

ARTICLE IN PRESS

ELSEVIER

Available online at www.sciencedirect.com

European Journal of Combinatorics xx (xxxx) xxx-xxx

European Journal of Combinatorics

www.elsevier.com/locate/ejc

The Ramsey numbers of trees versus W_6 or W_7^*

Yaojun Chen, Yunqing Zhang, Kemin Zhang

Department of Mathematics, Nanjing University, Nanjing 210093, China

Received 6 September 2004; accepted 11 December 2004

1 Abstract

- Let T_n denote a tree of order n and W_m a wheel of order m + 1. In this paper, we show the Ramsey
- ³ numbers $R(T_n, W_6) = 2n 1 + \mu$ for $n \ge 5$, where $\mu = 2$ if $T_n = S_n, \mu = 1$ if $T_n = S_n(1, 1)$ or
- 4 $T_n = S_n(1, 2)$ and $n \equiv 0 \pmod{3}$, and $\mu = 0$ otherwise; $R(T_n, W_7) = 3n 2$ for $n \ge 6$.
- 5 © 2005 Elsevier Ltd. All rights reserved.

Keywords: Ramsey number; Tree; Wheel

6 1. Introduction

All graphs considered in this paper are finite simple graphs without loops. For two given 7 graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest positive integer n such 8 that for any graph G of order n, either G contains G_1 or \overline{G} contains G_2 , where \overline{G} is the 9 complement of G. Let G be a graph and m be a positive integer. We use mG to denote 10 m vertex disjoint copies of G. A path and a cycle of order n are denoted by P_n and C_n , 11 respectively. A star S_n $(n \ge 3)$ is a bipartite graph $K_{1,n-1}$. A complete graph of order n is 12 denoted by K_n . A wheel $W_n = K_1 + C_n$ is a graph of n + 1 vertices, where K_1 is called 13 the hub of the wheel. $S_n(l, m)$ is a tree of order n obtained from $S_{n-l \times m}$ by subdividing 14 each of l chosen edges m times. $S_n(l)$ is a tree of order n obtained from an S_l and an S_{n-l} 15 by adding an edge joining the centers of them. $S_n[l]$ is a tree of order n obtained from an 16

[☆] This project was supported by NSFC under grant number 10201012. *E-mail address:* yaojunc@nju.edu.cn (Y. Chen).

Y. Chen et al. / European Journal of Combinatorics xx (xxxx) xxx-xxx

 S_l and an S_{n-l} by adding an edge joining a vertex of degree one of S_l to the center of S_{n-l} . 1 Define 2 $\mathcal{T} = \{S_n \mid n > 5\} \cup \{S_n(1, 1) \mid n > 5\} \cup \{S_n(1, 2) \mid n > 6 \text{ and } n \equiv 0 \pmod{3}\}.$ 3 For a tree T, we define $L(T) = \{v \mid v \in V(T) \text{ and } d(v) = 1\}$. Let $V \subseteq L(T)$ and |V| = k. л Write $T_V = T - V$. If $T_V \notin \mathcal{T}$, we call V a k-deletable set. If k = 2 and |N(V)| = 2, we 5 call V a II-set. If k = 3 and |N(V)| = 3, we call V a III-set. If k = 3 and |N(V)| = 2, we 6 call V a IV-set. If V is a II-set and $T_V \notin \mathcal{T}$, we call V a II-deletable set. Similarly, we can 7 define III-deletable and IV-deletable sets. Terminology and notations not defined here can 8 be found in [2]. 9 In [1], Baskoro et al. obtain the following. 10 **Theorem 1** ([1]). Let T_n be a tree of order n other than S_n . Then $R(T_n, W_4) = 2n - 1$ for 11 $n \ge 3$; $R(T_n, W_5) = 3n - 2$ for $n \ge 4$. 12 Motivated by Theorem 1, Baskoro et al. [1] pose the following. 13 **Conjecture 1.** Let T_n be a tree of order n other than S_n and $n \ge m-1$. Then $R(T_n, W_m) =$ 14 2n-1 for even $m \ge 6$; $R(T_n, W_m) = 3n-2$ for odd $m \ge 7$. 15 In [3], we show Conjecture 1 holds for $T_n = P_n$. 16 **Theorem 2** ([3]). $R(P_n, W_m) = 3n - 2$ for *m* odd and $n \ge m - 1 \ge 2$; $R(P_n, W_m) =$ 17 2n-1 for *m* even and $n \ge m-1 \ge 3$. 18 In [4], we obtain the following. 19 **Theorem 3** ([4]). $R(S_n, W_6) = 2n + 1$ for $n \ge 3$; $R(S_n, W_m) = 3n - 2$ for m odd and 20 $n \ge m - 1 \ge 2.$ 21 Using Theorem 3, we consider $R(T_n, W_6)$ for $\Delta(T_n) \ge n - 3$ in [5] and the following 22 are established. 23 **Theorem 4** ([5]). $R(S_n(1, 1), W_6) = 2n$ for $n \ge 4$. 24 **Theorem 5** ([5]). $R(S_n(1, 2), W_6) = 2n$ for $n \ge 6$ and $n \equiv 0 \pmod{3}$. 25 **Theorem 6** ([5]). $R(S_n(3), W_6) = R(S_n(2, 1), W_6) = 2n - 1$ for $n \ge 2n - 1$ 6; 26 $R(S_n(1, 2), W_6) = 2n - 1$ for $n \ge 6$ and $n \ne 0 \pmod{3}$. 27 By Theorems 4 and 5, we can see that Conjecture 1 is not true when m = 6. In fact, as 28 pointed out in [5], for even m, $R(T_n, W_m)$ is a function related to both n and m. However, 29 we believe that $R(T_n, W_6) = 2n - 1$ for $T_n \notin \mathcal{T}$. 30 In [6], we evaluate $R(T_n, W_6)$ for $5 \le n \le 8$ and get the following. 31 **Theorem 7** ([6]). Let $T_n \notin \mathcal{T}$ be a tree of order n and $5 \leq n \leq 8$, then $R(T_n, W_6) =$ 32 2n - 1. 33

In [7], we consider $R(T_n, W_6)$ for T_n without certain deletable sets and establish the following.

34

35

2

ARTICLE IN PRESS

Y. Chen et al. / European Journal of Combinatorics xx (xxxx) xxx-xxx

3

Theorem 8 ([7]). Let $T \notin T$ be a tree of order $n \ge 9$. If T contains no II-deletable set, or $|L(T)| \ge 3$ and T contains neither III-deletable set nor IV-deletable set, or $|L(T)| \ge 4$ and T contains no IV-deletable set, then $R(T, W_6) = 2n - 1$.

In this paper, we will determine $R(T_n, W_6)$ for all $T_n \notin \mathcal{T}$ and $n \ge 5$. On the other hand, we will consider the conjecture in the case where *m* is odd. As a special case, this paper will determine $R(T_n, W_7)$.

⁷ Let T_n be a tree of order *n*. The main results of this paper are the following.

* **Theorem 9.** $R(T_n, W_6) = 2n - 1 + \mu$ for $n \ge 5$, where $\mu = 2$ if $T_n = S_n$, $\mu = 1$ if * $T_n = S_n(1, 1)$ or $T_n = S_n(1, 2)$ and $n \equiv 0 \pmod{3}$, and $\mu = 0$ otherwise.

10 **Theorem 10.** $R(T_n, W_7) = 3n - 2$ for $n \ge 6$.

By Theorem 10, we can see that Conjecture 1 holds for m = 7. For odd $m \ge 9$, the conjecture is still alive. Although the conjecture is not true for even m in general, we believe it holds for odd m.

14 2. Some lemmas

¹⁵ In order to prove the main results of this paper, we need the following lemmas.

Lemma 1 ([5]). Let G be a graph of order $2n - 1 \ge 7$ and (U, V) a partition of V(G)with $|U| \ge 3$ and $|V| \ge 4$. Suppose $u_i \in U$ and $N_V(u_i) = \emptyset$, $1 \le i \le 3$. If \overline{G} contains no W_6 , then $\delta(G[V]) \ge |V| - 3$.

Lemma 2 ([7]). Let G be a graph of order 2n - 1. If $\alpha(G) \le 2$, then G contains all trees of order n.

Ore showed in [8] that if a graph on n vertices in which the degree sum of any two nonadjacent vertices is at least n + 1, then G is Hamilton-connected. From this result we can get easily the following.

Lemma 3. Let G be a graph of order n. If $\delta(G) \ge n/2 + 1$, then G is Hamilton-connected.

Lemma 4. Let G be a graph of order $n \ge 9$. If $\alpha(G) \le 2$ and $\delta(G) \ge n - 3$, then G contains all trees T of order n with |L(T)| = 3.

Proof. If $\alpha(G) = 1$, then it holds trivially. Hence we may assume $\alpha(G) = 2$. Let T be a 27 given tree of order n with |L(T)| = 3. Obviously, $\Delta(T) = 3$ and T has only one vertex 28 of degree 3. Let $v \in V(G)$ and $G_0 = G - v$. Since $n \ge 9$ and $\delta(G) \ge n - 3$, we have 29 $\delta(G_0) \ge (n-3) - 1 \ge (n-1)/2 + 1 = |G_0|/2 + 1$ which implies G_0 is Hamilton-30 connected by Lemma 3. If d(v) = n - 3, we assume $v_1, v_2 \notin N(v)$. Noting that $\alpha(G) = 2$, 31 we have $v_1v_2 \in E(G)$ and hence G_0 contains a Hamilton cycle $C = v_1v_2 \cdots v_{n-1}$ such 32 that $v_i \in N(v)$ for $3 \le i \le n-1$. In this case, it is easy to see G contains T. If $d(v) \ge n-2$, 33 then since G_0 contains a Hamilton cycle, it is not difficult to see G contains T. 34

The following lemma is well known and can be found in many graph theory textbooks, see for instance [2].

ARTICLE IN PRESS

Y. Chen et al. / European Journal of Combinatorics xx (xxxx) xxx-xxx

Lemma 5. A bipartite graph G with bipartition (U, V) contains a matching saturating U if and only if $|N(S)| \ge |S|$ for every $S \subseteq U$.

3. Proof of Theorem 9

Proof of Theorem 9. Let *T* be a given tree of order $n \ge 5$. If |L(T)| = 2, then $T = P_n$ and hence Theorem 9 holds by Theorem 2. If $T \in \mathcal{T}$, then Theorem 9 holds by Theorems 3–5. Thus we may assume $|L(T)| \ge 3$ and $T \notin \mathcal{T}$.

We use induction on *n*. If $5 \le n \le 8$, then Theorem 9 holds by Theorem 7. In the following proof, we assume $n \ge 9$ and Theorem 9 holds for small values of *n*.

Let G be a graph of order 2n - 1. If \overline{G} contains no W_6 , then $\alpha(G) \leq 6$. Let I be a maximum independent set of G. By Lemma 2, we may assume $|I| \geq 3$. Let $I = \{v_1, v_2, \ldots, v_k\}$, where $3 \leq k \leq 6$.

Suppose to the contrary G contains no T. We now consider the following two cases.

Case 1. k = 3.

In order to prove Case 1, we need the following three claims.

Claim 1. *G* contains an induced subgraph $K_1 \cup K_2 \cup K_3$.

Proof. Since *G* contains no *T*, by Theorem 8 we may assume *T* contains a II-deletable set U_0 . By induction hypothesis, G - I contains $T_{U_0} = T - U_0$. Let $N_T(U_0) = U$. If $|N_I(U)| \ge 2$, then *G* contains *T*, a contradiction. Hence $|N_I(U)| = 1$. This implies *G* has an induced subgraph $2K_1 \cup K_2$. Assume, without loss of generality, that $G[I_1] = 2K_1 \cup K_2$ with $I_1 = I \cup \{v_4\}$ and $v_3v_4 \in E(G)$. By induction hypothesis, $G - I_1$ contains T_{U_0} . If $|N_{I_1}(U)| \ge 2$, then *G* contains *T*, a contradiction. Hence $|N_{I_1}(U)| = 1$. Thus, noting that k = 3, we may assume $N_{I_1}(U) = \{v_2\}$. Let $I_2 = I_1 \cup U$. Since k = 3, it is easy to see that $G[I_2] = K_1 \cup K_2 \cup K_3$.

In the following, we let $G_0 = K_1 \cup K_2 \cup K_3$ with $V(G_0) = X = \{x_1, x_2, ..., x_6\}$ and $E(G_0) = \{x_2x_3, x_4x_5, x_4x_6, x_5x_6\}$ be an induced subgraph of *G*.

Claim 2. $|L(T)| \ge 4$.

Proof. Let $L(T) = U_0$. If |L(T)| = 3, then by Theorem 8 we may assume U_0 is a IV-deletable set or III-deletable set. Let $N_T(U_0) = U$.

If |U| = 2, we assume $U = \{u_1, u_2\}$. In this case, it is easy to see $T_{U_0} = P_{n-3}$ 29 and either $d_T(u_1) = 3$ or $d_T(u_2) = 3$. By Theorem 2, G - I contains a P_{n-2} . Assume 30 $P_{n-2} = p_1 p_2 \cdots p_{n-2}$ to be a path in G - I. If $N_I(p_1) \cap N_I(p_{n-2}) \neq \emptyset$, then G 31 contains a cycle C of length n-1. Let V = V(G) - V(C), then $d_V(v) = 0$ for any 32 $v \in V(C)$ since otherwise G contains T. Thus we have $\alpha(G[V]) < 2$ since $\alpha(G) = 3$ 33 and $\delta(G[V]) \ge n-3$ by Lemma 1 and hence G[V] contains T by Lemma 4. Thus we 34 may assume $N_I(p_1) \cap N_I(p_{n-2}) = \emptyset$. In this case, if $d_I(p_1) \ge 2$ or $d_I(p_{n-2}) \ge 2$, 35 then G contains T and hence we may assume $N_I(p_1) = \{v_1\}$ and $N_I(p_{n-2}) = \{v_2\}$. 36 Let $V_0 = V(G) - I - P_{n-2}$, then $|V_0| = n - 2$. If $d_{V_0}(v_1) \ge 2$ or $d_{V_0}(v_2) \ge 2$, then 37 G contains T. Thus, since $|V_0| = n - 2 \ge 7$, there are three vertices $w_1, w_2, w_3 \in V_0$ 38 such that $v_i w_i \notin E(G)$ for i = 1, 2 and j = 1, 2, 3. If $N(p_2) \cap (V_0 \cup \{v_1\}) \neq \emptyset$ or 39

4

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1

2

ARTICLE IN PRESS

Y. Chen et al. / European Journal of Combinatorics xx (xxxx) xxx-xxx

 $N_{V_0}(p_{n-2}) \neq \emptyset$, then G contains T. Hence we have $N(p_2) \cap (V_0 \cup \{v_1\}) = N_{V_0}(p_{n-2})$ 1 $= \emptyset$. Thus, $\overline{G}[v_1, p_2, v_2, p_{n-2}, w_1, w_2, w_3]$ contains a W_6 with the hub v_1 , a contradiction. 2 If |U| = 3, we assume $U = \{u_1, u_2, u_3\}$. By induction hypothesis, G - X contains 3 T_{U_0} . Assume $d_X(u_1) \leq d_X(u_2) \leq d_X(u_3)$. Since G contains no T, by Lemma 5, we have 4 $d_X(u_1) \leq d_X(u_2) \leq 2$. If $d_X(u_1) = 1$, then since k = 3, we have $N_X(u_1) = \{x_1\}$. 5 If $x_1u_2 \in E(G)$, then since $d_X(u_2) \leq 2$, by the symmetry of x_2 and x_3 , we may 6 assume $x_2u_2 \notin E(G)$. Thus $\overline{G}[x_2, u_1, u_2, x_1, x_4, x_5, x_6]$ contains a W_6 with the hub 7 x_2 , a contradiction. If $x_1u_2 \notin E(G)$, then since $d_X(u_2) \leq 2$ and k = 3, we must 8 have $N_I(u_2) = \{x_2, x_3\}$. In this case, $\overline{G}[x_1, u_2, x_2, x_3, x_4, x_5, x_6]$ contains a W_6 with 9 the hub x_1 , again a contradiction. Thus we have $d_X(u_1) = 2$. If $|N_X(U)| \ge 3$, then by 10 Lemma 5, G contains T, a contradiction. Hence we have $|N_X(U)| = 2$ which implies 11 $N_X(u_1) = N_X(u_2) = N_X(u_3)$. Let $W = V(G) - N_X(U) - V(T_{U_0})$, then |W| = n. 12 Obviously, $d_W(u_i) = 0$ for i = 1, 2, 3 since otherwise G contains T. This implies 13 $\alpha(G[W]) \leq 2$ since k = 3. And then $\delta(G[W]) \geq n-3$ by Lemma 1. Hence G[W]14 contains T by Lemma 4, a contradiction. 15

¹⁶ Claim 3. *G* contains no induced subgraph $3K_2$.

Proof. Since G contains no T, by Theorem 8 we may assume T contains a III-deletable 17 set or IV-deletable set U_0 and $N_T(U_0) = U$. Suppose to the contrary G contains an 18 induced subgraph $G_1 = 3K_2$ with $V(G_1) = Y = \{y_i \mid 1 \le i \le 6\}$ and $E(G_1) =$ 19 $\{y_1y_2, y_3y_4, y_5y_6\}$. By induction hypothesis, G - Y contains T_{U_0} . Since k = 3, it is easy 20 to see $d_Y(u) \ge 2$ for any $u \in U$. If $|N_Y(U)| \ge 3$ and |U| = 2, then it is easy to see 21 G contains T, a contradiction. If $|N_Y(U)| \ge 3$ and |U| = 3, then G contains T by 22 Lemma 5, a contradiction. Thus we have $|N_Y(U)| = 2$. Since k = 3, we may assume 23 $N_Y(U) = \{y_5, y_6\}$. In this case, G contains an induced subgraph $G_2 = 2K_2 \cup K_4$. Let 24 $V(G_2) = Z = \{z_i \mid 1 \le i \le 8\}$ and $E(G_2) = \{z_1z_2, z_3z_4\} \cup \{z_iz_i \mid 5 \le i < j \le 8\}$. By 25 Claim 2, we have $|L(T)| \ge 4$. By Theorem 8 we may assume T contains a IV-deletable 26 set U_1 . If $d_Z(u) \ge 4$ for any $u \in N_T(U_1)$, then G contains T, a contradiction. Hence there 27 is some vertex $u_0 \in N_T(U_1)$ such that $d_Z(u_0) \le 3$. Set $V = \{z_5, z_6, z_7, z_8\}$. Since k = 3, 28 we have $d_V(u_0) \leq 1$. Hence we may assume $N_Z(u_0) \cap \{z_5, z_6, z_7\} = \emptyset$. Since $d_Z(u_0) \leq 3$, 29 we may assume $z_1 \notin N_Z(u_0)$. Thus $\overline{G}[z_1, u_0, z_3, z_4, z_5, z_6, z_7]$ contains a W_6 with the hub 30 z_1 , a contradiction. 31

³² In the following we prove Case 1.

By Theorem 8, T contains a III-deletable set or a IV-deletable set U_0 . Let $N_T(U_0) = U$. 33 By induction hypothesis, G - X contains T_{U_0} . If there is some vertex $u \in U$ such 34 that $d_X(u) = 1$, then since k = 3, we have $N_X(u) = \{x_1\}$ and thus G contains 35 an induced subgraph $3K_2$ which contradicts Claim 3. Hence we have $d_X(u) \ge 2$ for 36 any $u \in U$. If $|N_X(U)| \ge 3$ and |U| = 2, then G contains T, a contradiction. If 37 $|N_X(U)| \ge 3$ and |U| = 3, then G contains T by Lemma 5, a contradiction. Hence we 38 have $|N_X(U)| = 2$ which implies $N_X(u) = N_X(U)$ for each $u \in U$. If $x_1 \in N_X(U)$, 39 then by the symmetry of x_2 and x_3 and Claim 3, we may assume $x_3 \in N_X(U)$ and 40 hence $\overline{G}[x_2, u_1, u_2, x_1, x_4, x_5, x_6]$ contains a W_6 with the hub x_2 , where $u_1, u_2 \in U$, a 41 contradiction. If $x_1 \notin N_X(U)$, then since k = 3, we have $N_X(U) = \{x_2, x_3\}$ which implies 42 $\overline{G}[x_1, u_1, x_2, x_3, x_4, x_5, x_6]$ contains a W_6 with the hub x_1 , where $u_1 \in U$, a contradiction. 43

6

Y. Chen et al. / European Journal of Combinatorics xx (xxxx) xxx-xxx

Case 2. $k \ge 4$.

If k = 4, then by Theorem 8 we may assume T contains a II-deletable set U_0 . By induction hypothesis, G - I contains T_{U_0} . Let $N_T(U_0) = U$. If $|N_I(U)| \ge 2$, then G contains T, a contradiction. Thus we have $|N_I(U)| = 1$ which implies G contains an induced subgraph $3K_1 \cup K_3$. Let $G' = 3K_1 \cup K_3$ with $V(G') = W = \{w_i \mid 1 \le i \le 6\}$ and $E(G') = \{w_4w_5, w_4w_6, w_5w_6\}$. By Theorem 8 we may assume T contains a III-deletable set U_1 . Let $N_T(U_1) = U_2$. By induction hypothesis, G - W contains T_{U_1} . If $d_W(u) \ge 3$ for each $u \in U_2$, then G contains T, a contradiction. Hence there is some vertex $u_0 \in U_2$ such that $d_W(u_0) \le 2$. Since k = 4, we have $|N(u_0) \cap \{w_4, w_5, w_6\}| \le 1$. Since $d_W(u_0) \le 2$, we may assume $w_1 \notin N(u_0)$. Thus $\overline{G}[w_1, w_2, w_3, u_0, w_4, w_5, w_6]$ contains a W_6 with the hub w_1 , a contradiction.

Let now k = 5, 6. By Theorem 8 we may assume T contains a 3-deletable set U_0 . Let $N_T(U_0) = U$. By induction hypothesis, G - I contains T_{U_0} . If $d_I(u) \ge 3$ for each $u \in U$, then G contains T, a contradiction. Hence there is some vertex $u \in U$ such that $d_I(u) \le 2$. Thus, if k = 5, then G contains an induced subgraph $3K_1 \cup P_3$ or $4K_1 \cup K_2$. By an analogous argument of k = 4, we can get a contradiction. If k = 6, then $\overline{G}[I \cup \{u\}]$ contains a W_6 , a contradiction.

From the proof above, we have $R(T, W_6) \leq 2n - 1$ for $T \notin \mathcal{T}$. On the other hand, the graph $2K_{n-1}$ shows $R(T, W_6) \geq 2n - 1$ for any tree T of order n and hence $R(T, W_6) = 2n - 1$ for $T \notin \mathcal{T}$. Thus the proof of Theorem 9 is completed. \Box

4. Proof of Theorem 10

Proof of Theorem 10. Let G be a graph of order 3n - 2 and T a given tree of order n. Suppose \overline{G} contains no W_7 .

Claim 4. If G contains no T, then $\delta(G) = n - 2$.

Proof. By Theorem 3, we may assume $T \neq S_n$. Let $d(v) = \delta(G)$ and V = V(G) - N[v]. If $\delta(G) \leq n - 3$, then $|V| \geq 2n$. Since *G* contains no *T*, by Theorem 9, $\overline{G}[V]$ contains a W_6 and hence $\overline{G}[V]$ contains a C_7 which implies \overline{G} contains a W_7 with the hub *v*, a contradiction. Hence we have $\delta(G) \geq n - 2$. If $\delta(G) \geq n - 1$, then it is easy to see *G* contains all trees of order *n*. Thus we have $\delta(G) \leq n - 2$ and hence $\delta(G) = n - 2$. \Box

By Theorem 3, G contains a tree $T_* = S_n$. Let $V(T_*) = \{v_0, v_1, \ldots, v_{n-1}\}$ and 30 $E(T_*) = \{v_0v_i \mid 1 \le i \le n-1\}$. If G contains no $S_n(1, 1)$, then by Claim 4, we have 31 $d(v_1) \ge n-2 \ge 4$ and hence there is some vertex $w \in V(G)$ such that $w \ne v_0$ and 32 $w \in N(v_1)$ which implies G contains an $S_n(1, 1)$, a contradiction. Assume $T_{**} = S_n(1, 1)$ 33 with $V(T_{**}) = \{u_0, \ldots, u_{n-1}\}$ and $E(T_{**}) = \{u_0u_i \mid 1 \le i \le n-2\} \cup \{u_1u_{n-1}\}$. If G 34 contains no $S_n(1,2)$, then by Claim 4, we have $d(u_{n-1}) \ge n-2 \ge 4$ and hence there 35 is some vertex $w \in V(G)$ such that $u \neq u_0, u_1$ and $w \in N(u_{n-1})$ which implies G 36 contains an $S_n(1, 2)$, a contradiction. Thus we may assume $T \neq S_n$, $S_n(1, 1)$ and $S_n(1, 2)$. 37 Assume $d(v) = \delta(G)$ and V = V(G) - N[v]. If G contains no T, then by Claim 4, 38 we have |V| = 2n - 1. By Theorem 9, $\overline{G}[V]$ contains a W_6 and hence $\overline{G}[V]$ contains 39 a C_7 which implies \overline{G} contains a W_7 with the hub v, a contradiction. Thus we have 40

21

22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

23 24

25

26

27

28

29

ARTICLE IN PRESS

Y. Chen et al. / European Journal of Combinatorics xx (xxxx) xxx-xxx

 $R(T, W_7) \le 3n - 2$. On the other hand, the graph $3K_{n-1}$ shows $R(T, W_7) \ge 3n - 2$ and hence $R(T, W_7) = 3n - 2$, that is, $R(T_n, W_7) = 3n - 2$. The proof of Theorem 10 is completed. \Box

4 Acknowledgements

The first author was supported partially by Nanjing University Talent Development
 Foundation. The third author was supported partially by NSFZJ.

7 References

- 8 [1] E.T. Baskoro, Surahmat, S.M. Nababan, M. Miller, On Ramsey numbers for trees versus wheels of five or six
 9 vertices, Graphs and Combinatorics 18 (2002) 717–721.
- 10 [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1976.
- [3] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers of paths versus wheels, Discrete Mathematics 290
 (2005) 85–87.
- [4] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers of stars versus wheels, European Journal of
 Combinatorics 25 (2004) 1067–1075.
- 15 [5] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers $R(T_n, W_6)$ for $\Delta(T_n) \ge n 3$, Applied 16 Mathematics Letters 17 (2004) 281–285.
- 17 [6] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers $R(T_n, W_6)$ for small *n*, Utilitas Mathematica 18 (in press).
- [7] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers $R(T_n, W_6)$ for T_n without certain deletable sets, Journal of Systems Science and Complexity 18 (2005) 95–101.
- [8] O. Ore, Arc coverings of graphs, Annali di Matematica Pura ed Applicata 55 (1961) 315–321.