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Abstract1

Let Tn denote a tree of ordern andWm a wheel of orderm +1. In this paper, we show the Ramsey2

numbersR(Tn , W6) = 2n − 1 + µ for n ≥ 5, whereµ = 2 if Tn = Sn, µ = 1 if Tn = Sn(1, 1) or3

Tn = Sn(1, 2) andn ≡ 0 (mod 3), andµ = 0 otherwise;R(Tn , W7) = 3n − 2 for n ≥ 6.4

© 2005 Elsevier Ltd. All rights reserved.5
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1. Introduction6

Al l graphs considered in this paper are finite simple graphs without loops. For two given7

graphsG1 andG2, theRamsey number R(G1, G2) is the smallest positive integern such8

that for any graphG of ordern, either G containsG1 or G containsG2, whereG is the9

complement ofG. Let G be a graph andm be a positive integer. We usemG to denote10

m vertex disjoint copies ofG. A path and acycle of ordern are denoted byPn andCn ,11

respectively. Astar Sn (n ≥ 3) is a bipartite graphK1,n−1. A complete graph of ordern is12

denoted byKn . A wheel Wn = K1 + Cn is a graph of n + 1 vertices, whereK1 is called13

the hub of the wheel.Sn(l, m) is a tree of ordern obtained fromSn−l×m by subdividing14

each ofl chosen edgesm times.Sn(l) is a tree of ordern obtained from anSl and anSn−l15

by adding an edge joining the centers of them.Sn[l] is a tree of ordern obtained from an16
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Sl and anSn−l by adding an edge joining a vertex of degree one ofSl to the center ofSn−l . 1

Define 2

T = {Sn | n ≥ 5} ∪ {Sn(1, 1) | n ≥ 5} ∪ {Sn(1, 2) | n ≥ 6 andn ≡ 0 (mod 3)}. 3

For a treeT , we defineL(T ) = {v | v ∈ V (T ) andd(v) = 1}. Let V ⊆ L(T ) and|V | = k. 4

Write TV = T − V . If TV �∈ T , wecall V a k-deletable set. If k = 2 and|N(V )| = 2, we 5

call V a II-set. If k = 3 and|N(V )| = 3, we callV a III- set. If k = 3 and|N(V )| = 2, we 6

call V a IV-set. If V is aII-set andTV �∈ T , wecall V a II-deletable set. Similarly, we can 7

define III-deletable and IV-deletable sets. Terminology and notations not defined here can 8

be found in [2]. 9

In [1], Baskoro et al. obtain the following. 10

Theorem 1 ([1]). Let Tn be a tree of order n other than Sn. Then R(Tn, W4) = 2n −1 for 11

n ≥ 3; R(Tn, W5) = 3n − 2 for n ≥ 4. 12

Motivated byTheorem 1, Baskoroet al. [1] pose the following. 13

Conjecture 1. Let Tn be a tree of order n other than Sn and n ≥ m−1. Then R(Tn, Wm) = 14

2n − 1 for even m ≥ 6; R(Tn, Wm) = 3n − 2 for odd m ≥ 7. 15

In [3], we showConjecture 1holds forTn = Pn . 16

Theorem 2 ([3]). R(Pn, Wm ) = 3n − 2 for m odd and n ≥ m − 1 ≥ 2; R(Pn, Wm) = 17

2n − 1 for m even and n ≥ m − 1 ≥ 3. 18

In [4], we obtain the following. 19

Theorem 3 ([4]). R(Sn, W6) = 2n + 1 for n ≥ 3; R(Sn , Wm) = 3n − 2 for m odd and 20

n ≥ m − 1 ≥ 2. 21

UsingTheorem 3, we considerR(Tn, W6) for �(Tn) ≥ n − 3 in [5] and the following 22

are established. 23

Theorem 4 ([5]). R(Sn(1, 1), W6) = 2n for n ≥ 4. 24

Theorem 5 ([5]). R(Sn(1, 2), W6) = 2n for n ≥ 6 and n ≡ 0 (mod 3). 25

Theorem 6 ([5]). R(Sn(3), W6) = R(Sn(2, 1), W6) = 2n − 1 for n ≥ 6; 26

R(Sn(1, 2), W6) = 2n − 1 for n ≥ 6 and n �≡ 0 (mod 3). 27

By Theorems 4and5, wecan see thatConjecture 1is not true whenm = 6. In fact, as 28

pointed out in [5], for evenm, R(Tn, Wm) is a function related to bothn andm. However, 29

we believe thatR(Tn, W6) = 2n − 1 for Tn �∈ T . 30

In [6], we evaluateR(Tn, W6) for 5 ≤ n ≤ 8 andget the following. 31

Theorem 7 ([6]). Let Tn �∈ T be a tree of order n and 5 ≤ n ≤ 8, then R(Tn, W6) = 32

2n − 1. 33

In [7], we considerR(Tn, W6) for Tn without certain deletable sets and establish the34

following. 35



UNCO
RRECTE

D P
RO

O
F

ARTICLE  IN  PRESS
Y. Chen et al. / European Journal of Combinatorics xx (xxxx) xxx–xxx 3

YEUJC: 925

Theorem 8 ([7]). Let T �∈ T be a tree of order n ≥ 9. If T contains no II-deletable set,1

or |L(T )| ≥ 3 and T contains neither III-deletable set nor IV-deletable set, or |L(T )| ≥ 42

and T contains no IV-deletable set, then R(T, W6) = 2n − 1.3

In this paper, we will determineR(Tn, W6) for all Tn �∈ T andn ≥ 5. On the other4

hand, we will consider the conjecture in the case wherem is odd. As a special case, this5

paper will determineR(Tn, W7).6

Let Tn be a tree of ordern. The main results of this paper are the following.7

Theorem 9. R(Tn, W6) = 2n − 1 + µ for n ≥ 5, where µ = 2 if Tn = Sn, µ = 1 if8

Tn = Sn(1, 1) or Tn = Sn(1, 2) and n ≡ 0 (mod 3), and µ = 0 otherwise.9

Theorem 10. R(Tn, W7) = 3n − 2 for n ≥ 6.10

By Theorem 10, we can see thatConjecture 1holds form = 7. For oddm ≥ 9, the11

conjecture is still alive. Although the conjecture is not true for evenm in general, we12

believe it holds for oddm.13

2. Some lemmas14

In order to prove the main results of this paper, we need the following lemmas.15

Lemma 1 ([5]). Let G be a graph of order 2n − 1 ≥ 7 and (U, V ) a partition of V (G)16

with |U | ≥ 3 and |V | ≥ 4. Suppose ui ∈ U and NV (ui ) = ∅, 1 ≤ i ≤ 3. If G contains no17

W6, then δ(G[V ]) ≥ |V | − 3.18

Lemma 2 ([7]). Let G be a graph of order 2n − 1. If α(G) ≤ 2, then G contains all trees19

of order n.20

Ore showed in [8] that if a graph onn vertices in which the degree sum of any two21

nonadjacent vertices is at leastn + 1, thenG is Hamilton-connected. From this result we22

can get easily the following.23

Lemma 3. Let G be a graph of order n. If δ(G) ≥ n/2+1, then G is Hamilton-connected.24

Lemma 4. Let G be a graph of order n ≥ 9. If α(G) ≤ 2 and δ(G) ≥ n − 3, then G25

contains all trees T of order n with |L(T )| = 3.26

Proof. If α(G) = 1, then it holdstrivially. Hence we may assumeα(G) = 2. Let T be a27

given tree of ordern with |L(T )| = 3. Obviously,�(T ) = 3 andT has only one vertex28

of degree 3. Letv ∈ V (G) andG0 = G − v. Sincen ≥ 9 andδ(G) ≥ n − 3, we have29

δ(G0) ≥ (n − 3) − 1 ≥ (n − 1)/2 + 1 = |G0|/2 + 1 which implies G0 is Hamilton-30

connected byLemma 3. If d(v) = n −3, we assumev1, v2 �∈ N(v). Noting thatα(G) = 2,31

we havev1v2 ∈ E(G) and henceG0 contains a Hamilton cycleC = v1v2 · · · vn−1 such32

thatvi ∈ N(v) for 3 ≤ i ≤ n−1. In this case, it is easy to seeG containsT . If d(v) ≥ n−2,33

then sinceG0 contains a Hamilton cycle, it is not difficult to seeG containsT . �34

The following lemma is well known and can be found in many graph theory textbooks,35

see for instance [2].36
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Lemma 5. A bipartite graph G with bipartition (U, V ) contains a matching saturating U 1

if and only if |N(S)| ≥ |S| for every S ⊆ U. 2

3. Proof of Theorem 9 3

Proof of Theorem 9. Let T be a given tree of ordern ≥ 5. If |L(T )| = 2, thenT = Pn and 4

henceTheorem 9holds byTheorem 2. If T ∈ T , thenTheorem 9holds byTheorems 3–5. 5

Thus we may assume|L(T )| ≥ 3 andT �∈ T . 6

We use induction onn. If 5 ≤ n ≤ 8, thenTheorem 9holds byTheorem 7. In the 7

following proof, we assumen ≥ 9 andTheorem 9holds for small values ofn. 8

Let G be a graph of order 2n − 1. If G contains noW6, then α(G) ≤ 6. Let 9

I be a maximum independent set ofG. By Lemma 2, we mayassume|I | ≥ 3. Let 10

I = {v1, v2, . . . , vk}, where 3≤ k ≤ 6. 11

Suppose to the contraryG contains noT . We now considerthe following two cases. 12

Case 1. k = 3. 13

In order to proveCase 1, we need the following three claims. 14

Claim 1. G contains an induced subgraph K1 ∪ K2 ∪ K3. 15

Proof. SinceG contains noT , by Theorem 8we may assumeT contains a II-deletable 16

setU0. By induction hypothesis,G − I containsTU0 = T − U0. Let NT (U0) = U . If 17

|NI (U)| ≥ 2, thenG containsT , a contradiction. Hence|NI (U)| = 1. ThisimpliesG has 18

an induced subgraph 2K1∪ K2. Assume, without loss of generality, thatG[I1] = 2K1∪ K2 19

with I1 = I ∪ {v4} andv3v4 ∈ E(G). By induction hypothesis,G − I1 containsTU0. If 20

|NI1(U)| ≥ 2, thenG containsT , a contradiction. Hence|NI1(U)| = 1. Thus, noting that 21

k = 3, we may assumeNI1(U) = {v2}. Let I2 = I1 ∪ U . Sincek = 3, it is easy to see that 22

G[I2] = K1 ∪ K2 ∪ K3. � 23

In the following, we letG0 = K1 ∪ K2 ∪ K3 with V (G0) = X = {x1, x2, . . . , x6} and 24

E(G0) = {x2x3, x4x5, x4x6, x5x6} be an induced subgraph ofG. 25

Claim 2. |L(T )| ≥ 4. 26

Proof. Let L(T ) = U0. If |L(T )| = 3, then byTheorem 8we may assumeU0 is a 27

IV-deletable set or III-deletable set. LetNT (U0) = U . 28

If |U | = 2, we assumeU = {u1, u2}. In this case, it is easy to seeTU0 = Pn−3 29

and eitherdT (u1) = 3 or dT (u2) = 3. By Theorem 2, G − I contains aPn−2. Assume 30

Pn−2 = p1 p2 · · · pn−2 to be a path inG − I . If NI (p1) ∩ NI (pn−2) �= ∅, then G 31

contains a cycleC of lengthn − 1. Let V = V (G) − V (C), thendV (v) = 0 for any 32

v ∈ V (C) since otherwiseG containsT . Thus we haveα(G[V ]) ≤ 2 sinceα(G) = 3 33

andδ(G[V ]) ≥ n − 3 by Lemma 1and henceG[V ] containsT by Lemma 4. Thus we 34

may assumeNI (p1) ∩ NI (pn−2) = ∅. In this case, ifdI (p1) ≥ 2 or dI (pn−2) ≥ 2, 35

then G containsT and hence we may assumeNI (p1) = {v1} and NI (pn−2) = {v2}. 36

Let V0 = V (G) − I − Pn−2, then|V0| = n − 2. If dV0(v1) ≥ 2 or dV0(v2) ≥ 2, then 37

G containsT . Thus, since|V0| = n − 2 ≥ 7, there are three verticesw1, w2, w3 ∈ V0 38

suchthat viw j �∈ E(G) for i = 1, 2 and j = 1, 2, 3. If N(p2) ∩ (V0 ∪ {v1}) �= ∅ or 39



UNCO
RRECTE

D P
RO

O
F

ARTICLE  IN  PRESS
Y. Chen et al. / European Journal of Combinatorics xx (xxxx) xxx–xxx 5

YEUJC: 925

NV0(pn−2) �= ∅, thenG containsT . Hence we haveN(p2) ∩ (V0 ∪ {v1}) = NV0(pn−2)1

= ∅. Thus,G[v1, p2, v2, pn−2, w1, w2, w3] contains aW6 with the hubv1, a contradiction.2

If |U | = 3, we assumeU = {u1, u2, u3}. By induction hypothesis,G − X contains3

TU0. AssumedX (u1) ≤ dX (u2) ≤ dX (u3). SinceG contains noT , by Lemma 5, we have4

dX (u1) ≤ dX (u2) ≤ 2. If dX (u1) = 1, then sincek = 3, we haveNX (u1) = {x1}.5

If x1u2 ∈ E(G), then sincedX (u2) ≤ 2, by the symmetry ofx2 and x3, we may6

assumex2u2 �∈ E(G). Thus G[x2, u1, u2, x1, x4, x5, x6] contains aW6 with the hub7

x2, a contradiction. If x1u2 �∈ E(G), then sincedX (u2) ≤ 2 and k = 3, we must8

have NI (u2) = {x2, x3}. In this case,G[x1, u2, x2, x3, x4, x5, x6] contains aW6 with9

the hub x1, again a contradiction. Thus we havedX (u1) = 2. If |NX (U)| ≥ 3, then by10

Lemma 5, G containsT , a contradiction. Hence we have|NX (U)| = 2 which implies11

NX (u1) = NX (u2) = NX (u3). Let W = V (G) − NX (U) − V (TU0), then |W | = n.12

Obviously, dW (ui ) = 0 for i = 1, 2, 3 since otherwiseG containsT . This implies13

α(G[W ]) ≤ 2 sincek = 3. And thenδ(G[W ]) ≥ n − 3 by Lemma 1. Hence G[W ]14

containsT by Lemma 4, a contradiction. �15

Claim 3. G contains no induced subgraph 3K2.16

Proof. SinceG contains noT , by Theorem 8we may assumeT contains a III-deletable17

set or IV-deletable setU0 and NT (U0) = U . Suppose to the contraryG contains an18

induced subgraphG1 = 3K2 with V (G1) = Y = {yi | 1 ≤ i ≤ 6} and E(G1) =19

{y1y2, y3y4, y5y6}. By induction hypothesis,G − Y containsTU0. Sincek = 3, it is easy20

to seedY (u) ≥ 2 for anyu ∈ U . If |NY (U)| ≥ 3 and|U | = 2, then it is easy to see21

G containsT , a contradiction. If |NY (U)| ≥ 3 and |U | = 3, thenG containsT by22

Lemma 5, a contradiction. Thus we have|NY (U)| = 2. Sincek = 3, we may assume23

NY (U) = {y5, y6}. In this case,G contains an induced subgraphG2 = 2K2 ∪ K4. Let24

V (G2) = Z = {zi | 1 ≤ i ≤ 8} andE(G2) = {z1z2, z3z4} ∪ {zi z j | 5 ≤ i < j ≤ 8}. By25

Claim 2, we have|L(T )| ≥ 4. By Theorem 8we may assumeT contains a IV-deletable26

setU1. If dZ (u) ≥ 4 for anyu ∈ NT (U1), thenG containsT , a contradiction. Hence there27

is some vertexu0 ∈ NT (U1) suchthatdZ (u0) ≤ 3. SetV = {z5, z6, z7, z8}. Sincek = 3,28

we havedV (u0) ≤ 1. Hence we may assumeNZ (u0)∩{z5, z6, z7} = ∅. SincedZ (u0) ≤ 3,29

we may assumez1 �∈ NZ (u0). ThusG[z1, u0, z3, z4, z5, z6, z7] contains aW6 with the hub30

z1, a contradiction. �31

In the following we proveCase 1.32

By Theorem 8, T contains a III-deletable set or a IV-deletable setU0. Let NT (U0) = U .33

By induction hypothesis,G − X containsTU0. If there is some vertexu ∈ U such34

that dX (u) = 1, then sincek = 3, we haveNX (u) = {x1} and thusG contains35

an induced subgraph 3K2 which contradictsClaim 3. Hence we havedX (u) ≥ 2 for36

any u ∈ U . If |NX (U)| ≥ 3 and |U | = 2, then G containsT , a contradiction. If37

|NX (U)| ≥ 3 and|U | = 3, thenG containsT by Lemma 5, a contradiction. Hence we38

have|NX (U)| = 2 which implies NX (u) = NX (U) for eachu ∈ U . If x1 ∈ NX (U),39

then by the symmetry ofx2 and x3 and Claim 3, we mayassumex3 ∈ NX (U) and40

henceG[x2, u1, u2, x1, x4, x5, x6] contains aW6 with the hubx2, whereu1, u2 ∈ U , a41

contradiction. Ifx1 �∈ NX (U), then sincek = 3, we haveNX (U) = {x2, x3} which implies42

G[x1, u1, x2, x3, x4, x5, x6] contains aW6 with the hubx1, whereu1 ∈ U , a contradiction.43
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Case 2. k ≥ 4. 1

If k = 4, then byTheorem 8we may assumeT contains a II-deletable setU0. By 2

induction hypothesis,G − I containsTU0. Let NT (U0) = U . If |NI (U)| ≥ 2, thenG con- 3

tainsT , a contradiction. Thus we have|NI (U)| = 1 which implies G contains an induced 4

subgraph 3K1 ∪ K3. Let G′ = 3K1 ∪ K3 with V (G′) = W = {wi | 1 ≤ i ≤ 6} and 5

E(G′) = {w4w5, w4w6, w5w6}. By Theorem 8we may assumeT contains a III-deletable 6

setU1. Let NT (U1) = U2. By induction hypothesis,G −W containsTU1. If dW (u) ≥ 3 for 7

eachu ∈ U2, thenG containsT , a contradiction. Hence there is some vertexu0 ∈ U2 such 8

thatdW (u0) ≤ 2. Sincek = 4, we have|N(u0) ∩ {w4, w5, w6}| ≤ 1. SincedW (u0) ≤ 2, 9

we may assumew1 �∈ N(u0). ThusG[w1, w2, w3, u0, w4, w5, w6] contains aW6 with the 10

hubw1, a contradiction. 11

Let nowk = 5, 6. By Theorem 8we may assumeT contains a 3-deletable setU0. Let 12

NT (U0) = U . By induction hypothesis,G − I containsTU0. If dI (u) ≥ 3 for eachu ∈ U , 13

thenG containsT , a contradiction. Hence there is some vertexu ∈ U suchthatdI (u) ≤ 2. 14

Thus, ifk = 5, thenG contains an induced subgraph 3K1 ∪ P3 or 4K1 ∪ K2. By an anal- 15

ogous argument ofk = 4, we can get a contradiction. Ifk = 6, thenG[I ∪ {u}] contains a 16

W6, a contradiction. 17

From the proof above, we haveR(T, W6) ≤ 2n − 1 for T �∈ T . On the other 18

hand, the graph 2Kn−1 showsR(T, W6) ≥ 2n − 1 for any treeT of ordern and hence 19

R(T, W6) = 2n − 1 for T �∈ T . Thus the proof ofTheorem 9is completed. � 20

4. Proof of Theorem 10 21

Proof of Theorem 10. Let G be a graph of order 3n − 2 andT a giventree ofordern. 22

SupposeG contains noW7. 23

Claim 4. If G contains no T , then δ(G) = n − 2. 24

Proof. By Theorem 3, we mayassumeT �= Sn . Let d(v) = δ(G) andV = V (G) − N[v]. 25

If δ(G) ≤ n − 3, then|V | ≥ 2n. SinceG contains noT , by Theorem 9, G[V ] contains 26

a W6 and henceG[V ] contains aC7 which impliesG contains aW7 with the hubv, a 27

contradiction. Hence we haveδ(G) ≥ n − 2. If δ(G) ≥ n − 1, then it is easy to seeG 28

contains all trees of ordern. Thus we haveδ(G) ≤ n − 2 andhenceδ(G) = n − 2. � 29

By Theorem 3, G contains a treeT∗ = Sn . Let V (T∗) = {v0, v1, . . . , vn−1} and 30

E(T∗) = {v0vi | 1 ≤ i ≤ n − 1}. If G contains noSn(1, 1), then byClaim 4, we have 31

d(v1) ≥ n − 2 ≥ 4 andhence there is some vertexw ∈ V (G) suchthat w �= v0 and 32

w ∈ N(v1) which impliesG contains anSn(1, 1), a contradiction. AssumeT∗∗ = Sn(1, 1) 33

with V (T∗∗) = {u0, . . . , un−1} and E(T∗∗) = {u0ui | 1 ≤ i ≤ n − 2} ∪ {u1un−1}. If G 34

contains noSn(1, 2), then byClaim 4, we haved(un−1) ≥ n − 2 ≥ 4 andhence there 35

is some vertexw ∈ V (G) suchthat u �= u0, u1 andw ∈ N(un−1) which impliesG 36

contains anSn(1, 2), a contradiction. Thus we may assumeT �= Sn, Sn(1, 1) andSn(1, 2). 37

Assumed(v) = δ(G) and V = V (G) − N[v]. If G contains noT , then byClaim 4, 38

we have|V | = 2n − 1. By Theorem 9, G[V ] contains aW6 and henceG[V ] contains 39

a C7 which implies G contains aW7 with the hubv, a contradiction. Thus we have 40
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R(T, W7) ≤ 3n − 2. On the other hand, the graph 3Kn−1 showsR(T, W7) ≥ 3n − 21

and henceR(T, W7) = 3n − 2, thatis, R(Tn, W7) = 3n − 2. The proof ofTheorem 10is2

completed. �3
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