ARTICLE IN PRESS

The Ramsey numbers of trees versus W_{6} or W_{7}

Yaojun Chen, Yunqing Zhang, Kemin Zhang

Department of Mathematics, Nanjing University, Nanjing 210093, China
Received 6 September 2004; accepted 11 December 2004

Abstract

Let T_{n} denote a tree of order n and W_{m} a wheel of order $m+1$. In this paper, we show the Ramsey numbers $R\left(T_{n}, W_{6}\right)=2 n-1+\mu$ for $n \geq 5$, where $\mu=2$ if $T_{n}=S_{n}, \mu=1$ if $T_{n}=S_{n}(1,1)$ or $T_{n}=S_{n}(1,2)$ and $n \equiv 0(\bmod 3)$, and $\mu=0$ otherwise; $R\left(T_{n}, W_{7}\right)=3 n-2$ for $n \geq 6$. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Ramsey number; Tree; Wheel

1. Introduction

All graphs considered in this paper are finite simple graphs without loops. For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest positive integer n such that for any graph G of order n, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. Let G be a graph and m be a positive integer. We use $m G$ to denote m vertex disjoint copies of G. A path and a cycle of order n are denoted by P_{n} and C_{n}, respectively. A star $S_{n}(n \geq 3)$ is a bipartite graph $K_{1, n-1}$. A complete graph of order n is denoted by K_{n}. A wheel $W_{n}=K_{1}+C_{n}$ is a graph of $n+1$ vertices, where K_{1} is called the $h u b$ of the wheel. $S_{n}(l, m)$ is a tree of order n obtained from $S_{n-l \times m}$ by subdividing each of l chosen edges m times. $S_{n}(l)$ is a tree of order n obtained from an S_{l} and an S_{n-l} by adding an edge joining the centers of them. $S_{n}[l]$ is a tree of order n obtained from an

[^0]
ARTICLE IN PRESS

S_{l} and an S_{n-l} by adding an edge joining a vertex of degree one of S_{l} to the center of S_{n-l}. Define

$$
\mathcal{T}=\left\{S_{n} \mid n \geq 5\right\} \cup\left\{S_{n}(1,1) \mid n \geq 5\right\} \cup\left\{S_{n}(1,2) \mid n \geq 6 \text { and } n \equiv 0(\bmod 3)\right\}
$$

For a tree T, we define $L(T)=\{v \mid v \in V(T)$ and $d(v)=1\}$. Let $V \subseteq L(T)$ and $|V|=k$. Write $T_{V}=T-V$. If $T_{V} \notin \mathcal{T}$, we call V a k-deletable set. If $k=2$ and $|N(V)|=2$, we call V a II-set. If $k=3$ and $|N(V)|=3$, we call V a III-set. If $k=3$ and $|N(V)|=2$, we call V a IV-set. If V is a II-set and $T_{V} \notin \mathcal{T}$, we call V a II-deletable set. Similarly, we can define III-deletable and IV-deletable sets. Terminology and notations not defined here can be found in [2].

In [1], Baskoro et al. obtain the following.
Theorem 1 ([1]). Let T_{n} be a tree of order n other than S_{n}. Then $R\left(T_{n}, W_{4}\right)=2 n-1$ for $n \geq 3 ; R\left(T_{n}, W_{5}\right)=3 n-2$ for $n \geq 4$.

Motivated by Theorem 1, Baskoro et al. [1] pose the following.
Conjecture 1. Let T_{n} be a tree of order n other than S_{n} and $n \geq m-1$. Then $R\left(T_{n}, W_{m}\right)=$ $2 n-1$ for even $m \geq 6 ; R\left(T_{n}, W_{m}\right)=3 n-2$ for odd $m \geq 7$.

In [3], we show Conjecture 1 holds for $T_{n}=P_{n}$.
Theorem 2 ([3]). $R\left(P_{n}, W_{m}\right)=3 n-2$ for m odd and $n \geq m-1 \geq 2 ; R\left(P_{n}, W_{m}\right)=$ $2 n-1$ for m even and $n \geq m-1 \geq 3$.

In [4], we obtain the following.
Theorem 3 ([4]). $R\left(S_{n}, W_{6}\right)=2 n+1$ for $n \geq 3 ; R\left(S_{n}, W_{m}\right)=3 n-2$ for m odd and $n \geq m-1 \geq 2$.

Using Theorem 3, we consider $R\left(T_{n}, W_{6}\right)$ for $\Delta\left(T_{n}\right) \geq n-3$ in [5] and the following are established.

Theorem 4 ([5]). $R\left(S_{n}(1,1), W_{6}\right)=2 n$ for $n \geq 4$.
Theorem $5([5]) . R\left(S_{n}(1,2), W_{6}\right)=2 n$ for $n \geq 6$ and $n \equiv 0(\bmod 3)$.
Theorem 6 ([5]). $R\left(S_{n}(3), W_{6}\right)=R\left(S_{n}(2,1), W_{6}\right)=2 n-1$ for $n \geq 6$; $R\left(S_{n}(1,2), W_{6}\right)=2 n-1$ for $n \geq 6$ and $n \not \equiv 0(\bmod 3)$.

By Theorems 4 and 5, we can see that Conjecture 1 is not true when $m=6$. In fact, as pointed out in [5], for even $m, R\left(T_{n}, W_{m}\right)$ is a function related to both n and m. However, we believe that $R\left(T_{n}, W_{6}\right)=2 n-1$ for $T_{n} \notin \mathcal{T}$.

In [6], we evaluate $R\left(T_{n}, W_{6}\right)$ for $5 \leq n \leq 8$ and get the following.
Theorem 7 ([6]). Let $T_{n} \notin \mathcal{T}$ be a tree of order n and $5 \leq n \leq 8$, then $R\left(T_{n}, W_{6}\right)=$ $2 n-1$.

In [7], we consider $R\left(T_{n}, W_{6}\right)$ for T_{n} without certain deletable sets and establish the following.

ARTICLE IN PRESS

Theorem 8 ([7]). Let $T \notin \mathcal{T}$ be a tree of order $n \geq 9$. If T contains no II-deletable set, or $|L(T)| \geq 3$ and T contains neither III-deletable set nor $I V$-deletable set, or $|L(T)| \geq 4$ and T contains no $I V$-deletable set, then $R\left(T, W_{6}\right)=2 n-1$.

In this paper, we will determine $R\left(T_{n}, W_{6}\right)$ for all $T_{n} \notin \mathcal{T}$ and $n \geq 5$. On the other hand, we will consider the conjecture in the case where m is odd. As a special case, this paper will determine $R\left(T_{n}, W_{7}\right)$.

Let T_{n} be a tree of order n. The main results of this paper are the following.
Theorem 9. $R\left(T_{n}, W_{6}\right)=2 n-1+\mu$ for $n \geq 5$, where $\mu=2$ if $T_{n}=S_{n}, \mu=1$ if $T_{n}=S_{n}(1,1)$ or $T_{n}=S_{n}(1,2)$ and $n \equiv 0(\bmod 3)$, and $\mu=0$ otherwise.

Theorem 10. $R\left(T_{n}, W_{7}\right)=3 n-2$ for $n \geq 6$.
By Theorem 10, we can see that Conjecture 1 holds for $m=7$. For odd $m \geq 9$, the conjecture is still alive. Although the conjecture is not true for even m in general, we believe it holds for odd m.

2. Some lemmas

In order to prove the main results of this paper, we need the following lemmas.
Lemma 1 ([5]). Let G be a graph of order $2 n-1 \geq 7$ and (U, V) a partition of $V(G)$ with $|U| \geq 3$ and $|V| \geq 4$. Suppose $u_{i} \in U$ and $N_{V}\left(u_{i}\right)=\emptyset, 1 \leq i \leq 3$. If \bar{G} contains no W_{6}, then $\delta(G[V]) \geq|V|-3$.

Lemma 2 ([7]). Let G be a graph of order $2 n-1$. If $\alpha(G) \leq 2$, then G contains all trees of order n.

Ore showed in [8] that if a graph on n vertices in which the degree sum of any two nonadjacent vertices is at least $n+1$, then G is Hamilton-connected. From this result we can get easily the following.

Lemma 3. Let G be a graph of order n. If $\delta(G) \geq n / 2+1$, then G is Hamilton-connected.
Lemma 4. Let G be a graph of order $n \geq 9$. If $\alpha(G) \leq 2$ and $\delta(G) \geq n-3$, then G contains all trees T of order n with $|L(T)|=3$.

Proof. If $\alpha(G)=1$, then it holds trivially. Hence we may assume $\alpha(G)=2$. Let T be a given tree of order n with $|L(T)|=3$. Obviously, $\Delta(T)=3$ and T has only one vertex of degree 3. Let $v \in V(G)$ and $G_{0}=G-v$. Since $n \geq 9$ and $\delta(G) \geq n-3$, we have $\delta\left(G_{0}\right) \geq(n-3)-1 \geq(n-1) / 2+1=\left|G_{0}\right| / 2+1$ which implies G_{0} is Hamiltonconnected by Lemma 3. If $d(v)=n-3$, we assume $v_{1}, v_{2} \notin N(v)$. Noting that $\alpha(G)=2$, we have $v_{1} v_{2} \in E(G)$ and hence G_{0} contains a Hamilton cycle $C=v_{1} v_{2} \cdots v_{n-1}$ such that $v_{i} \in N(v)$ for $3 \leq i \leq n-1$. In this case, it is easy to see G contains T. If $d(v) \geq n-2$, then since G_{0} contains a Hamilton cycle, it is not difficult to see G contains T.

The following lemma is well known and can be found in many graph theory textbooks, see for instance [2].

ARTICLE IN PRESS

Lemma 5. A bipartite graph G with bipartition (U, V) contains a matching saturating U if and only if $|N(S)| \geq|S|$ for every $S \subseteq U$.

3. Proof of Theorem 9

Proof of Theorem 9. Let T be a given tree of order $n \geq 5$. If $|L(T)|=2$, then $T=P_{n}$ and hence Theorem 9 holds by Theorem 2. If $T \in \mathcal{T}$, then Theorem 9 holds by Theorems 3-5. Thus we may assume $|L(T)| \geq 3$ and $T \notin \mathcal{T}$.

We use induction on n. If $5 \leq n \leq 8$, then Theorem 9 holds by Theorem 7. In the following proof, we assume $n \geq 9$ and Theorem 9 holds for small values of n.

Let G be a graph of order $2 n-1$. If \bar{G} contains no W_{6}, then $\alpha(G) \leq 6$. Let I be a maximum independent set of G. By Lemma 2, we may assume $|I| \geq 3$. Let $I=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, where $3 \leq k \leq 6$.

Suppose to the contrary G contains no T. We now consider the following two cases.
Case 1. $k=3$.
In order to prove Case 1, we need the following three claims.
Claim 1. G contains an induced subgraph $K_{1} \cup K_{2} \cup K_{3}$.
Proof. Since G contains no T, by Theorem 8 we may assume T contains a II-deletable set U_{0}. By induction hypothesis, $G-I$ contains $T_{U_{0}}=T-U_{0}$. Let $N_{T}\left(U_{0}\right)=U$. If $\left|N_{I}(U)\right| \geq 2$, then G contains T, a contradiction. Hence $\left|N_{I}(U)\right|=1$. This implies G has an induced subgraph $2 K_{1} \cup K_{2}$. Assume, without loss of generality, that $G\left[I_{1}\right]=2 K_{1} \cup K_{2}$ with $I_{1}=I \cup\left\{v_{4}\right\}$ and $v_{3} v_{4} \in E(G)$. By induction hypothesis, $G-I_{1}$ contains $T_{U_{0}}$. If $\left|N_{I_{1}}(U)\right| \geq 2$, then G contains T, a contradiction. Hence $\left|N_{I_{1}}(U)\right|=1$. Thus, noting that $k=3$, we may assume $N_{I_{1}}(U)=\left\{v_{2}\right\}$. Let $I_{2}=I_{1} \cup U$. Since $k=3$, it is easy to see that $G\left[I_{2}\right]=K_{1} \cup K_{2} \cup K_{3}$.

In the following, we let $G_{0}=K_{1} \cup K_{2} \cup K_{3}$ with $V\left(G_{0}\right)=X=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$ and $E\left(G_{0}\right)=\left\{x_{2} x_{3}, x_{4} x_{5}, x_{4} x_{6}, x_{5} x_{6}\right\}$ be an induced subgraph of G.

Claim 2. $|L(T)| \geq 4$.
Proof. Let $L(T)=U_{0}$. If $|L(T)|=3$, then by Theorem 8 we may assume U_{0} is a IV-deletable set or III-deletable set. Let $N_{T}\left(U_{0}\right)=U$.

If $|U|=2$, we assume $U=\left\{u_{1}, u_{2}\right\}$. In this case, it is easy to see $T_{U_{0}}=P_{n-3}$ and either $d_{T}\left(u_{1}\right)=3$ or $d_{T}\left(u_{2}\right)=3$. By Theorem 2, $G-I$ contains a P_{n-2}. Assume $P_{n-2}=p_{1} p_{2} \cdots p_{n-2}$ to be a path in $G-I$. If $N_{I}\left(p_{1}\right) \cap N_{I}\left(p_{n-2}\right) \neq \emptyset$, then G contains a cycle C of length $n-1$. Let $V=V(G)-V(C)$, then $d_{V}(v)=0$ for any $v \in V(C)$ since otherwise G contains T. Thus we have $\alpha(G[V]) \leq 2$ since $\alpha(G)=3$ and $\delta(G[V]) \geq n-3$ by Lemma 1 and hence $G[V]$ contains T by Lemma 4. Thus we may assume $N_{I}\left(p_{1}\right) \cap N_{I}\left(p_{n-2}\right)=\emptyset$. In this case, if $d_{I}\left(p_{1}\right) \geq 2$ or $d_{I}\left(p_{n-2}\right) \geq 2$, then G contains T and hence we may assume $N_{I}\left(p_{1}\right)=\left\{v_{1}\right\}$ and $N_{I}\left(p_{n-2}\right)=\left\{v_{2}\right\}$. Let $V_{0}=V(G)-I-P_{n-2}$, then $\left|V_{0}\right|=n-2$. If $d_{V_{0}}\left(v_{1}\right) \geq 2$ or $d_{V_{0}}\left(v_{2}\right) \geq 2$, then G contains T. Thus, since $\left|V_{0}\right|=n-2 \geq 7$, there are three vertices $w_{1}, w_{2}, w_{3} \in V_{0}$ such that $v_{i} w_{j} \notin E(G)$ for $i=1,2$ and $j=1,2,3$. If $N\left(p_{2}\right) \cap\left(V_{0} \cup\left\{v_{1}\right\}\right) \neq \emptyset$ or

ARTICLE IN PRESS

$N_{V_{0}}\left(p_{n-2}\right) \neq \emptyset$, then G contains T. Hence we have $N\left(p_{2}\right) \cap\left(V_{0} \cup\left\{v_{1}\right\}\right)=N_{V_{0}}\left(p_{n-2}\right)$ $=\emptyset$. Thus, $\bar{G}\left[v_{1}, p_{2}, v_{2}, p_{n-2}, w_{1}, w_{2}, w_{3}\right]$ contains a W_{6} with the hub v_{1}, a contradiction.

If $|U|=3$, we assume $U=\left\{u_{1}, u_{2}, u_{3}\right\}$. By induction hypothesis, $G-X$ contains $T_{U_{0}}$. Assume $d_{X}\left(u_{1}\right) \leq d_{X}\left(u_{2}\right) \leq d_{X}\left(u_{3}\right)$. Since G contains no T, by Lemma 5, we have $d_{X}\left(u_{1}\right) \leq d_{X}\left(u_{2}\right) \leq 2$. If $d_{X}\left(u_{1}\right)=1$, then since $k=3$, we have $N_{X}\left(u_{1}\right)=\left\{x_{1}\right\}$. If $x_{1} u_{2} \in E(G)$, then since $d_{X}\left(u_{2}\right) \leq 2$, by the symmetry of x_{2} and x_{3}, we may assume $x_{2} u_{2} \notin E(G)$. Thus $\bar{G}\left[x_{2}, u_{1}, u_{2}, x_{1}, x_{4}, x_{5}, x_{6}\right]$ contains a W_{6} with the hub x_{2}, a contradiction. If $x_{1} u_{2} \notin E(G)$, then since $d_{X}\left(u_{2}\right) \leq 2$ and $k=3$, we must have $N_{I}\left(u_{2}\right)=\left\{x_{2}, x_{3}\right\}$. In this case, $\bar{G}\left[x_{1}, u_{2}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]$ contains a W_{6} with the hub x_{1}, again a contradiction. Thus we have $d_{X}\left(u_{1}\right)=2$. If $\left|N_{X}(U)\right| \geq 3$, then by Lemma 5, G contains T, a contradiction. Hence we have $\left|N_{X}(U)\right|=2$ which implies $N_{X}\left(u_{1}\right)=N_{X}\left(u_{2}\right)=N_{X}\left(u_{3}\right)$. Let $W=V(G)-N_{X}(U)-V\left(T_{U_{0}}\right)$, then $|W|=n$. Obviously, $d_{W}\left(u_{i}\right)=0$ for $i=1,2,3$ since otherwise G contains T. This implies $\alpha(G[W]) \leq 2$ since $k=3$. And then $\delta(G[W]) \geq n-3$ by Lemma 1. Hence $G[W]$ contains T by Lemma 4, a contradiction.

Claim 3. G contains no induced subgraph $3 K_{2}$.
Proof. Since G contains no T, by Theorem 8 we may assume T contains a III-deletable set or IV-deletable set U_{0} and $N_{T}\left(U_{0}\right)=U$. Suppose to the contrary G contains an induced subgraph $G_{1}=3 K_{2}$ with $V\left(G_{1}\right)=Y=\left\{y_{i} \mid 1 \leq i \leq 6\right\}$ and $E\left(G_{1}\right)=$ $\left\{y_{1} y_{2}, y_{3} y_{4}, y_{5} y_{6}\right\}$. By induction hypothesis, $G-Y$ contains $T_{U_{0}}$. Since $k=3$, it is easy to see $d_{Y}(u) \geq 2$ for any $u \in U$. If $\left|N_{Y}(U)\right| \geq 3$ and $|U|=2$, then it is easy to see G contains T, a contradiction. If $\left|N_{Y}(U)\right| \geq 3$ and $|U|=3$, then G contains T by Lemma 5, a contradiction. Thus we have $\left|N_{Y}(U)\right|=2$. Since $k=3$, we may assume $N_{Y}(U)=\left\{y_{5}, y_{6}\right\}$. In this case, G contains an induced subgraph $G_{2}=2 K_{2} \cup K_{4}$. Let $V\left(G_{2}\right)=Z=\left\{z_{i} \mid 1 \leq i \leq 8\right\}$ and $E\left(G_{2}\right)=\left\{z_{1} z_{2}, z_{3} z_{4}\right\} \cup\left\{z_{i} z_{j} \mid 5 \leq i<j \leq 8\right\}$. By Claim 2, we have $|L(T)| \geq 4$. By Theorem 8 we may assume T contains a IV-deletable set U_{1}. If $d_{Z}(u) \geq 4$ for any $u \in N_{T}\left(U_{1}\right)$, then G contains T, a contradiction. Hence there is some vertex $u_{0} \in N_{T}\left(U_{1}\right)$ such that $d_{Z}\left(u_{0}\right) \leq 3$. Set $V=\left\{z_{5}, z_{6}, z_{7}, z_{8}\right\}$. Since $k=3$, we have $d_{V}\left(u_{0}\right) \leq 1$. Hence we may assume $N_{Z}\left(u_{0}\right) \cap\left\{z_{5}, z_{6}, z_{7}\right\}=\emptyset$. Since $d_{Z}\left(u_{0}\right) \leq 3$, we may assume $z_{1} \notin N_{Z}\left(u_{0}\right)$. Thus $\bar{G}\left[z_{1}, u_{0}, z_{3}, z_{4}, z_{5}, z_{6}, z_{7}\right]$ contains a W_{6} with the hub z_{1}, a contradiction.

In the following we prove Case 1.
By Theorem 8, T contains a III-deletable set or a IV-deletable set U_{0}. Let $N_{T}\left(U_{0}\right)=U$. By induction hypothesis, $G-X$ contains $T_{U_{0}}$. If there is some vertex $u \in U$ such that $d_{X}(u)=1$, then since $k=3$, we have $N_{X}(u)=\left\{x_{1}\right\}$ and thus G contains an induced subgraph $3 K_{2}$ which contradicts Claim 3. Hence we have $d_{X}(u) \geq 2$ for any $u \in U$. If $\left|N_{X}(U)\right| \geq 3$ and $|U|=2$, then G contains T, a contradiction. If $\left|N_{X}(U)\right| \geq 3$ and $|U|=3$, then G contains T by Lemma 5 , a contradiction. Hence we have $\left|N_{X}(U)\right|=2$ which implies $N_{X}(u)=N_{X}(U)$ for each $u \in U$. If $x_{1} \in N_{X}(U)$, then by the symmetry of x_{2} and x_{3} and Claim 3, we may assume $x_{3} \in N_{X}(U)$ and hence $\bar{G}\left[x_{2}, u_{1}, u_{2}, x_{1}, x_{4}, x_{5}, x_{6}\right]$ contains a W_{6} with the hub x_{2}, where $u_{1}, u_{2} \in U$, a contradiction. If $x_{1} \notin N_{X}(U)$, then since $k=3$, we have $N_{X}(U)=\left\{x_{2}, x_{3}\right\}$ which implies $\bar{G}\left[x_{1}, u_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]$ contains a W_{6} with the hub x_{1}, where $u_{1} \in U$, a contradiction.

ARTICLE IN PRESS

Case 2. $k \geq 4$.
If $k=4$, then by Theorem 8 we may assume T contains a II-deletable set U_{0}. By induction hypothesis, $G-I$ contains $T_{U_{0}}$. Let $N_{T}\left(U_{0}\right)=U$. If $\left|N_{I}(U)\right| \geq 2$, then G contains T, a contradiction. Thus we have $\left|N_{I}(U)\right|=1$ which implies G contains an induced subgraph $3 K_{1} \cup K_{3}$. Let $G^{\prime}=3 K_{1} \cup K_{3}$ with $V\left(G^{\prime}\right)=W=\left\{w_{i} \mid 1 \leq i \leq 6\right\}$ and $E\left(G^{\prime}\right)=\left\{w_{4} w_{5}, w_{4} w_{6}, w_{5} w_{6}\right\}$. By Theorem 8 we may assume T contains a III-deletable set U_{1}. Let $N_{T}\left(U_{1}\right)=U_{2}$. By induction hypothesis, $G-W$ contains $T_{U_{1}}$. If $d_{W}(u) \geq 3$ for each $u \in U_{2}$, then G contains T, a contradiction. Hence there is some vertex $u_{0} \in U_{2}$ such that $d_{W}\left(u_{0}\right) \leq 2$. Since $k=4$, we have $\left|N\left(u_{0}\right) \cap\left\{w_{4}, w_{5}, w_{6}\right\}\right| \leq 1$. Since $d_{W}\left(u_{0}\right) \leq 2$, we may assume $w_{1} \notin N\left(u_{0}\right)$. Thus $\bar{G}\left[w_{1}, w_{2}, w_{3}, u_{0}, w_{4}, w_{5}, w_{6}\right]$ contains a W_{6} with the hub w_{1}, a contradiction.

Let now $k=5,6$. By Theorem 8 we may assume T contains a 3-deletable set U_{0}. Let $N_{T}\left(U_{0}\right)=U$. By induction hypothesis, $G-I$ contains $T_{U_{0}}$. If $d_{I}(u) \geq 3$ for each $u \in U$, then G contains T, a contradiction. Hence there is some vertex $u \in U$ such that $d_{I}(u) \leq 2$. Thus, if $k=5$, then G contains an induced subgraph $3 K_{1} \cup P_{3}$ or $4 K_{1} \cup K_{2}$. By an analogous argument of $k=4$, we can get a contradiction. If $k=6$, then $\bar{G}[I \cup\{u\}]$ contains a W_{6}, a contradiction.

From the proof above, we have $R\left(T, W_{6}\right) \leq 2 n-1$ for $T \notin \mathcal{T}$. On the other hand, the graph $2 K_{n-1}$ shows $R\left(T, W_{6}\right) \geq 2 n-1$ for any tree T of order n and hence $R\left(T, W_{6}\right)=2 n-1$ for $T \notin \mathcal{T}$. Thus the proof of Theorem 9 is completed.

4. Proof of Theorem 10

Proof of Theorem 10. Let G be a graph of order $3 n-2$ and T a given tree of order n. Suppose \bar{G} contains no W_{7}.

Claim 4. If G contains no T, then $\delta(G)=n-2$.
Proof. By Theorem 3, we may assume $T \neq S_{n}$. Let $d(v)=\delta(G)$ and $V=V(G)-N[v]$. If $\delta(G) \leq n-3$, then $|V| \geq 2 n$. Since G contains no T, by Theorem $9, \bar{G}[V]$ contains a W_{6} and hence $\bar{G}[V]$ contains a C_{7} which implies \bar{G} contains a W_{7} with the hub v, a contradiction. Hence we have $\delta(G) \geq n-2$. If $\delta(G) \geq n-1$, then it is easy to see G contains all trees of order n. Thus we have $\delta(G) \leq n-2$ and hence $\delta(G)=n-2$.

By Theorem 3, G contains a tree $T_{*}=S_{n}$. Let $V\left(T_{*}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E\left(T_{*}\right)=\left\{v_{0} v_{i} \mid 1 \leq i \leq n-1\right\}$. If G contains no $S_{n}(1,1)$, then by Claim 4, we have $d\left(v_{1}\right) \geq n-2 \geq 4$ and hence there is some vertex $w \in V(G)$ such that $w \neq v_{0}$ and $w \in N\left(v_{1}\right)$ which implies G contains an $S_{n}(1,1)$, a contradiction. Assume $T_{* *}=S_{n}(1,1)$ with $V\left(T_{* *}\right)=\left\{u_{0}, \ldots, u_{n-1}\right\}$ and $E\left(T_{* *}\right)=\left\{u_{0} u_{i} \mid 1 \leq i \leq n-2\right\} \cup\left\{u_{1} u_{n-1}\right\}$. If G contains no $S_{n}(1,2)$, then by Claim 4 , we have $d\left(u_{n-1}\right) \geq n-2 \geq 4$ and hence there is some vertex $w \in V(G)$ such that $u \neq u_{0}, u_{1}$ and $w \in N\left(u_{n-1}\right)$ which implies G contains an $S_{n}(1,2)$, a contradiction. Thus we may assume $T \neq S_{n}, S_{n}(1,1)$ and $S_{n}(1,2)$. Assume $d(v)=\delta(G)$ and $V=V(G)-N[v]$. If G contains no T, then by Claim 4, we have $|V|=2 n-1$. By Theorem $9, \bar{G}[V]$ contains a W_{6} and hence $\bar{G}[V]$ contains a C_{7} which implies \bar{G} contains a W_{7} with the hub v, a contradiction. Thus we have

ARTICLE IN PRESS

Y. Chen et al. / European Journal of Combinatorics $x x$ ($x x x x$) $x x x-x x x$
$R\left(T, W_{7}\right) \leq 3 n-2$. On the other hand, the graph $3 K_{n-1}$ shows $R\left(T, W_{7}\right) \geq 3 n-2$ and hence $R\left(T, W_{7}\right)=3 n-2$, that is, $R\left(T_{n}, W_{7}\right)=3 n-2$. The proof of Theorem 10 is completed.

Acknowledgements

The first author was supported partially by Nanjing University Talent Development Foundation. The third author was supported partially by NSFZJ.

References

[1] E.T. Baskoro, Surahmat, S.M. Nababan, M. Miller, On Ramsey numbers for trees versus wheels of five or six vertices, Graphs and Combinatorics 18 (2002) 717-721.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1976.
[3] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers of paths versus wheels, Discrete Mathematics 290 (2005) 85-87.
[4] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers of stars versus wheels, European Journal of Combinatorics 25 (2004) 1067-1075.
[5] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for $\Delta\left(T_{n}\right) \geq n-3$, Applied Mathematics Letters 17 (2004) 281-285.
[6] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for small n, Utilitas Mathematica (in press).
[7] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for T_{n} without certain deletable sets, Journal of Systems Science and Complexity 18 (2005) 95-101.
[8] O. Ore, Arc coverings of graphs, Annali di Matematica Pura ed Applicata 55 (1961) 315-321.

[^0]: ${ }^{*}$ This project was supported by NSFC under grant number 10201012.
 E-mail address: yaojunc@nju.edu.cn (Y. Chen).

