SinceG contains noT, by Theorem 8we may assumé& contains a ll-deletable
setUp. By induction hypothesisz — | containsTy, = T — Up. Let Nt (Ug) = U. If
IN; (U)| > 2, thenG containsT, a mntradiction. HencéN; (U)| = 1. ThisimpliesG has
an induced subgraph U K,. Assume, without loss of generality, th&t[11] = 2K UK>
with 13 = | U {v4} andvzvs € E(G). By induction hypothesisz — 11 containsTy,. If
INi, (U)| > 2, thenG containsT, a mntradiction. HencéNy, (U)| = 1. Thus, noting that
k = 3, we may assumb, (U) = {vo}. Letl, = I UU. Sincek = 3, it is easy to see that
Gll2]=K1UKyUKs. O

In the fdlowing, we letGo = K1 U K2 U Kz with V(Gg) = X = {X1, X2, ..., X} and
E(Go) = {X2X3, X4X5, X4Xe, Xs5Xg} be an induced subgraph &,

Claim 2. |L(T)| = 4.

Proof. Let L(T) = Ug. If [L(T)| = 3, then byTheorem 8we may assumé&lg is a
IV-deletable set or lll-deletable set. L (Ug) = U.

If Ul = 2, we @ssumeU = {ug, up}. In this case, it is easy to seky, = Pnr_3
and eitherdt (u1) = 3 ordyt(u2) = 3. By Theorem 2G — | contains aP,_2. Assume
Ph—2 = pip2--- pn—2 to be a path inG — 1. If N;(p1) N Ny (pn—2) # 9, thenG
contains a cycleC of lengthn — 1. LetV = V(G) — V(C), thendy (v) = 0 for any
v € V(C) since otherwisés containsT. Thus we havex(G[V]) < 2 sincex(G) = 3
and$(G[V]) > n — 3 by Lemma land henceG[V] containsT by Lemma 4 Thus we
may assumeN; (p1) N Ny (pn—2) = . In this case, ifd| (p1) > 2 ord|(pn-2) > 2,
then G containsT and hence we may assum& (p1) = {v1} and N; (pn—2) = {v2}.
Let Vo = V(G) — | — Ph—2, then|Vo| = n — 2. If dy,(v1) > 2 ordy,(v2) > 2, then
G containsT. Thus, sincdVp| = n — 2 > 7, there are three vertices;, w2, w3 € Vo
suchthatviw; ¢ E(G) fori = 1,2andj = 1,2,3. If N(p2) N (Mo U {v1}) # @ or
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Nv, (Ph—2) # @, thenG containsT. Herce we haveN(p2) N (Vo U {v1}) = Ny, (Pn—2)
= 0. Thus,G[v1, P2, v2, Pr_2, w1, w2, w3] contains ag with the hubwy, a wntradiction.

If U] = 3, we asumeU = {uj, Uz, us}. By induction hypothesisz; — X contains
Tu,- Assumedy (u1) < dx(uz) < dx(us). SinceG contains nal , by Lemma 5 we have
dx(u1) < dx(u2) < 2. If dx(u1) = 1, then sincek = 3, we haveNx (u1) = {x1}.
If xquz € E(G), then sincedx(uz) < 2, by the symmetry ok, and x3, we may
assumexauz ¢ E(G). Thus G[x, U1, Up, X1, X4, X5, Xg] contains aWs with the hub
X2, a @ontradiction. Ifxquy, ¢ E(G), then sincedx(u2) < 2 andk = 3, we must
have N| (U2) = {Xo, X3}. In this case,G[X1, U2, X2, X3, X4, X5, Xg] contains aWes with
the hub x3, again a ontradiction. Thus we haveix (u;) = 2. If [INx(U)| > 3, then by
Lemma 5 G containsT, a mntradiction. Hence we havéx(U)| = 2 which inmplies
Nx(u1) = Nx(u2) = Nx(uz). LetW = V(G) — Nx(U) — V(Ty,), then|W| = n.
Obviously, dw(uj) = 0 fori = 1, 2,3 since oberwiseG containsT. This implies
a(G[W]) < 2 sincek = 3. And thens(G[W]) > n — 3 by Lemma 1 Herce G[W]
containsT by Lemma 4 a contradiction. [

Claim 3. G contains no induced subgraph 3Ko.

Proof. SinceG contains ndT, by Theorem 8ve may assum@& contains a lll-deletable
set or IV-deletable set)y and Nt (Ug) = U. Suppose to the contrar$d contains an
induced subgraps; = 3K with V(G1) =Y ={y; | 1 <i < 6} andE(Gy) =
{Y1Y2, Y3Ya, ¥s¥e}. By induction hypothesisz — Y containsTy,. Sincek = 3, it is easy
to seedy(u) > 2 for anyu € U. If [INy(U)| > 3 and|U| = 2, then it is easy to see
G containsT, a ntradiction. If[Ny(U)| > 3 and|U| = 3, thenG containsT by
Lemma 5 a ontradiction. Thus we haviNy (U)| = 2. Sincek = 3, we may assume
Ny (U) = {ys, ys}. In this case,G contains an induced subgraf» = 2K, U Kg4. Let
V(G2)=Z={z |1<i <8 andE(G2) = {z122,z324} U (zzj | 5<i < ] < 8}. By
Claim 2, we have|L(T)| > 4. By Theorem 8nve may assum@& contains a IV-deletable
setU;. If dz(u) > 4 for anyu € Nt (U1), thenG containsT, a ontradiction. Hence there
is some vertexip € Nt (U1) suchthatdz(ug) < 3. SetV = {zs, zs, 77, zg}. Sincek = 3,
we havedy (up) < 1. Hence we may assuniN (Ug) N{zs, zs, z7} = @. Sincedz (Ug) < 3,
we may assume; & Nz (Ug). ThusG[zy, Uo, z3, Zs, Zs, Zs, Z7] contains aNg with the hub
Z1, a ontradiction. [

In the fdlowing we proveCase 1

By Theorem 8T contains a lll-deletable set or a IV-deletabledetLet Nt (Ug) = U.
By induction hypothesisG — X containsTy,. If there issome vertexu € U such
that dx(u) = 1, then sincek = 3, we haveNx(u) = {xi1} and thusG contains
an induced subgraphk3® which contradictsClaim 3 Herce we havedyx(u) > 2 for
anyu € U. If [INx(U)] > 3 and|U| = 2, thenG containsT, a ontradiction. If
INx(U)| > 3 and|U| = 3, thenG containsT by Lemma 5 a mntradiction. Hence we
have|Nx (U)| = 2 which inplies Nx(u) = Nx(U) for eachu € U. If x;1 € Nx(U),
then by the symmetry ok, and x3 and Claim 3, we mayassumexz € Nx(U) and
henceG[xy, U1, Uz, X1, X4, X5, Xg] contains aWe with the hubxo, whereuy, u> € U, a
contradiction. Ifx; & Nx (U), then sincé&k = 3, we haveNx (U) = {x2, X3} which implies

G[x1, U1, X2, X3, X4, X5, Xg] contains aNg with the hubxy, whereu; € U, a contradiction.
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Case2. k > 4.

If k = 4, then byTheorem 8we may assumd& contains a ll-deletable sélg. By
induction hypothesisz — | containsTy,. Let Nt (Ug) = U. If [N, (U)| > 2, thenG con-
tainsT, a ontradiction. Thus we havd; (U)| = 1 which inplies G contains an induced
subgraph ¥X; U K3. Let G’ = 3K; U Kz with V(G') = W = {w; | 1 <i < 6} and
E(G) = {waws, waws, wswe}. By Theorem 8ve may assumé& contains a llI-deletable
setU;. Let Nt (U1) = Ua. By induction hypothesi<; — W containsTy, . If dy(u) > 3 for
eachu € U,, thenG containsT, a @ntradiction. Hence there is some vertexe U, such
thatdw(ug) < 2. Sincek = 4, we havg N (ug) N {wa, ws, we}| < 1. Sincedw (uUg) < 2,
we may assume; & N(ug). ThusGlwz, w2, w3, Ug, wa, ws, we] contains @l with the
hub w1, a mntradiction.

Let nowk = 5, 6. By Theorem 8ve may assum@& contains a 3-deletable sdp. Let
Nt (Up) = U. By induction hypothesiz — | containsTy,. If di (u) > 3 for eachu € U,
thenG containsT, a ontradiction. Hence there is some vertex U suchthatd, (u) < 2.
Thus, ifk = 5, thenG contains an induced subgrapK 38U Ps or 4K; U K2. By an anal-
ogous argument & = 4, we can get a contradiction.kf= 6, thenG[| U {u}] contains a
Ws, a ontradiction.

From the poof above, we haveR(T,Ws) < 2n — 1 for T ¢ 7. On theother
hand, the graphR,_1 showsR(T, Ws) > 2n — 1 for any treeT of ordern and hence
R(T,Ws) =2n—1forT ¢ 7. Thus the proof offheorem 9s completed. O

4. Proof of Theorem 10

Proof of Theorem 10. Let G be a graph of order8— 2 andT a giventree ofordern.
SupposeG contains nd\5.

Claim 4. If G containsno T, then §(G) = n — 2.

Proof. By Theorem 3we mayassumerl # S,. Letd(v) = §(G) andV = V(G) — N[v].
If §(G) < n— 3, then|V| > 2n. SinceG contains nadT, by Theorem 9 G[V] contains
a W and henceG[V] contains aC7 which impliesG contains aW; with the hubv, a
contradiction. Hence we hadG) > n — 2. If §(G) > n — 1, then it is easy to se@
contains all trees of order. Thus we havé(G) < n — 2 andhence5(G) =n—-2. 0O

By Theorem 3 G contains a treel, = S,. Let V(T,) = {vo, v1,...,vn—1} and
E(Ty) = {vovi | L <i < n—1}. If G contains noS,(1, 1), then byClaim 4, we have
d(v1) > n— 2 > 4 andhence there is some vertex € V(G) suchthatw # vg and
w € N(v1) which impliesG contains ar§s, (1, 1), a @ntradiction. Assumé,, = $(1, 1)
with V(Ty) = {Ug, ..., Un_1} andE(Tw) = {uoui | 1 <i <n—2}U{utup_1}. If G
contains noS,(1, 2), then byClaim 4, we haved(u,—1) > n — 2 > 4 andhence there
is some vertexv € V(G) suchthatu # ug,u; andw € N(un—1) which impliesG
contains arf, (1, 2), a wntradiction. Thus we may assume# S,, $:(1, 1) and$,(1, 2).
Assumed(v) = §(G) andV = V(G) — N[v]. If G contains noT, then byClaim 4,
we have|V| = 2n — 1. By Theorem 9 G[V] contains aWs and henceG[V] contains
a C7 which impliesG contains aWy with the hubv, a @ntradiction. Thus we have

[
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R(T,W7) < 3n — 2. On the other hand, the grapiK@d.1 showsR(T,Wy) > 3n — 2
and henceR(T, W¢) = 3n — 2, thatis, R(Th, Wy) = 3n — 2. The proof ofTheorem 10s
completed. O
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